

FERRET

USER’S GUIDE

Version 5.0

NOAA/PMEL/TMAP

Steve Hankin
Ansley Manke
Kevin O’Brien
November 1999

About the Cover

The cover of this User’s Guide was produced by Ferret. From the top down the plots are:
“TOGA-TAO SST,” time series from the Tropical Pacific TAO array; “Levitus Climatological
SST,” an equal area projection of level one of the annual Climatological Atlas of the World Oceans
by Sydney Levitus of NOAA/NODC; “Perturbation Solution,” a visualization of abstract functions
by Dr. Ping Chang; “Vents Megaplume Thermal Structure,” vertical temperature profiles of under-
sea thermal vents from the NOAA Vents program.

Contents

CHAPTER 1: INTRODUCTION

1 OVERVIEW . 1
1.1 Ferret User’s Group . 2
1.2 Ferret Home Page . 2

2 GETTING STARTED . 2
2.1 Concepts . 2

2.1.1 Thinking like a Ferret: . 4
2.2 Unix command line switches . 6
2.3 Sample sessions . 7

2.3.1 Accessing a NetCDF data set . 7
2.3.2 Reading an ASCII data file . 8
2.3.3 Using viewports . 8
2.3.4 Using abstract variables . 9
2.3.5 Using transformations . 9
2.3.6 Using algebraic expressions . 10
2.3.7 Finding the 20-degree isotherm . 11

3 COMMON COMMANDS . 12
4 COMMAND SYNTAX . 12
5 GO FILES . 13

5.1 Demonstration files . 13
5.2 GO tools . 14
5.3 Writing GO tools . 17

5.3.1 Documenting GO tools . 18
5.3.2 Preserving the Ferret state in GO tools 18
5.3.3 Silent GO tools . 18
5.3.4 Arguments to GO tools . 18
5.3.5 Flow Control in GO tools . 20
5.3.6 Debugging GO tools . 21

6 SAMPLE DATA SETS . 22
7 UNIX TOOLS. 22
8 HELP . 24

8.1 Unix on-line help . 24
8.2 Examples and demonstrations . 25
8.3 Help from within Ferret . 25

CHAPTER 2: DATA SET BASICS

1 OVERVIEW. 27
2 NETCDF DATA . 28

2.1 Multi-file NetCDF data sets . 29
2.2 Non-standard NetCDF data sets . 29

3 TMAP-FORMATTED DATA . 30
4 BINARY DATA. 31

4.1 FORTRAN-structured binary files . 31
4.1.1 Records of uniform length . 31
4.1.2 Records of non-uniform length . 32

4.2 Stream binary files . 33

CONTENTS V

4.2.1 Simple stream files . 33
4.2.2 Mixed stream files . 34

5 ASCII DATA . 34
5.1 Reading ASCII files . 35

6 TRICKS TO READING BINARY AND ASCII FILES 38
7 ACCESS TO REMOTE DATA SETS WITH DODS . 39

CHAPTER 3: VARIABLES AND EXPRESSIONS

1 Variables . 43
1.1 Variable syntax . 43
1.2 File variables . 44
1.3 Pseudo-variables . 44

1.3.1 Grids and axes of pseudo-variables 45
1.4 User-defined variables . 46
1.5 Abstract variables . 46
1.6 Missing value flags. 47

1.6.1 Missing values in input files. 47
1.6.2 Missing values in user-defined variables 48
1.6.3 Missing values in output NetCDF files. 48
1.6.4 Displaying the missing value flag . 49

2 EXPRESSIONS . 49
2.1 Operators . 50
2.2 Multi-dimensional expressions . 50
2.3 Functions . 51
2.4 Transformations . 55

2.4.1 General information about transformations 56
2.4.2 Transformations applied to irregular regions 57
2.4.3 General information about smoothing transformations 57
2.4.4 @DIN—definite integral . 58
2.4.5 @IIN—indefinite integral . 59
2.4.6 @AVE—average . 60
2.4.7 VAR—weighted variance . 60
2.4.8 MIN—minimum . 61
2.4.9 @MAX—maximum. 61
2.4.10 @SHF:n—shift . 61
2.4.11 @SBX:n—boxcar smoother . 61
2.4.12 @SBN:n—binomial smoother . 62
2.4.13 @SHN:n—Hanning smoother . 62
2.4.14 @SPZ:n—Parzen smoother . 62
2.4.15 @SWL:n—Welch smoother . 63
2.4.16 @DDC—centered derivative . 63
2.4.17 @DDF—forward derivative . 63
2.4.18 @DDB—backward derivative . 63
2.4.19 @NGD—number of good points . 63
2.4.20 @NBD—number of bad points . 64
2.4.21 @SUM—unweighted sum . 64
2.4.22 @RSUM—running unweighted sum 64
2.4.23 @FAV:n—averaging filler . 64
2.4.24 @FLN:n—linear interpolation filler 65
2.4.25 @FNR:n—nearest neighbor filler . 65
2.4.26 @LOC—location of . 65
2.4.27 @WEQ—weighted equal; integration kernel 66

VI CONTENTS

2.4.28 @ITP—interpolate . 68
2.4.29 @CDA—closest distance above . 68
2.4.30 @CDB—closest distance below . 68
2.4.31 @CIA—closest index above . 69
2.4.32 @CIB—closest index below . 69

2.5 IF-THEN logic (“masking”) . 70
2.6 Lists of constants (”constant arrays”) . 70

3 EMBEDDED EXPRESSIONS . 71
3.1 Special calculations using embedded expressions 72

4 DEFINING NEW VARIABLES . 75
4.1 Global, local, and default variable definitions 75

5 DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS. 76

CHAPTER 4: GRIDS AND REGIONS

1 OVERVIEW. 77
2 GRIDS . 77

2.1 Defining grids . 78
2.2 Dynamic grids and axes . 78

2.2.1 Dynamic grids . 79
2.2.2 Dynamic axes . 81
2.2.3 Dynamic pseudo-variables . 81

2.3 Regridding . 82
2.3.1 Regridding transformations . 84

2.4 Modulo regridding . 87
2.4.1 Modulo regridding statistics . 89

3 REGIONS . 90
3.1 Latitude . 91
3.2 Longitude . 91
3.3 Depth . 92
3.4 Time . 92
3.5 Delta . 93
3.6 Modulo axes . 94
3.7 Region Conflicts . 95

CHAPTER 5: ANIMATIONS AND GIF IMAGES

1 OVERVIEW. 97
2 CREATING AN HDF MOVIE . 97
3 DISPLAYING AN HDF MOVIE . 98
4 ADVANCED MOVIE-MAKING . 98

4.1 REPEAT command . 98
4.1.1 Initializing the color table . 99
4.1.2 Making movies in batch mode . 100

5 CREATING GIF IMAGES . 100
6 CREATING MPEG ANIMATIONS. 101

CHAPTER 6: CUSTOMIZING PLOTS

1 OVERVIEW . 103

CONTENTS VII

2 GRAPHICAL OUTPUT . 104
2.1 Ferret graphical output controls. 104
2.2 PPLUS graphical output commands . 105

3 AXES. 105
3.1 Ferret axis controls . 105
3.2 PPLUS axis commands . 106

4 LABELS . 108
4.1 Listing labels . 108
4.2 Adding labels . 109
4.3 Removing movable labels . 110
4.4 Axis labels and title . 111
4.5 Ferret label controls . 111
4.6 PPLUS label commands . 112
4.7 Positioning labels using the mouse pointer 112
4.8 Labeling details with arrows and text . 113

5 COLOR . 114
5.1 Text and line colors . 114

5.1.1 Ferret color controls for lines . 114
5.1.2 PPLUS text and line color commands 115

5.2 Shade and fill colors . 116
5.2.1 Ferret shade and fill color controls 118
5.2.2 PPLUS shade color commands . 119

6 FONTS . 120
6.1 Ferret font controls . 120
6.2 PPLUS font commands . 120

7 PLOT LAYOUT . 121
7.1 Ferret layout controls . 121

7.1.1 Viewports . 121
7.1.2 Pre-defined viewports . 122
7.1.3 Advanced usage of viewports . 123

7.2 PPLUS layout commands . 123
7.3 Controlling the white space around plots . 124

8 CONTOURING. 124
8.1 Ferret contour controls . 124

8.1.1 /LEVELS qualifier . 125
8.2 PPLUS contour commands . 126

9 Map Projections and Curvilinear Coordinates . 128
9.1 Three-argument (curvilinear) version of SHADE, FILL, CONTOUR, and

VECTOR 128
9.2 Gridded data sets on curvilinear coordinates 129
9.3 Layered (sigma) coordinates. 129
9.4 Map Projections . 130

9.4.1 Using Map Projection scripts . 130
9.4.2 Overlays with Map Projections . 131
9.4.3 Map Projection scripts . 132

CHAPTER 7: HANDLING STRING DATA: “SYMBOLS”

1 AUTOMATICALLY GENERATED SYMBOLS . 135
2 USE WITH EMBEDDED EXPRESSIONS . 136
3 ORDER OF STRING SUBSTITUTIONS . 136
4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS 137
5 USING SYMBOLS IN COMMAND FILES . 137

VIII CONTENTS

6 PLOT+ STRING EDITING TOOLS . 137
7 SYMBOL EDITING. 137
8 SPECIAL SYMBOLS . 139

CHAPTER 8: WORKING WITH SPECIAL DATA SETS

1 WHAT IS NON-GRIDDED DATA? . 141
2 POINT DATA . 141

2.1 Getting point data into Ferret . 142
2.2 How point data is structured in Ferret . 142

2.2.1 Working with dates . 143
2.3 Subsampling gridded fields onto point data locations and times 143
2.4 Defining gridded variables from point data 143
2.5 Visualization techniques for point data . 144

3 VERTICAL PROFILES . 144
3.1 How collections of profiles are structured in Ferret. 145
3.2 Getting profile data into Ferret . 146
3.3 Defining vertical sections from profiles . 147
3.4 Visualization and analysis techniques for profile sections 147
3.5 Subsampling gridded fields onto profile coordinates and times 147

4 COLLECTIONS OF TIME SERIES . 148
5 COLLECTIONS OF 2-DIMENSIONAL GRIDS . 148
6 LAGRANGIAN DATA. 148

6.1 Visualization techniques for Lagrangian data 148
7 SIGMA COORDINATE DATA . 149

7.1 Visualization techniques for sigma coordinate data 149
7.2 Analysis techniques for sigma coordinate data 149

8 CURVILINEAR COORDINATE DATA . 149
8.1 Visualization techniques for curvilinear coordinate data. 149
8.2 Analysis techniques for curvilinear coordinate data 150

9 POLYGONAL DATA. 150
9.1 Visualization techniques for polygonal data. 150
9.2 Analysis techniques for polygonal data . 150

CHAPTER 9: COMPUTING ENVIRONMENT

1 SETTING UP AN ACCOUNT . 151
2 FILES AND ENVIRONMENT VARIABLES USED BY FERRET 152
3 MEMORY USE . 153
4 HARD COPY AND METAFILE TRANSLATION . 154

4.1 Hard copy . 154
4.2 Metafile translation . 156

5 OUTPUT FILE NAMING . 157
6 INPUT FILE NAMING . 158

6.1 Relative version numbers . 158

CHAPTER 10: CONVERTING TO NETCDF

1 OVERVIEW . 159
2 SIMPLE CONVERSIONS USING FERRET . 159

CONTENTS IX

3 WRITING A CONVERSION PROGRAM . 161
3.1 Creating a CDL file with Ferret . 161
3.2 The CDL file . 162

3.2.1 Dimensions . 162
3.2.2 Variables . 162
3.2.3 Data . 164

3.3 Standardized NetCDF attributes . 165
3.4 Directing data to a CDF file . 166
3.5 Advanced NetCDF procedures . 168

3.5.1 Staggered grid . 169
3.5.2 Hyperslabs . 169
3.5.3 Unevenly spaced coordinates . 170
3.5.4 Evenly spaced coordinates (long axes) 170
3.5.5 “Modulo” axes . 171
3.5.6 Reversed-coordinate axes . 171
3.5.7 Converting time word data to numerical data 171

3.6 Example CDL file . 172
4 CREATING A MULTI-FILE NETCDF DATA SET . 178

CHAPTER 11: EXTERNAL FUNCTIONS

1 OVERVIEW . 179
2 GETTING STARTED . 179

2.1 Getting example/development code . 180
3 QUICK START EXAMPLE . 180

3.1 The times2bad20 function . 180
4 ANATOMY OF AN EXTERNAL FUNCTION . 182

4.1 The ~_init subroutine (required) . 182
4.2 The ~_compute subroutine (required) . 183
4.3 The ~_work_size subroutine (optional) 184
4.4 The ~_result_limits subroutine (optional) 185
4.5 The ~_custom_axes subroutine (optional) 185

5 NOTES AND SUGGESTIONS . 186
5.1 Inheriting axes. 186
5.2 Loop indices . 187
5.3 Reduced axes . 188
5.4 String Arguments . 189

6 UTILITY FUNCTIONS. 190
6.1 EF_Util.cmn . 190
6.2 Available utility functions . 191

PART II: COMMANDS REFERENCE

1 ALIAS . 203
2 CANCEL . 203

2.1 CANCEL ALIAS . 203
2.2 CANCEL AXIS . 203
2.3 CANCEL DATA_SET. 204
2.4 CANCEL EXPRESSION . 204
2.5 CANCEL LIST. 204
2.6 CANCEL MEMORY . 205

X CONTENTS

2.7 CANCEL MODE . 206
2.8 CANCEL MOVIE . 206
2.9 CANCEL SYMBOL . 206
2.10 CANCEL REGION . 207
2.11 CANCEL VARIABLE . 207
2.12 CANCEL VIEWPORT . 207
2.13 CANCEL WINDOW . 208

3 CONTOUR . 208
4 DEFINE . 211

4.1 DEFINE ALIAS . 211
4.2 DEFINE AXIS . 211
4.3 DEFINE GRID. 215
4.4 DEFINE REGION . 217
4.5 DEFINE SYMBOL . 218
4.6 DEFINE VARIABLE . 218
4.7 DEFINE VIEWPORT . 219

5 ELIF . 220
6 ELSE . 221
7 ENDIF . 221
8 EXIT . 221
9 FILE . 221
10 FILL . 222
11 FRAME . 222
12 GO . 222
13 HELP. 223
14 IF . 223
15 LABEL . 225
16 LET. 226
17 LIST . 226
18 LOAD . 231
19 MESSAGE . 232
20 PALETTE . 232
21 PATTERN . 233
22 PAUSE . 233
23 PLOT. 233
24 POLYGON . 236
25 PPLUS . 239
26 QUIT . 239
27 REPEAT . 240
28 SAVE . 240
29 SET . 241

29.1 SET AXIS . 241
29.2 SET DATA_SET . 242
29.3 SET EXPRESSION . 247
29.4 SET GRID . 248
29.5 SET LIST . 248
29.6 SET MEMORY. 250
29.7 SET MODE . 251

29.7.1 SET MODE ASCII_FONT . 252
29.7.2 SET MODE CALENDAR . 252
29.7.3 SET MODE DEPTH_LABEL . 253
29.7.4 SET MODE DESPERATE . 253
29.7.5 SET MODE DIAGNOSTIC . 254
29.7.6 SET MODE IGNORE_ERROR . 255
29.7.7 SET MODE INTERPOLATE . 255

CONTENTS XI

29.7.8 SET MODE JOURNAL . 255
29.7.9 SET MODE LATIT_LABEL . 256
29.7.10 SET MODE LONG_LABEL . 256
29.7.11 SET MODE METAFILE . 257
29.7.12 SET MODE POLISH . 257
29.7.13 SET MODE PPLLIST . 258
29.7.14 SET MODE REFRESH . 258
29.7.15 SET MODE SEGMENTS . 258
29.7.16 SET MODE STUPID . 258
29.7.17 SET MODE VERIFY . 259
29.7.18 SET MODE WAIT . 260

29.8 SET MOVIE . 260
29.9 SET REGION . 261
29.10 SET VARIABLE . 262
29.11 SET VIEWPORT . 263
29.12 SET WINDOW . 263

30 SHADE . 265
31 SHOW . 268

31.1 SHOW ALIAS . 268
31.2 SHOW AXIS . 268
31.3 SHOW COMMANDS . 269
31.4 SHOW DATA_SET . 269
31.5 SHOW EXPRESSION . 270
31.6 SHOW FUNCTION. 271
31.7 SHOW GRID . 271
31.8 SHOW LIST . 272
31.9 SHOW MEMORY. 272
31.10 SHOW MODE . 273
31.11 SHOW MOVIE . 274
31.12 SHOW QUERIES . 274
31.13 SHOW REGION . 274
31.14 SHOW SYMBOL . 274
31.15 SHOW TRANSFORM . 275
31.16 SHOW VARIABLES . 275
31.17 SHOW VIEWPORT . 276
31.18 SHOW WINDOWS . 276

32 SPAWN . 276
33 STATISTICS . 276
34 UNALIAS . 277
35 USE. 277
36 USER. 278

36.1 Objective analysis . 278
36.2 Scattered sampling . 279

37 VECTOR. 279
38 WHERE . 282
39 WIRE. 282

GLOSSARY. 285

Index 289

XII CONTENTS

Chapter 1: INTRODUCTION

1 OVERVIEW

Ferret is an interactive computer visualization and analysis environment designed to meet the
needs of oceanographers and meteorologists analyzing large and complex gridded data sets.
“Gridded data sets” in the Ferret environment may be multi-dimensional model outputs,
gridded data products (e.g., climatologies), singly dimensioned arrays such as time series and
profiles, and for certain classes of analysis, scattered n-tuples (optionally, grid-able using Fer-
ret’s objective analysis procedures). Ferret accepts data from ASCII and binary files, and from
two standardized, self-describing formats. Ferret’s gridded variables can be one to four dimen-
sions—usually (but not necessarily) longitude, latitude, depth, and time. The coordinates along
each axis may be regularly or irregularly spaced.

Ferret offers the ability to define new variables interactively as mathematical expressions in-
volving data set variables and abstract coordinates. Calculations may be applied over arbi-
trarily shaped regions. Ferret’s “external functions” framework allows external code written in
FORTRAN, C, or C++ to merge seamlessly into Ferret at runtime. Using external functions,
users may easily add specialized model diagnostics, advanced mathematical capabilities, and
custom output formats to Ferret. A collection of general utility external functions is included
with Ferret.

Ferret provides fully documented graphics, data listings, or extractions of data to files with a
single command. Without leaving the Ferret environment, graphical output may be customized
to produce publication-ready graphics. Graphic representations include line plots, scatter plots,
line contours, filled contours, rasters, vector arrows, polygonal regions and 3D wire frames.
Graphics may be presented on a wide variety of map projections. Interfaces to integrate with
3D and animation applications, such as Vis5D and XDataSlices are also provided.

Ferret has an optional point-and-click graphical user interface (GUI). The GUI is fully inte-
grated with Ferret’s command line interface. The user may freely mix text-based commands
with mouse actions (push buttons, etc.). Ferret’s journal file will log all of the actions per-
formed during a session such that the entire session, including GUI inputs, can be replayed and
edited at a later time.

This User’s Guide describes only the command line interface to Ferret. Other documents de-
scribe the point and click interface.

Ferret was developed by the Thermal Modeling and Analysis Project (TMAP) at
NOAA/PMEL in Seattle to analyze the outputs of its numerical ocean models and compare
them with gridded, observational data. Model data sets are often multi-gigabyte in size with
mixed 3- and 4-dimensional variables defined on staggered grids.

INTRODUCTION 1

Ferret is supported on a variety of Unix workstations with a version also available for Windows
NT/9x. Ferret is available at no charge from anonymous FTP [node ftp.ferret.noaa.gov] or
from the World Wide Web [URL http://ferret.wrc.noaa.gov/].

1.1 Ferret User’s Group

The Ferret User’s Group provides a venue to ask experienced Ferret users for advice solving
problems and to keep abreast of the latest Ferret updates. To (un)join simply send an e-mail
message to

Majordomo@ferret.wrc.noaa.gov

and include a message which says simply

(un)subscribe ferret_users

(Note this must be in the e-mail message BODY—not in the subject line.) To learn about the
user’s list without joining send this message instead to the same address:

info ferret_users

1.2 Ferret Home Page

The Ferret Home Page contains source code distributions, on line documentation, Users’
Group archives, Frequently Asked Questions and more. It is available at

http://ferret.wrc.noaa.gov/Ferret/

2 GETTING STARTED

A quick way to get to know Ferret is to run the tutorial provided with the distribution.

% ferret
yes? GO tutorial

If Ferret is not yet installed consult Chapter 8. (The tutorial is also available through the World
Wide Web.) The tutorial demonstrates many of Ferret’s features, showing the user both the
commands given and Ferret’s textual and graphical output. You may find the explanations,
terms and examples in this manual easier to understand after running the tutorial.

2.1 Concepts

Words in bold below are defined in the glossary of this manual.

2 CHAPTER 1

http://ferret.wrc.noaa.gov/Ferret/

In Ferret all variables are regarded as defined on grids. The grids tell Ferret how to locate the
data in space and time (or whatever the underlying units of the grid axes are). A collection of
variables stored together on disk is a data set.

To access a variable Ferret must know its name, data set and the region of its grid that is de-
sired. Regions may be specified as subscripts (indices) or in world coordinates. Data sets, af-
ter they have been pointed to with the SET DATA command (alias “USE”), may be referred to
by data set number or name.

Using the LET command new variables may be created “from thin air” as abstract expres-
sions or created from combinations of known variables as arbitrary expressions. If component
variables in an expression are on different grids, then regridding may be applied simply by
naming the desired grid.

The user need never explicitly tell Ferret to read data. From start to finish the sequence of oper-
ations needed to obtain results from Ferret is simply:

1) specify the data set
2) specify the region
3) define the desired variable or expression (optional)
3) request the output

For example (Figure 1),

INTRODUCTION 3

Figure 1.

yes? USE coads !global sea surface data
yes? SET REGION/Z=0/T="16-JAN-1982"/X=160E:160W/Y=20S:20N
yes? VECTOR uwnd,vwnd !wind velocity vector plot

2.1.1 Thinking like a Ferret:

(A discussion on the Ferret outlook on the concepts of data, variables, grids and other basics of
Ferret.)

Plottable variables

For this discussion we will coin the term “plottable variables.” There are no non-plottable vari-
ables that will come up in this discussion but “variables” is a bit too generic. Plottable variables
are of 3 types:

• file variables – read from disk files
• user-defined variables – defined by the LET command
• pseudo-variables – regions (I,J,K,L,X,Y,...) used as variables

As much as possible Ferret tries to make all types of variables indistinguishable. All plottable
variables are defined on grids. No plottable variables exists in a vacuum for Ferret. The grid on
which a plottable variable exists tells how to locate the variable in space and time. In cases
where the variables are abstract in nature—disconnected from space and time—Ferret will as-
sociate those variables with grids that are abstract, too. Where a geographical grid will associ-
ate the Nth position along an axis with a location (like 20 degrees north latitude) an abstract
grid will simply associate the Nth position with the number N. Plottable variables may be
regridded to other grids than the one on which they are defined. (Done with “G=”.)

All references to plottable variables must have a complete context. A complete context will be
described in detail later—briefly it means a region in space, an interval in time and the data
set(s) in which the variables will be found.

Grids

All Ferret grids are 4-dimensional. In most cases the axes have the obvious interpretation of 3
space coordinates and time but sometimes the axes are abstract.

A grid is composed of 4 axes, each describing the coordinates along one dimension. 3d, 2d, 1d
and 0d grids are regarded as special cases of the full 4 dimensions in which 1 or more axes are
set to “NORMAL.”

Ferret tries to look at all axes equally—the same syntax of regions and transformations applies
to each. Calendar dates, east-west longitudes and north-south latitudes are merely convenient
ways to format positions along axes that have special interpretations to people—not to Ferret.
(The only exception to this is that if the Y axis has units of Latitude Ferret will insert co-
sine(Latitude) factors into some calculations.)

4 CHAPTER 1

Axes and grids may be defined by “grid files” (which normally have .GRD filename exten-
sions). Axes may also be defined by the DEFINE AXIS command; grids by the DEFINE GRID
command.

Contexts

A context is a region or point in space and time and a data set(s). This is the information needed
by Ferret to make sense of a reference to a plottable variable. Suppose that “U” is a variable in a
data set (file) called U_DATA. A command like “PLOT U” is meaningful only when Ferret
knows that it is supposed to be looking for U in data set U_DATAand knows where in 4-dimen-
sional space it is supposed to plot.

The context space-time region may be described by a mix of subscript and world coordinate
positions. Subscripts are specified by I=,J=,K=,L= for axes 1 through 4, respectively. World
coordinates are specified by X=,Y=,Z=,T=. On the right of the equal sign a single point may
be given or a range specified by low:high may be given. Special formats are allowed for X=
(longitude, e.g. 160W), Y=(latitude, e.g. 23.5S) and time (calendar dates like
“7-NOV-1989:12:35:00" in quotation marks).

The data set may be given by name or number. The commands SET DATA and CANCEL
DATA and the D= context descriptor all accept the name of the data set or its number. The data
sets are numbered by the order in which they are pointed to with SET DATA. This order may be
seen with SHOW DATA.

You can tell Ferret the context in 3 places:

1. The program context: Using the commands SET REGION and SET DATA you can describe
a context in which all commands and expressions will be interpreted. You can look at the
program context with SHOW REGION and SHOW DATA. (The command SET DATA is
used both to initialize new data sets and to make previously initialized sets the current pro-
gram context. When SET DATAinitializes a new data set that set automatically becomes the
data set for the program context.) Example: SET REGION/Z=50

2. The command context: Using the command qualifiers I,J,K,L,X,Y,Z,T and D commands
like PLOT,CONTOUR,SHADE,LIST and VECTOR can specify additional context infor-
mation. Command context information on any axis or on the data set will replace any pro-
gram context information on the same axis or the data set.

3. The variable context: Using the same qualifiers as the command context any plottable vari-
able name can be modified with additional context information in square brackets (e.g.
U[Z=200,D=U_DATA]). Variable context information on any axis or the data set will re-
place any program or command context information on the same axis or the data set.

Transformations

Ferret can transform plottable variables along their axes. Transformations may be specified
only in the variable context. Ferret understands a number of transformations that may be speci-

INTRODUCTION 5

fied with the space-time region qualifiers. Some examples: PLOT U[Z=0:100@AVE] — the
variable U averaged between Z=0 and Z=100 LIST/L=1:200 U[L=@SBX:5] — U with a box-
car smoother of width 5 points along L.

Also,

• @FAV (fill data holes with averages)
• @DIN (definite integral) @IIN (indefinite integral)
• @DDC (centered derivative)
• @SHF (shift data a number of points along an axis)
• @MIN (minimum value along an axis)

... and others (see HELP TRANSFORMATIONS inside Ferret)

2.2 Unix command line switches

ferret [-batch<file>.ps][-memsize Mwords] [-unmapped] [-gui] [-help]

-memsize Mwords
specify the memory (data cache) size in Megawords default: 3.2

-unmapped
use invisible output windows (useful for creating animations and GIF files)

-gui
start Ferret in point-and-click mode (may not be available on all platforms)

-help
obtain help on the Unix command line options

-gif
Ferret can run in batch mode—without an X server. Graphical output is buffered, and is
stored in a GIF file by executing the FRAME command. For example:

yes? FRAME/FILE=picture.gif

sends the stored graphical output from Ferret to the GIF file picture.gif.

Please note the following when using batch mode:

• Window resizing only works if the window is cleared before resizing the window. For
instance:

yes? set window/clear/size=0.25

will resize the window while

6 CHAPTER 1

yes? set window/size=0.25/clear

will cause an error.
• Avoid metafile commands when running in batch mode. In particular,

yes? set mode meta

may cause problems.
• Don’t create new Ferret windows when running without an X server. The following

command:
yes? set window/new

will cause Ferret to crash.

-batch
Ferret can generate PostScript files without an X server. If you wish to use this mode, start
Ferret with the -batch option:

ferret -batch <file>.ps

where <file> is the name of the output file. Note that the filename must end with “.ps”.

Please note the following when using PostScript mode:

• The PostScript output will not be fully written to the output file until you exit from Ferret.
• Window sizing commands do not have any effect on PostScript output.
• Avoid metafile commands when running in PostScript mode.
• Don’t create new Ferret windows when running without an X server. The following

command:
yes? set window/new

will cause Ferret to crash.

2.3 Sample sessions

This section presents a number of short Ferret sessions that demonstrate common uses. Data
sets used in these sessions and throughout this manual are included with the distribution. If Fer-
ret is installed on your system, you can duplicate the examples shown.

2.3.1 Accessing a NetCDF data set

In this sample session, the data set “monthly_navy_winds” is specified and certain aspects of it
are examined. The command SHOW DATA/VARIABLES displays the variables in
“monthly_navy_winds” and where on each axis they are defined. SET REGION specifies
where in the grid the user wishes to examine the data. VECTOR produces a vector plot of the
indicated variables over the specified region.

yes? USE monthly_navy_winds ! specify the data set
>yes? SHOW DATA/VARIABLES ! what’s in it?

currently SET data sets:

INTRODUCTION 7

1> /opt/local/ferret/fer_dsets/descr/monthly_navy_winds.des (default)
FNOC 2.5 Degree 1 Month Average World-wide Wind Field

name title I J K L
UWND ZONAL WIND 1:144 1:73 ... 1:132

M/S on grid FNOC251 with -99.9 for missing data
X=18.8E:18.8E(378.8) Y=91.2S:91.2N

VWND MERIDIONAL WIND 1:144 1:73 ... 1:132
M/S on grid FNOC251 with -99.9 for missing data
X=18.8E:18.8E(378.8) Y=91.2S:91.2N

time range: 16-JAN-1982 20:00 to 17-DEC-1992 03:30

2.3.2 Reading an ASCII data file

Many examples of accessing ASCII data are available later in this manual. See Chapter 2,
“Data Sets” (p. 27) The simplest access, one variable with one value per record, looks like this:

% ferret
yes? FILE/VARIABLE=v1 snoopy.dat
yes? PLOT v1
yes? QUIT

2.3.3 Using viewports

The command SET VIEWPORT allows the user to divide the output graphics “page” into
smaller display viewports.

In this sample session, we create two plots in two halves of a window (Figure 2):

8 CHAPTER 1

Figure 2.

% ferret
yes? USE coads_climatology
yes? SET REGION/X=160E:130W
yes? SET REGION/Y=-10:10/L=5
yes? SET VIEWPORT upper
yes? CONTOUR sst
yes? SET VIEWPORT lower
yes? CONTOUR airt
yes? QUIT

2.3.4 Using abstract variables

Abstract variables (expressions that contain no dependencies on disk-resident data) can be eas-
ily displayed with Ferret. See Chapter 3, section “Abstract variables” (p. 46), for several exam-
ples and detailed information.

For example, a user wishing to examine the function SIN(X) on the interval [0,3.14] might use
(Figure 3):

% ferret
yes? PLOT/I=1:100 sin(3.14*I/100)
yes? QUIT

2.3.5 Using transformations

A transformation is an operation performed on a variable along a particular axis and is speci-
fied with the syntax “@trn” where “trn” is the name of a transformation. See Chapter 3, section
“Transformations” (p. 55), for detailed information.

INTRODUCTION 9

Figure 3.

A user may wish to look at ocean temperatures averaged over a range of depths. In this sample
session, we look at temperatures averaged from 0 to 100 meters of depth using a data set which
has detailed resolution in depth (Figure 4). We plot the data along longitude 160 west from lati-
tude 30 south to 30 north.

% ferret
yes? USE levitus_climatology
yes? SET REGION/Y=30s:30n/X=160W
yes? PLOT temp[Z=0:100@AVE]
yes? QUIT

2.3.6 Using algebraic expressions

See Chapter 3, section “Expressions” (p. 49) for a description of valid expressions.

In this example, the data set contains raw sea surface temperatures, air temperatures, and wind
speed measurements. We wish to look at a shaded plot of sensible heat at its first timestep
(L=1) (Figure 5). We specify a latitude range and contour levels.

% ferret
yes? USE coads_climatology !monthly COADS climatology
yes? LET kappa = 1 !arbitrary
yes? LET/TITLE="SENSIBLE HEAT" sens_heat = kappa * (airt-sst) * wspd
yes? SHADE/L=1/LEV=(-20,20,5)/Y=-90:40 sens_heat
yes? QUIT

10 CHAPTER 1

Figure 4.

2.3.7 Finding the 20-degree isotherm

Isotherms can be located with the “@LOC” transform, which returns the axis location where
the value of the argument of @LOC first occurs. Thus, “TEMP[Z=0:200@LOC:20]” locates
the first occurrence of the temperature value 20 along the Z axis, scanning all the data between
0 and 200 meters.

A session examining the 20-degree isotherm in mid-Pacific ocean data (Figure 6):

INTRODUCTION 11

Figure 5.

Figure 6.

% ferret
yes? USE levitus_climatology
yes? SET REG/Y=10s:30n/X=140E:140W
yes? PPL CONSET .12 !label size
yes? CONTOUR temp[Z=0:200@LOC:20]
yes? QUIT

Note that the transformation @WEQ could have been used to display ANY variable on the sur-
face defined by the 20 degree isotherm.

3 COMMON COMMANDS

A quick reference to the most commonly used Ferret commands (typing “SHOW
COMMANDS” at the Ferret prompt lists all commands):

Command Description

USE names the data set to be analyzed (alias for “SET DATA”)
SHOW DATA produces a summary of a variable
SHOW GRID examines the coordinates of a grid
SET REGION sets the region to be analyzed
LIST produces a listing of data
PLOT produces a plot
CONTOUR produces a line contour plot
FILL produces a color filled contour plot
SHADE produces a shaded-area plot
VECTOR produces a vector arrow plot
POLYGON plots polygonal regions
DEFINE define new axes, grids, and symbols
STATISTICS produces summary statistics about variables and expressions
LET defines a new variable
SAVE saves data in NetCDF format
GO executes Ferret commands contained in a file

Information on all Ferret commands is available in Part II, Commands Reference, of this man-
ual.

4 COMMAND SYNTAX

Commands in program Ferret conform to the following template:

COMM [/Q1/Q2...] [SUBCOM[/S1/S2...]] [ARG1 ARG2 ...] [!comment]

where

12 CHAPTER 1

COMM is a command name yes? LIST

Q1... are qualifiers of the command yes? CONTOUR/SET_UP

SUBCOM is a subcommand name yes? SHOW MODE

S1... are qualifiers of the subcommand yes? SET LIST/APPEND

ARG1... are arguments of commands yes? CANCEL MODE INTERPOLATE

notes...

• Items in square brackets are optional.
• One or more spaces or tabs must separate the command from the subcommand and from

each of the arguments. Spaces and tabs are optional preceding qualifiers.
• Multiple commands, separated by semi-colons, can be given on the same line.
• Command names, subcommand names, and qualifiers require at most 4 characters.

(e.g., yes? CANCEL LIST/PRECISION is equivalent to yes? CANC LIST/PREC)
• Some qualifiers take an argument following “=” (e.g., yes? LIST/Y=10S:10N).
• An exclamation mark normally signifies the end of a command and the start of (optional)

comment text.
• The backslash character (\), when placed directly before an exclamation point (!),

apostrophe (‘), semicolon (;), or forward slash (/), will hide it (“escape it”) from Ferret.
• See the Expressions section (p. 49) for information on algebraic expressions as

arguments to commands
• See the Symbols sections (p. 135) for information on symbol substitution in commands

5 GO FILES

GO files are files containing Ferret commands. They can be executed with the command “GO
filename”. Throughout this manual, these files are referred to as GO scripts or journal files (the
file names end in *.jnl). There are two kinds of GO files provided with the distribution (differ-
ing in function, not form)—demos and tools.

5.1 Demonstration files

Demonstration GO files provide examples of various Ferret capabilities (the tutorial is such a
script) . The demonstration GO files may be executed simply by typing the Ferret command

yes? GO demo_name

example: yes? GO vector_demo

Below is a list of the demo files provided as of 4/99 (located in directory $FER_DIR/exam-
ples). The Unix command “Fgo demo” will list all GO scripts containing the string “demo”.
Use Fgo ‘*’ to see all the scripts that are currently available on your system.

INTRODUCTION 13

Name Description

tutorial brief tour through Ferret capabilities
topographic_relief_demo global topography
coads_demo view of global climate using the Comprehensive

Ocean-Atmosphere Data Set
levitus_demo T-S relationships using Sydney Levitus’ climatological Atlas

of the World Oceans
fnoc_demo Naval Fleet Numerical Oceanography Center data
vector_demo vector plots
wire_frame_demo 3D wire frame representation
custom_contour_demo customized contour plots
viewports_demo output to viewports
multi_variable_demo multiple variables with multiple dependent axes
objective_analysis_demo interpolating scattered data to grids
mp_demo map projections demo
log_plot_demo log plots using PPLUS in Ferret
depth_to_density_demo contour with a user-defined variable as an axis
file_reading_demo reading an ASCII file
regridding_demo tutorial on regridding data
mathematics_demo abstract function calculation
statistics_demo probability distributions
spirograph_demo for-fun plots from abstract functions
splash_demo for-fun mathematical color shaded plots
symbol_demo how to use symbols for plot layouts
sigma_coordinate_demo how to work with sigma coordinates

5.2 GO tools

GO tools are scripts which contain Ferret commands and perform dataset-independent tasks.
For example, “GO land” overlays the outline of the continents on your plot. (Note: In order for
Ferret to locate the GO scripts, the environment variable FER_GO must be properly defined.
See Chapter 9, “Computing Environment,” p. 151, for guidance.)

The Unix command Fgo has been provided to assist with locating tools within the Unix direc-
tory hierarchy. For example,

% Fgo grid displays all tools with the substring “grid” in their names
% Fgo '*' displays all GO tools and demonstrations

Below is a table of the tools provided with your Ferret installation. Some tools accept optional
arguments to control details. Use Fgo -more script_name for details on a script.

14 CHAPTER 1

Tool name Description

OVERLAYS
basemap a geographical basemap of continents to overlay on
land overlays continental boundaries (color controls)
bold_land overlays darker continental boundaries
fland overlays filled continents (color and resolution controls)
focean overlays ocean mask (for terrestrial plots)
graticule sets the plot axis style to use a graticule (rather than tics)
tics resets the plot style to use axis tics (rather than a graticule)
gridxy overlays a “graticule” labeling the I,J subscripts
gridxz overlays a “graticule” labeling the I,K subscripts
gridxt overlays a “graticule” labeling the I,L subscripts
gridyz overlays a “graticule” labeling the J,K subscripts
gridyt overlays a “graticule” labeling the J,L subscripts
gridzt overlays a “graticule” labeling the K,L subscripts
box draws a box at the specified location on the plot
ellipse draws an ellipse at the specified location on the plot

MATHEMATICAL
autocorrelation external function to compute autocorrelation function
frequency_histogram makes a frequency distribution plot (histogram) of data
ts_frequency creates a 2-variable histogram (typically an oceanographer’s TS

density diagram)
polar defines R and THETA from X and Y to perform (limited) polar

plots
regressx defines variables for linear regression along X axis
regressy defines variables for linear regression along Y axis
regressz defines variables for linear regression along Z axis
regresst defines variables for linear regression along T axis
unit_square sets unit square as default for abstract variables
variance defines variables to compute variances and covariances
var_n refines TVARIANCE with corrected n/n+1 factors
dynamic_height defines Ferret variables for dynamic height calculations

SAMPLE DISPLAYS
line_samples draws specimens of the available line styles
line_thickness draws examples of pen color/thickness styles in PPLUS
fill_samples draws specimens of the available fill styles
show_symbols draws specimens of the default symbols
show_88_syms draws specimens of all 88 PPLUS symbols

GRAPHICS
bar_chart makes a color-filled bar chart from a line of data
bar_chart2 makes a bar chart using hollow rectangles
centered_vectors makes a vector plot with coords at vector midpoints

INTRODUCTION 15

Tool name Description

scattered_vectors makes a vector plot from an ASCII file: x,y,u,v
stick_vectors makes a stick vector plot of a line of U,V values
extremum annotate contour extrema on a plot
split_z oceanographic-style plot with 2 z-axis scalings

PLOT APPEARANCE
margins tweak the sizing of the plot on the page
magnify [factor] increases the data plotting area (area inside the axes)
unmagnify restores the plot origin and axis lengths to default values
black sets video background to black, foreground to white
white sets video background to white, foreground to black
bold sets up PLOT+ and Ferret to produce bolder-looking plots
unbold resets plot environment to normal after “GO bold”
unlabel [label #] removes a specified (numbered) PPLUS movable label
remove_logo removes labels 1–3 that form the Ferret logo
box_plot produces a plot with “bare” axes (no tics, no labels)
reminder place small annotations in upper left corner of plot

COLOR
try_palette [pal] displays palette appearance for various numbers of color levels
try_centered_palette displays centered palette appearance for various numbers of lev-

els
exact_colors sets up Ferret and PPLUS to modify individual colors in a color

palette
squeeze_colors modifies a color palette by squeezing and stretching the color

scale

MULTIPLE X AND Y AXES (run demo: yes? GO multi_variable_plots)
left_axis_plot plots a single variable preparing for a 2nd axis on the right
right_axis_plot overlays a plot of a single variable using an axis on the right
multi_xaxis_plot1 draws a plot formatted for later overlays using multiple X axes
multi_xaxis_overlay overlays a variable with a distinct X axis
multi_yaxis_plot1 draws a plot formatted for later overlays using multiple Y axes
multi_yaxis_overlay overlays a variable with a distinct Y axis

MAP PROJECTIONS (run demo: yes? GO mp_demo)
mp_~name~ individual projections include

bonne, craster_parabolic, eckert_greifendorff, eckert_iii,
eckert_v, hammer, lambert_cyl, mcbryde_fpp, mercator, ortho-
graphic, plate_caree, polyconic, sinusoidal, stereographic_eq,
stereographic_north, stereographic_south, vertical_perspective,
wagner_vii, winkel_i

mp_aspect set the appropriate window aspect ratio for this map projection
mp_fland overlays “map projected” filled continents (color controls)
mp_graticuled overlays “map projected” graticule (color controls)
mp_label plots a label using world coordinates

16 CHAPTER 1

Tool name Description

mp_land overlays “map projected” continental boundaries (color con-
trols)

mp_land_stripmap creates a land-centric, interrupted “stripmap” using the current
map projection

mp_line overlays “map projected” plotted data
mp_ocean_stripmap creates an ocean-centric, interrupted “stripmap” using the cur-

rent map projection
mp_polygon overlays “map projected” polygons

SAMPLING A GRIDDED FIELD
samplexy sample a field at a set of (x,y) locations
bullseye locate a bullseye in a 2d field

GRIDDING POINT DATA/ OBJECTIVE ANALYSIS
scatter2gridgauss_xy put scattered data onto a regular x-y grid using Gaussian interpo-

lation
scatter2gridlaplace_xy put scattered data onto a regular x-y grid using Laplace interpo-

lation
scatter2gridgauss_xz put scattered data onto a regular x-z grid using Gaussian interpo-

lation
scatter2gridlaplace_xz put scattered data onto a regular x-z grid using Laplace interpo-

lation

TESTS
test tests proper functioning of FER_GO
ptest produces a quick test plot
squares creates a filled-area test plot

5.3 Writing GO tools

A GO tool (“GO script,” “journal file,” ...) is simply a sequence of Ferret commands stored in a
file and executed with the GO command. Writing a simple GO tool requires nothing more than
typing normal commands into a file.

To write a robust GO tool that may be shared, however, certain guidelines should be followed:

1) the GO tool should be well documented
2) the GO tool should leave the Ferret context unmodified
3) the GO tool may need to run “silently”
4) the GO tool may need to accept arguments (parameters)

INTRODUCTION 17

5.3.1 Documenting GO tools

Documentation consists primarily of well-chosen comment lines (lines beginning with an ex-
clamation mark). In addition, a line of this form should be included:

! Description: [one-line summary of your GO tool]

This line is displayed by the Fgo tool.

5.3.2 Preserving the Ferret state in GO tools

Often a complex GO tool requires setting data sets, modifying the current region, etc. But to a
user executing this tool its behavior may seem erratic if the user’s previous context is modified
by running the tool. A tool can restore the previous state of Ferret by these means:

region: Save the current default region with the command DEFINE REGION/DEFAULT
save. Restore it at the end of your GO tool with SET REGION save.

data set: Save the current default data set with SET DATA/SAVE. Restore it at the end of
your GO tool with SET DATA/RESTORE.

grid: Save the current default grid set with SET GRID/SAVE. Restore it at the end of
your GO tool with SET GRID/RESTORE.

modes: If you modify a mode inside your GO tool by issuing a SET MODE or a CANCEL
MODE command the original state of that mode can be restored using SET
MODE/LAST.

5.3.3 Silent GO tools

If a user has set mode “verify” then by default every line of your GO tool, including comment
lines, will be displayed at the screen as Ferret processes it. To make your GO tool run silently
include the command CANCEL MODE VERIFY at the beginning of the GO tool and SET
MODE/LAST VERIFY at the end. If the backslash character “\” is found at the beginning of
any line that single line will not be displayed regardless of the state of MODE VERIFY. Thus
the command “\CANCEL MODE VERIFY” is often the first line of a GO tool. Note also that
the command LET/SILENT is useful in GO tools which need to define variables.

5.3.4 Arguments to GO tools

Arguments (parameters) may be passed to GO tools on the command line. For example,

yes? GO land red

18 CHAPTER 1

passes the string “red” into the GO file named land.jnl. Inside the GO tool the argument string
“red” is substituted for the string “$1a” wherever it occurs. The “1a” signifies that this is the
first argument—similar logic can be applied to $1,... $9 or $0 where $0 is replaced by the name
of the GO tool itself. Similarly “$*” is replaced by all the arguments, 1–9 as a single string.

As Ferret performs the substitution of $1 (or other) arguments it offers a number of string pro-
cessing and error processing options. For example, without these options, if a user failed to
supply an argument to “GO land” then Ferret would not know what to substitute for $1 and it
would have to issue an error message. A default value can be supplied by the GO tool writer us-
ing the syntax

$1%string%

for example,

$1%black%

inside land.jnl would default to “black” if no color were specified. Note that in the example
percent signs were used to delimit the default string but any of the characters ! # $ % or & also
work as delimiters.

In another case it might not be appropriate to supply a default string but instead it would be de-
sirable to issue an instructional error message. The “<” character indicates an error message
text:

$1"<you must supply an argument to this GO tool"

In still other cases there are a range of acceptable arguments but all other arguments are illegal.
The allowable arguments can be specified following “|” (vertical bar) characters as in this ex-
ample:

$1"|black|red|<You must specify black or red"

or a default of “black” could be specified together with the options as

$1"black|black|red|"

In the interest of “friendliness” a GO file may want to allow the user to specify a string other
than the string actually needed by the GO tool. For example, a red plot line is actually obtained
by the PLOT command qualifier /LINE=2—the string “red” never appears in this command.
To allow a user to specify “red” and yet have the string “2” substituted, Ferret has provided the
replacement arrow “>”. Thus

$1"1|red>2|"

specifies a default string of “1” if no argument is given but substitutes “2” if “red” is supplied.
In a typical GO tool line, defaults, options, substitutions, and an error message are combined
like this:

INTRODUCTION 19

PLOT/LINE=$1"1|red>2|green>3|blue>4|<must be red, green, or blue"

Note that the error message will be issued only if some color other than “red,” “green,” or
“blue” is specified; if no argument is specified then “1” is substituted.

An asterisk (*) can be used to designate that any text whatsoever is acceptable as an option.

PLOT/LINE=$1"1|red>2|green>3|blue>4|*>7"

would never generate an error and would use line style 7 (thick black) if an unrecognized argu-
ment string such as “purple” were given.

An asterisk (*) can also be used on the right-hand side of a substitution, in which case it stands
for the entire original argument string. For example

SET VARIABLE/TITLE=$1%*>"*"%

will place double quotation marks around the string in argument 1.

A final style note to keep in mind when writing GO tools that use arguments: providing error
message feedback and appropriate documentation for the user is essential. In complex GO
tools, all arguments should be checked at the beginning of the GO tool using the no-op com-
mand (has no effect) “QUERY/IGNORE”. Thus the GO tool land.jnl might contain these lines
at the beginning:

! check the argument
QUERY/IGNORE $1"1|red|green|blue|<must be red, green, or blue"

Once argument errors have been trapped and reported, the lengthy error text would not be
needed again in the GO tool.

GO tools that use arguments should also be carefully documented. There are numerous exam-
ples provided with Ferret; try, for example, the Unix commands

% Fgo -more fland.jnl
% Fgo -more stick_vectors

or
% Fgo -more squeeze_colors

5.3.5 Flow Control in GO tools

There are several Ferret commands and techniques to assist with flow control in your GO
scripts.

GO (subroutines)

20 CHAPTER 1

The GO command may be used inside of a GO script (tool) to execute another (nested) GO
script. If an error occurs inside of a nested GO script and SET MODE IGNORE_ERROR has
not been issued then the GO script will be interrupted and control returns to the command line.

REPEAT (looping)

The REPEAT command may be used to execute loops within Ferret. The loop “counter” may
be an index (I,J,K, or L) or a world coordinate (longitude, latitude, depth, or time). The incre-
ment between loop iterations need not correspond to the spacing of points on a grid. When used
in conjunction with the “d” options of SET REGION, such as SET REGION/DI="-5:-5" the
loops may be used to zoom in or out of a region or to pan a limited-width window of view
across a larger region. See the Advanced Movie-Making section (p. 98) of this manual for fur-
ther details.

IF-THEN-ELSE (conditional execution)

An IF-THEN-ELSE syntax can be used to conditionally execute Ferret commands. It may be
used in two styles—single line and multi-line. See the IF command (p. 223) in the Commands
Reference section of this manual for further details.

5.3.6 Debugging GO tools

As the complexity of Ferret GO scripts increases it becomes more challenging to locate and
correct errors in GO scripts. This is especially true if, as so many GO scripts do, the scripts are
made silent by containing the command CANCEL MODE VERIFY. In a silent script it can be
unclear from where within the script an error message is originating.

A special VERIFY mode has been provided to assist with locating the source of these error
messages

SET MODE VERIFY:ALWAYS

The ALWAYS argument to this command instructs Ferret to ignore CANCEL MODE VERIFY
commands inside of command files. All of the script commands that Ferret executes will be
echoed when this mode is set. Error messages will appear with the commands that generated
them. To restore normal non-debugging operations issue CANCEL MODE VERIFY or SET
MODE VERIFY (no argument) interactively from the yes? prompt.

Complex webs of variable definitions (defined with LET or DEFINE VARIABLE) may also
create challenges for debugging scripts. See Debugging Complex Hierarchies of Expressions
(p. 76) for further discussion of this topic.

INTRODUCTION 21

6 SAMPLE DATA SETS

A number of demonstration data sets are included with this distribution. Several of these data
sets are used by the demonstration “GO” files, above. The data sets should be accessible simply
by typing the Ferret command

yes? USE data_set_name for example,
yes? USE coads_climatology

Data set Description

etopo120 relief of the earth’s surface at 120-minute resolution
etopo60 relief of the earth’s surface at 60-minute resolution
levitus_climatology subset of the Climatological Atlas of the World Oceans by Sydney

Levitus (Note: the updated World Ocean Atlas, 1994, is also avail-
able with Ferret)

coads_climatology 12-month climatology derived from 1946–1989 of the Comprehen-
sive Ocean/Atmosphere Data Set

monthly_navy_winds monthly-averaged Naval Fleet Numerical Oceanography Center
global marine winds (1982–1990)

esku_heat_budget Esbensen-Kushnir 4×5 degree monthly climatology of the global
ocean heat budget (25 variables)

7 UNIX TOOLS

A number of tools are provided with Ferret to assist with Unix-level activities: on-line help,
converting data to Ferret’s formats, locating files, etc. They are located in the Ferret installation
area—typically $FER_DIR/bin. See Chapter 9, “Setting Up an Account” (p. 151), if the tools
are not available on-line. They are described below.

Faddpath Usage: Faddpath new_path
Faddpath will add a new path name to the default lists of directories that Ferret searches a) in
response to the SET DATA command; b) when looking for grid definition files; c) when
looking for data files.

Fapropos Usage: Fapropos string (i.e. % Fapropos regridding)
Fapropos searches the Ferret User’s Guide for all occurrences of the given word or string.
The string is not case sensitive. If the string contains multiple words it must be enclosed in
quotation marks. Fapropos will list all lines of the User’s Guide that contain the word or
string and report their line numbers. The line numbers may be used with Fhelp to enter the
User’s Guide at the desired location.

22 CHAPTER 1

Fdata Usage: Fdata data_file_substring
Searches the list of directories contained in the environment variable FER_DATAto find the
data files whose names contain the indicated substring. For example,

% Fdata coads

locates the data files containing “coads” in their names. (Use this command to locate
NetCDF data sets by giving the string “cdf”.)

Fdescr Usage: Fdescr des_name_substring
Searches the list of directories contained in the environment variable FER_DESCR to find
the descriptor files whose names contain the indicated substring. For example,

% Fdescr coads

locates the descriptor files containing “coads” in their names. (“Fdescr .des” will list all ac-
cessible descriptors.)

Fenv Usage: Fenv
Prints the values of environment variables used by Ferret

Fgo Usage: Fgo name_substring
Searches the list of directories contained in the environment variable FER_GO to find the
GO command files whose names contain the indicated substring. For example,

% Fgo grid

locates the Ferret tools that contain “grid”.

Fgrids Usage: Fgrids gridfile_substring
Searches the list of directories contained in the environment variable FER_GRIDS to find
the grid definition files whose names contain the indicated substring. For example,

% Fgrids fnoc

locates the grid definition files containing “fnoc” in their names. (“Fgrids .grd” will list all
accessible grid files.)

Fhelp Usage: Fhelp line_number or Fhelp string
Fhelp enters the Ferret User’s Guide beginning at the indicated line number or at the first oc-
currence of the given string. The string, if used, is not case sensitive. The Unix “more” com-
mand is used to access the User’s Guide. The most commonly used “more” commands are
documented under Ftoc.

Examples: % Fhelp 1136

% Fhelp “modulo axis”

INTRODUCTION 23

Fman Usage: Fman
(Not yet implemented.) Enters the Ferret User’s Guide as on-line, formatted hypertext.

Fpalette Usage: Fpalette name_substring
Searches the list of directories contained in the environment variable FER_PALETTE to
find the palette files whose names contain the indicated substring. For example,

% Fpalette blue

locates the palette files containing “blue” in their names.

Fpurge Usage: Fpurge filename_template
Fpurge is a support routine to manage multiple versions of files created by Ferret—particu-
larly journal files and graphic metafiles. Fpurge will remove all versions of a file except the
current version. For example, “Fpurge ferret.jnl” will eliminate all past versions of ferret.jnl
in the current directory.

Fsort Usage: Fsort filename_template
Fsort is a support routine for sorting file versions. Fsort reorders the incorrect ordering of
emacs-style version numbers assigned by the Unix “ls” utility. For example, when sorting,
ls will place filename.~19~ before filename.~2~. “Fsort filename*” will take care of this
problem. Fsort may be used in Unix pipes.

Ftoc Usage: Ftoc
Ftoc enters the table of contents of the Ferret User’s Guide using the Unix “more” com-
mand. Within “more” the following are the most commonly used commands:

? interactive help for “more”
q exit (quit)
space advance to next screen
return advance to next line
b back one screen
/string locate the next occurrence of “string” (Note: the string is case sensitive)

8 HELP

8.1 Unix on-line help

On Unix systems interactive Ferret help is available from the command line. If multiple win-
dows are not available on your system the ^Z key can be used to suspend the current Ferret ses-
sion and access the help; the Unix “fg” command resumes the suspended session.

24 CHAPTER 1

Several Unix commands provide assistance with rapidly locating information in the Ferret
User’s Guide. The entire Ferret User’s Guide is available on-line as document
$FER_DIR/doc/ferret_users_guide.txt. A printable version is also available in PostScript:
$FER_DIR/doc/ferret_users_guide.ps.

These commands are available to access the Ferret User’s Guide:

Ftoc browse the table of contents of the User’s Guide
Fapropos locate words or character strings in the User’s Guide
Fhelp enter and browse the User’s Guide
Fman enter and browse the User’s Guide as formatted hypertext (not yet imple-

mented)

Normally Ftoc or Fapropos is used first to locate the desired information in the User’s Guide.
Then Fhelp is used to enter the User’s Guide at the selected location.

8.2 Examples and demonstrations

As discussed earlier in this chapter (Getting Started, GO files), the demonstrations that come
with the Ferret distribution are a source of help. See Chapter 1, section “Demonstration files,”
(p. 13) for a list of demonstrations, or look in $FER_DIR/examples; you may find something
that addresses your problem.

8.3 Help from within Ferret

Typing “help” while running Ferret will give you information on using the Unix tool Fhelp to
access the User’s Guide.

The Ferret command SHOW COMMANDS will list all Ferret commands; SHOW
COMMAND “command” will display all qualifiers for the specified command.

INTRODUCTION 25

Chapter 2: DATA SET BASICS

1 OVERVIEW

Ferret accepts input data from both ASCII and binary files and recognizes two standardized,
self-describing data formats—NetCDF, and TMAP. Network Common Data Format
(NetCDF) is the suggested method of data storage.

SET DATA_SET or just SET DATA specifies a data set for access. ASCII and binary files can
be read using SET DATA/EZ (also known as “FILE”). To unambiguously specify the format of
a data set, include the extension .cdf or .des in its name, or use the qualifier /FORMAT=CDF.

To examine what each data set consists of (variables, grids, etc.) after specifying them with
SET DATA, use SHOW DATA. This command displays the variables in the data set and over
what geographical and time ranges they are defined.

Here is an example of Ferret’s output:

yes? SET DATA coads_climatology
yes? SHOW DATA

currently SET data sets:
1> /home/e1/tmap/fer_dsets/descr/coads_climatology.des (default)

name title I J K L
SST SEA SURFACE TEMPERATURE 1:180 1:90 1:1 1:12
AIRT AIR TEMPERATURE 1:180 1:90 1:1 1:12
SPEH SPECIFIC HUMIDITY 1:180 1:90 1:1 1:12
WSPD WIND SPEED 1:180 1:90 1:1 1:12
UWND ZONAL WIND 1:180 1:90 1:1 1:12
VWND MERIDIONAL WIND 1:180 1:90 1:1 1:12
SLP SEA LEVEL PRESSURE 1:180 1:90 1:1 1:12

If multiple data sets have been requested in a single Ferret session, the last requested will be the
default data set. To specify other data sets, use the name of the data set or the number of the set
as given by the SHOW DATA statement. For example:

yes? LIST/D=2 temp

will list the data for the variable “temp” in data set number 2 as displayed by SHOW
DATA/BRIEF, while

yes? LIST temp[D=levitus_climatology] - temp[D=coads_climatology]

will list the differences between the variable “temp” in data set “levitus_climatology” and data
set “coads_climatology.”

DATA SET BASICS 27

2 NETCDF DATA

The Network Common Data Format (NetCDF) is an interface to a library of data access rou-
tines for storing and retrieving scientific data. NetCDF allows the creation of data sets which
are self-describing and platform-independent. NetCDF was created under contract with the Di-
vision of Atmospheric Sciences of the National Scientific Foundation and is available from the
Unidata Program Center in Boulder, Colorado (unidata.ucar.edu).

See Chapter 10, “Converting Data to NetCDF” (p. 159), for a complete description of how to
create NetCDF data sets or how to convert existing data sets into NetCDF.

To output a variable in NetCDF, simply use:

yes? LIST/FORMAT=CDF variable_name

LIST/FORMAT=CDF (alias SAVE) can also be used with abstract variables:

yes? SAVE/FILE=example.cdf/I=1:100 sin(I/100)

This will create a file named example.cdf.

The current region and data sets determine the variable names in the saved file and the range
over which they are saved. Saved data can then be accessed as follows:

yes? USE example

(USE is an alias for SET DATA/FORMAT=CDF)

If a filename is not specified, Ferret will generate one. (See command SET LIST/FILE in the
Commands Reference section, p. 249). An example of converting TMAP-formatted data to
NetCDF goes as follows:

yes? SET DATA coads_climatology
yes? SAVE/L=1 sst,airt,uwnd,vwnd

These commands will save sst, airt, uwnd, and vwnd at the first time step over their entire re-
gions to a NetCDF file named by Ferret.

One advantage to using NetCDF is that users on a different system (i.e., VMS instead of Unix)
with different software (i.e., with an analysis tool other than Ferret) can share data easily with-
out substantial conversion work. NetCDF files are self-describing; with a simple command the
size, shape and description of all variables, grids and axes can be seen.

28 CHAPTER 2

2.1 Multi-file NetCDF data sets

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set. Such
data sets are referred to as “MC” (multi CDF) data sets. They are particularly useful to manage
the outputs of numerical models. MC data sets use a descriptor file, in the style of TMAP-for-
matted data sets. The data set is referred to inside Ferret by the name of this descriptor file.

A collection of NetCDF files is suitable to form a multi-file data set if

1) The files are connected through their time axis—each file represents one or more time
snapshots of the variables it contains.

2) Each file is self-documenting with respect to the time axis of the variables—even if the
time axis represents only a single point. (All of the time axes must be identically encoded
with respect to units and date of the time origin.)

3) All non-time-dependent variables in the data set must be contained in the first file of the
data set (or those variables will not appear in the merged, MC, data set).

A typical MC descriptor file may be found in Chapter 9, Section 4, “Creating a multi-NetCDF
data set.” Further documentation on MC data sets may be found in the Ferret home pages on the
Web.

2.2 Non-standard NetCDF data sets

As discussed in Chapter 10, “Converting Data to NetCDF,” (p. 159) Ferret expects netCDF
files to adhere to the COARDS conventions (http://ferret.wrc.noaa.gov/noaa_coop/
coop_cdf_profile.html). If the files do not adhere to the COARDS conventions, Ferret will still
attempt to access them. Often, the user can use Ferret controls for regridding, reshaping, and
otherwise transforming data to recover the intended file contents.

Here are a few common ways in which netCDF files may deviate from the COARDS standard
and how one may cope with those situations in Ferret.

• Files with disordered coordinates

In the COARDS conventions an axis (a.k.a. “coordinate variable”) must have
monotonically-increasing coordinate values. If the coordinates are disordered or repeating
in a netCDF file, then Ferret will present the coordinates to the user (in SHOW DATA) as a
dependent variable, whose name is the axis name, and it will substitute an axis of the index
values 1, 2, 3, ... Note that Ferret will apply this same behavior when files have long irregu-
lar axis definitions that exceed Ferret’s axis memory capacity.

DATA SET BASICS 29

http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

• Files with reverse-ordered axes

If the coordinates of an axis are monotonically decreasing, instead of increasing, Ferret will
transparently reverse both the axis coordinates and the dependent variables that are defined
upon that axis. Note that if Ferret writes a reverse-ordered variable to a new netCDF file
(with the SAVE command), the coordinates and data in the output file will be in
monotonically increasing coordinate order—reversed from the input file.

If the values of a dependent variable are reversed, but there is no associated coordinate axis
then use attach a minus sign to the corresponding axis orientation in the USE/ORDER= or
SET VARIABLE/ORDER= qualifier to designate that the variable(s) should be reversed
along the corresponding axis. (Feature not yet implemented as of 5/5/99)

• Files with “invalid” variable names

The COARDS standard specifies that variable names should begin with a letter and be com-
posed of letters, digits, and underscores. In files where the variable names contain other let-
ters, references to those variable names in Ferret must be enclosed in single quotes.

• Files with permuted axis ordering

The COARDS standard specifies that if any or all of the dimensions of a variable have the
interpretations of “date or time” (a.k.a. “T”), “height or depth” (a.k.a. “Z”), “latitude” (a.k.a.
“Y”), or “longitude” (a.k.a. “X”) then those dimensions should appear in the relative order
T, then Z, then Y, then X in the CDL definition corresponding to the file. In files where the
axis ordering has been permuted the command qualifiers USE/ORDER= and SET
VARIABLE/ORDER= allow the user to inform Ferret of the correct permutation of coordi-
nates. Note that if Ferret writes a permuted variable to a new netCDF file (with the SAVE
command), the coordinates and data in the output file will be in standard X-Y-Z-T ordering
(as indicated in the user’s /ORDER specification)—permuted from the original file order-
ing. See the Command Reference (p. 203) for a complete description of the ORDER quali-
fier.

3 TMAP-FORMATTED DATA

As of Ferret version 2.30, NetCDF is the suggested format for data storage (see Chapter 10,
“Converting to NetCDF,” p. 159). This section describing TMAP information is included only
for users who already work with data in TMAP format.

To access TMAP-formatted data sets use

SET DATA_SET TMAP_set1, TMAP_set2, ...

30 CHAPTER 2

TMAP_setn must be the name of a descriptor file for a data set that is in TMAP “GT”
(grids-at-timesteps) or “TS” (time series) format. (“Ferret” format and “TMAP” format are
synonyms.)

If the directory portion of the filename is omitted the environment variable FER_DESCR will
be used to provide a list of directories to search. The order of directories in FER_DESCR deter-
mines the order of directory searches. If the extension is omitted a default of “.des” will be as-
sumed (if the filename has more than one period, the extension must be given explicitly).

Descriptors

For every TMAP-formatted data set there is a descriptor file containing summary information
about the contents of the data set. This includes variable names, units, grids, and coordinates.
When the command SET DATA_SET is given to Ferret pointing to a GT-formatted or TS-for-
matted data set, it is the name of the descriptor file that must be specified.

4 BINARY DATA

Ferret can read binary data files that are formatted with and without FORTRAN record length
headers (binary files without FORTRAN record length formatting are also known as “stream”
files).

4.1 FORTRAN-structured binary files

Files containing record length information are created by FORTRAN programs using the
ACCESS="SEQUENTIAL" (the FORTRAN default) mode of file creation and also by Ferret
using LIST/FORMAT=unf. Files that contain FORTRAN record length headers must have all
data aligned on a 4-byte boundary. Suppose “rrrr” represents 4 bytes of record length informa-
tion and “dddd” represents a 4-byte data value. Then FORTRAN-structured files are organized
in one of the following two ways:

4.1.1 Records of uniform length

A FORTRAN-structured file with records of uniform length (3 single-precision floating point
data values per record in this figure) looks like this:

rrrr dddd dddd dddd rrrr ...

FORTRAN code that creates a data file of this type might look something like this (sequential
access is the default and need not be specified in the OPEN statement):

REAL VARI(10), VAR2(10), VAR3(10)
...

DATA SET BASICS 31

OPEN(UNIT=20,FORMAT=’UNFORMATTED’,ACCESS=’SEQUENTIAL’,FILE=’MYFILE.DAT’)
...
DO 10 I=1,10
WRITE (20) VAR1(I), VAR2(I), VAR3(I)
10 CONTINUE
....

To access data from this file, use

yes? SET DATA/EZ/FORMAT=UNF/VAR=var1,var2,var3/COL=3 myfile.dat or,
yes? FILE/FORMAT=UNF/VAR=var1,var2,var3/COLUMNS=3 myfile.dat

This is very similar to accessing ASCII data with the addition of the /FORMAT=unf qualifier.
The /COLUMNS= qualifier tells Ferret the number of data values per record. Although op-
tional in the above example, this qualifier is required if the number of data values per record is
greater than the number of variables being read (examples follow in section “ASCII Data”).

4.1.2 Records of non-uniform length

A FORTRAN-structured file with variable-length records might look like this:

rrrr dddd dddd rrrr
rrrr dddd rrrr
rrrr dddd dddd dddd dddd rrrr
etc.

With care, it is possible to read a data file containing variable-length records which was created
using the simplest unformatted FORTRAN OPEN statement and a single WRITE statement
for each variable. Use /FORMAT=stream to read such files. Note that sequential access is the
FORTRAN default and does not need to be specified in the OPEN statement:

REAL VAR1(1000), VAR2(500)
...
OPEN (UNIT=20, FORMAT="UNFORMATTED", FILE="MYFILE.DAT")
...
WRITE (20) VAR1
WRITE (20) VAR2
....

Use the qualifier /SKIP to skip past the record length information (/SKIP arguments are in units
of words), and define a grid which will not read past the data values. The /COLUMNS= quali-
fier can be used when reading multiple variables to specify the number of words separating the
start of each variable:

yes? DEFINE AXIS/X=1:500:1 xaxis
yes? DEFINE GRID/X=XAXIS mygrid
yes? FILE/FORMAT=stream/SKIP=1003/GRID=mygrid/VAR=var2 myfile.dat

The argument 1003 is the sum of the 1000 data words in record 1, plus 2 words of record length
information surrounding the data values in record 1 (variable var1), plus 1 word of record in-
formation preceding the data in record 2.

32 CHAPTER 2

4.2 Stream binary files

Files without embedded record length information are created by FORTRAN programs using
ACCESS="DIRECT" in OPEN statements and by C programs using the C studio library.
These files can contain a mix of integer and real numbers. The following types can be read
from an unstructured file:

FORTRAN C Size in bytes

INTEGER*1 char 1
INTEGER*2 short 2
INTEGER*4 int 4
REAL*4 float 4
REAL*8 double 8

4.2.1 Simple stream files

Suppose “dddd” represents a 4-byte data value. Then a stream (or “direct access”) binary file of
FORTRAN REAL*4 or C floats is:

dddd dddd dddd dddd dddd dddd ...

The structure of the records is implied by the program accessing the data. FORTRAN code
which generates a direct access binary file might look like this:

REAL*4 MYVAR(10,5)
...
C Use RECL=40 for machines that specify in bytes

OPEN(UNIT=20, FILE="myfile.dat", ACCESS="DIRECT", RECL=10)
...
DO 100 j = 1, 5
100 WRITE (20,REC=j) (MYVAR(i,j),i=1,10)
....

Use the following Ferret commands to read variable “myvar” from this file:

yes? DEFINE AXIS/X=1:10:1 x10
yes? DEFINE AXIS/Y=1:5:1 y5
yes? DEFINE GRID/X=x10/Y=y5 g10x5
yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream myfile.dat

If the file consisted of a set of FORTRAN REAL*8 or C doubles, then the data would look like:

dddddddd dddddddd dddddddd ...

and the following Ferret commands would read the data into “myvar”:

yes? DEFINE AXIS/X=1:10:1 x10
yes? DEFINE AXIS/Y=1:5:1 y5

DATA SET BASICS 33

yes? DEFINE GRID/X=x10/Y=y5 g10x5
yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream/type=r8 myfile.dat

Note the addition of the “type” qualifier. See the FILE command (p. 221) for more details.

Since Ferret represents all variables as REAL*4, some precision is lost when reading in
REAL*8 or INTEGER*4 values. Also, some REAL*8 numbers cannot be represented as
REAL*4 numbers; the internal Ferret value of such a number is system dependent.

4.2.2 Mixed stream files

Ferret can read binary files that contain a mix of numbers of different type. However, a given
Ferret variable can only be one type. Say you have a file containing a mix of REAL*8 and
REAL*4 numbers:

dddddddd dddd dddddddd dddd dddddddd ...

The following would successfully read the file:

yes? FILE/VAR=MYDOUBLE,MYFLOAT/GRID=somegrid/FORMAT=stream/type=r8,r4
myfile.dat

while:

yes? FILE/VAR=MYDOUBLE/GRID=someothergrid/FORMAT=stream/type=r8,r4
myfile.dat

would fail.

Stream files with byte-swapped numbers can be read with the /swap qualifier; the /order, and
/skip qualifiers are also available (see section 5.1, “Reading ASCII files,” p. 35, for more de-
tails on /order and /skip).

5 ASCII DATA

To access ASCII data file sets use

yes? SET DATA/EZ ASCII_file_name or equivalently
yes? FILE ASCII_file_name

The following are qualifiers to SET DATA/EZ or FILE:

Qualifier Description

/VARIABLES names the variables in the file
/TITLE associates a title with the data set

34 CHAPTER 2

Qualifier Description

/GRID indicates multi-dimensional data and units
/COLUMNS tells how many data values are in each record
/FORMAT specifies the format of the file
/SKIP skips initial records of the file
/ORDER specifies order of axes (which varies fastest)

Use command SET VARIABLE to individually customize the variables.

5.1 Reading ASCII files

Below are several examples of reading ASCII data properly. (Uniform record length, FOR-
TRAN-structured binary data are read similarly with the addition of the qualifier /FORMAT=
“unf”. See Chapter 2 section “Binary Data,” p. 31, for other binary types). First, we look briefly
at the relationship between Ferret and standard matrix notation.

Linear algebra uses established conventions in matrix notation. In a matrix A(i,j), the first in-
dex denotes a (horizontal) row and the second denotes a (vertical) column.

A11 A12 A13 ... A1n
A21 A22 A23 ... A2n Matrix A(i,j)
...

Am1 Am2 Am3 ... Amn

X-Y graphs follow established conventions as well, which are that X is the horizontal axis (and
in a geographical context, the longitude axis) and increases to the right, and Y is the vertical
axis (latitude) and increases upward (Ferret provides the /DEPTH qualifier to explicitly desig-
nate axes where the vertical axis convention is reversed).

In Ferret, the first index of a matrix, i, is associated with the first index of an (x,y) pair, x. Like-
wise, j corresponds to y. Element Am2, for example, corresponds graphically to x=m and y=2.

By default, Ferret stores data in the same manner as FORTRAN—the first index varies fastest.
Use the qualifier /ORDER to alter this behavior. The following examples demonstrate how
Ferret handles matrices.

Example 1—1 variable, 1 dimension

1a) Consider a data set containing the height of a plant at regular time intervals, listed in a sin-
gle column:

2.3
3.1

DATA SET BASICS 35

4.5
5.6
. . .

To access, name, and plot this variable properly, use the commands

yes? FILE/VAR=height plant.dat
yes? PLOT height

1b) Now consider the same data, except listed in four columns:

2.3 3.1 4.5 5.6
5.7 5.9 6.1 7.2
. . .

Because there are more values per record (4) than variables (1), use:

yes? FILE/VAR=height/COLUMNS=4 plant4.dat
yes? PLOT height

Example 2—2 variables, 1 dimension

2a) Consider a data set containing the height of a plant and the amount of water given to the
plant, measured at regular time intervals:

2.3 20.4
3.1 31.2
4.5 15.7
5.6 17.3
. . .

To read and plot this data use

yes? FILE/VAR="height,water" plant_wat.dat
yes? PLOT height,water

2b) The number of columns need be specified only if the number of columns exceeds the num-
ber of variables. If the data are in six columns

2.3 20.4 3.1 31.2 4.5 15.7
5.6 17.3 ...

use

yes? FILE/VAR="height,water"/COLUMNS=6 plant_wat6.dat
yes? PLOT height,water

Example 3—1 variable, 2 dimensions

3a) Consider a different situation: a greenhouse with three rows of four plants and a file with a
single column of data representing the height of each plant at a single time (successive values
represent plants in a row of the greenhouse):

36 CHAPTER 2

3.1
2.6
5.4
4.6
3.5
6.1
. . .

If we want to produce a contour plot of height as a function of position in the greenhouse, axes
will have to be defined:

yes? DEFINE AXIS/X=1:4:1 xplants
yes? DEFINE AXIS/Y=1:3:1 yplants
yes? DEFINE GRID/X=xplants/Y=yplants gplants
yes? FILE/VAR=height/GRID=gplants greenhouse_plants.dat
yes? CONTOUR height

When reading data the first index, x, varies fastest. Schematically, the data will be assigned as
follows:

x=1 x=2 x=3 x=4
y=1 3.1 2.6 5.4 4.6
y=2 3.5 6.1 . . .
y=3 . . .

3b) If the file in the above example has, instead, 4 values per record:

3.1 2.6 5.4 4.6
3.5 6.1 . . .

then add /COLUMNS=4 to the FILE command:

yes? FILE/VAR=height/COLUMNS=4/GRID=gplants greenhouse_plants.dat

Example 4—2 variables, 2 dimensions

Like Example 3, consider a greenhouse with three rows of four plants each and a data set with
the height of each plant and the length of its longest leaf:

3.1 0.54
2.6 0.37
5.4 0.66
4.6 0.71
3.5 0.14
6.1 0.95
. .
. .

Again, axes and a grid must be defined:

yes? DEFINE AXIS/X=1:4:1 xht_leaf
yes? DEFINE AXIS/Y=1:3:1 Yht_leaf
yes? DEFINE GRID/X=xht_leaf/Y=yht_leaf ght_leaf
yes? FILE/VAR="height,leaf"/GRID=ght_leaf greenhouse_ht_lf.dat
yes? SHADE height
yes? CONTOUR/OVER leaf

DATA SET BASICS 37

The above commands create a color-shaded plot of height in the greenhouse, and overlay a
contour plot of leaf length. Schematically, the data will be assigned as follows:

x=1 x=2 x=3 x=4
ht , lf ht , lf

y=1 3.1, 0.54 2.6, 0.37 5.4, 0.66 4.6, 0.71
y=2 3.5, 0.14 6.1, 0.95 . . .
y=3 . . .

Example 5—2 variables, 3 dimensions (time series)

Consider the same greenhouse with height and leaf length data taken at twelve different times.
The following commands will create a three-dimensional grid and a plot of the height and leaf
length versus time for a specific plant.

yes? DEFINE AXIS/X=1:4:1 xplnt_tm
yes? DEFINE AXIS/Y=1:3:1 yplnt_tm
yes? DEFINE AXIS/T=1:12:1 tplnt_tm
yes? DEFINE GRID/X=xplnt_tm/Y=yplnt_tm/T=tplnt_tm gplant2
yes? FILE/VAR="height,leaf"/GRID=gplant2 green_time.dat
yes? PLOT/X=3/Y=2 height, leaf

Example 6—1 variable, 3 dimensions, permuted order (vertical profile)

Consider a collection of oceanographic measurements made to a depth of 1000 meters. Sup-
pose that the data file contains only a single variable, salt. Each record contains a vertical pro-
file (11 values) of a particular x,y (long,lat) position. Supposing that successive records are
successive longitudes, the data file would look as follows (assume the equivalencies are not in
the file):

z=0 z=10 z=20 . . .

x=30W,y=5S 35.89 35.90 35.93 35.97 36.02 36.05 35.96 35.40 35.13 34.89 34.72

x=29W,y=5S 35.89 35.91 35.94 35.97 36.01 36.04 35.94 35.39 35.13 34.90 34.72

. . .

Use the qualifier /DEPTH= when defining the Z axis to indicate positive downward, and
/ORDER when setting the data set to properly read in the permuted data:

yes? DEFINE AXIS/X=30W:25W:1/UNIT=degrees salx
yes? DEFINE AXIS/Y=5S:5N:1/UNIT=degrees saly
yes? DEFINE AXIS/Z=0:1000:100/UNIT=meters/DEPTH salz
yes? DEFINE GRID/X=salx/Y=saly/Z=salz salgrid
yes? FILE/ORDER=zxy/GRID=salgrid/VAR=sal/COL=11 sal.dat

6 TRICKS TO READING BINARY AND ASCII FILES

Since binary and ASCII files are found in a bewildering variety of non-standardized formats a
few tricks may help with reading difficult cases.

38 CHAPTER 2

• Sometimes variables are interleaved with data axes in unstructured (stream) binary files. A
simple trick is to read them all as a single variable, say, “Vall,” in which the sequence of
variables in the file V1, V2, V3, ... is regarded as an axis of the grid. Then extract the
variables by defining V1 = Vall[I=1] (if the I axis was used, else J=1, K=1, or L=1) as
needed.

• In some ASCII files the variables are presented as blocks—a full grid of variable 1, then a
full grid of variable 2, etc. These files may be read using Unix soft links so that the same file
can be opened as several Ferret data sets. Then use the FILE command to point separately to
each soft link using the /SKIP qualifier to locate the correct starting point in the file for each
variable. For example,

Unix commands:

ln -s my_data my_dat.v1
ln -s my_data my_dat.v2
ln -s my_data my_dat.v3

Ferret commands:

yes? FILE/SKIP=0/VAR=v1 my_dat.v1
yes? FILE/SKIP=100/VAR=v2 my_dat.v2
yes? FILE/SKIP=200/VAR=v3 my_dat.v3

• If an ASCII file contains a repeating sequence of records try describing the entire sequence
using a single FORTRAN FORMAT statement. An example of such a statement would be
(3F8.4,2(/5F6.2)). The slash character and the nested parentheses allow multi-record groups
to appear as a single format. Note that the /COLUMNS qualifier should reflect the total
number of columns in the repeating group of records.

• If an ASCII or binary file contains gridded data in which the order of axes is not X-Y-Z-T
read the data in (which results in the wrong axis ordering) and use the LIST/ORDER= to
permute the order on output. The resulting file will have the desired axis ordering.

• If the times and geographical coordinate locations of the grid are inter-mixed with the
dependent variables in the file then 1) issue a FILE command to read the coordinates only; 2)
use DEFINE AXIS/FROM_DATA to define axes and DEFINE GRID to define the grid; 3)
use FILE/GRID=mygrid to read the file again.

7 ACCESS TO REMOTE DATA SETS WITH DODS

• What is DODS?

DODS, the Distributed Oceanographic Data System, allows users to access data anywhere
from the internet using a variety of client/server methods, including Ferret. Employing tech-
nology similar to that used by the World Wide Web, DODS and Ferret create a powerful tool

DATA SET BASICS 39

for the retrieval, sampling, analyzing and displaying of datasets; regardless of size or data
format (though there are data format limitations).

For more information on DODS, please see the DODS home page at

http://unidata.ucar.edu/packages/dods/

Similar to the WWW, DODS is an emerging technology and is under development. As a re-
sult, it is likely that the details with which things are accomplished will be changing.

• Accessing Remote Data Sets

Datasets are accessed through Ferret using their raw Universal Resource Locator (URL) ad-
dress. For example, to access the Coads climatology, hosted at PMEL:

yes? use “http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc”

Once the dataset has been initialized, it is used just like any other local dataset.

yes? list/x=140w/y=2n/t="16-Feb" sst
SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 141W
LATITUDE: 1N
TIME: 15-FEB 16:29
DATA SET:

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc
26.39

We have developed some general scripts (available at http://ferret.wrc.noaa.gov/
Ferret/Dods/) which will assist in both finding and using data with Ferret and DODS. This
script illustrates the use of datasets which are located on our server at PMEL.

yes? go dods
——————————————————-
DODS data suppliers currently known to your Ferret installation:
* * * * * * * * in .
dods_cdc.jnl: “Use” a dods data set from NOAA/CDC
dods_fsu.jnl: “Use” a dods data set from FSU
dods_jpl.jnl: “Use” a dods data set from JPL
dods_pmel.jnl: “Use” a dods data set from NOAA/PMEL
dods_uri.jnl: “Use” a dods data set from URI/GSO

The techniques for cataloging and organizing distributed DODS data are still under de-
velopment. The Ferret scripts to assist with DODS access are subject to change.

yes? go dods_pmel
—————————————————
The available data sets are:

coads_climatology.nc levitus_climatology.nc

The base URL is: http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/

yes? go dods_pmel coads_climatology.nc
yes? sh data/br
currently SET data sets:

40 CHAPTER 2

http://unidata.ucar.edu/packages/dods/
http://ferret.wrc.noaa.gov/Ferret/Dods/
http://ferret.wrc.noaa.gov/Ferret/Dods/

1> http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc
(default)
yes? list/x=140w/y=2n/t="16-Apr" sst

SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 141W
LATITUDE: 1N
TIME: 16-APR 13:27
DATA SET:

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc
27.07

• Debugging Access to Remote DODS Data Sets

To find out more information about a particular dataset, or to debug problems, there are
three elements of the dataset which may be accessed via a web browser. To access this infor-
mation, merely append a dds, das, or info to the dataset name. For example:

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.dds

DDS stands for Data Description Structure and this will return a text description of the data
sets structure.

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.das

DAS stands for Dataset Attribute Structure and this will return a text description of attrib-
utes assigned to the variables in the data set.

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.info

This will return a text description of the variables in the dataset.

• Sharing Data Sets via DODS

One of the most powerful aspect of DODS is the ease with which it allows for the sharing of
data. With just a few simple steps, anyone running a web server can also be a DODS data
server, thereby allowing data set access to anyone with an internet connection.

Simply copying a few precompiled binaries into the cgi-bin directory of an already config-
ure httpd server is all it takes to become a DODS server. Once the server is configured, add-
ing or removing data sets is as simple as copying them to the server data directory or
deleting them from that directory.

This ability has such immense potential that it bears extra emphasis. Imagine that within
seconds of finishing a model run, a remote colleague is able to look at your dataset with
whatever DODS client he/she desires, be it Ferret, or Matlab, etc. No need for you to pack-
age up the data or for your colleague to download and/or reformat it, it is ready to be ana-
lyzed right away.

For more detailed information on setting up a DODS server, please see the DODS home
page (http://unidata.ucar.edu/packages/dods).

DATA SET BASICS 41

http://unidata.ucar.edu/packages/dods

Chapter 3: VARIABLES AND EXPRESSIONS

1 VARIABLES

Variables are of 2 kinds:

1) file variables (read from disk files)
2) user-defined variables (defined by the user with LET command)

Both types may be accessed identically in all commands and expressions.

Variables, regardless of kind, possess the following associated information:

1) grid—the underlying coordinate structure
2) units
3) title
4) title modifier (additional explanation of variable)
5) flag value for missing data points

Use the commands SHOW DATA and SHOW VARIABLES to examine file variables and
user-defined variables, respectively.

The pseudo-variables I, J, K, L, X, Y, Z, T and others may be used to refer to the underlying grid
locations and characteristics and to create abstract variables.

1.1 Variable syntax

Variables in Ferret are referred to by names with optional qualifying information appended in
square brackets. See DEFINE VARIABLE (p. 218) for a discussion of legal variable names.

The information that may be included in the square brackets includes

D=data_set_name_or_number ! indicate the data set
G=grid_or_variable_name ! request a regridding
X=,Y=,Z=,T=,I=,J=,K=,L= ! specify region and transformation

See Chapter 4 on Regions (p. 90) for more discussion of the syntax of region qualifiers and
transformations.

Some examples of valid variable syntax are

Myvar ! data set and region as per current context
myvar[D=2] ! myvar from data set number 2 (see SHOW DATA, p. 269)
myvar[D=a_dset] ! myvar from data set a_dset.cdf or a_dset.des
myvar[D=myfile.txt] ! myvar from file myfile.txt
myvar[G=gridname] ! myvar regridded to grid gridname

VARIABLES AND EXPRESSIONS 43

myvar[G=var2] ! myvar regridded to the grid of var2
! which is in the same data set as myvar

myvar[G=var2[D=2]] ! myvar regridded to the grid of var2
! which is in data set number 2

myvar[GX=axisname] ! myvar regridded to a dynamic grid which
! has X axis axisname

myvar[GX=var2] ! myvar regridded to a dynamic grid which
! has the X axis of variable var2

myvar[I=1:31:5] ! myvar subsampled at every 5th point
! (regridded to a subsampled axis)

myvar[X=20E:50E:5] ! myvar subsampled at every 5 degrees
! (regridded to a 5-deg axis by linear interpolation)

1.2 File variables

File variables are stored in disk files. Input data files can be ASCII, binary, NetCDF, or
TMAP-formatted (see Chapter 2, Data Set Basics, p. 27). File variables are made available
with the SET DATA (alias USE) command.

In some netCDF files the variable names are not consistent with Ferret’s rules for variable nam-
ing. They may be case-sensitive (for example, variables “v” and “V” defined in the same file),
may be restricted names such as the Ferret pseudo-variable names I, J, K, L, X, Y, Z, T, XBOX,
YBOX, ZBOX, or TBOX, or them may include “illegal” characters such as “+”, “-”, “%”,
blanks, etc. To access such variable names in Ferret file simply enclose the name in single
quotes. For example,

yes? PLOT ‘x’
yes? CONTOUR ‘SST from MP/RF measurements’

1.3 Pseudo-variables

Pseudo-variables are variables whose values are coordinates or coordinate information from a
grid. Valid pseudo-variables are

X – x axis coordinates I – x axis subscripts XBOX – size of x grid box
Y – y axis coordinates J – y axis subscripts YBOX – size of y grid box
Z – z axis coordinates K – z axis subscripts ZBOX – size of z grid box
T – t axis coordinates L – t axis subscripts TBOX – size of t grid box

A grid box is a concept needed for some transformations along an axis; it is the length along an
axis that belongs to a single grid point and functions as a weighting factor during integrations
and averaging transformations.

The pseudo-variables I, J, K, and L are subscripts; that is, they are a coordinate system for re-
ferring to grid locations in which the points along an axis are regarded as integers from 1 to the
number of points on the axis. This is clear if you look at one of the sample data sets:

yes? USE levitus_climatology
yes? SHOW DATA

44 CHAPTER 3

1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des (default)
Levitus annual climatology (1x1 degree)

diagnostic variables: NOT available
name title I J K L
TEMP TEMPERATURE 1:360 1:180 1:20 ...
... on grid GLEVITR1 X=20E:20E(380) Y=90S:90N Z=0m:5000m

SALT SALINITY 1:360 1:180 1:20 ...
... on grid GLEVITR1 X=20E:20E(380) Y=90S:90N Z=0m:5000m

We see that there are 20 points along the z-axis (1:20 under K), for example, and that the z-axis
coordinate values range from 0 meters to 5000 meters. Pseudo-variables depend only on the
underlying grid, and not on the variables (in this case, temperature and salt).

Examples: Pseudo-variables

1) yes? LIST/I=1:10 I

2) yes? LET xflux = u * vbox[G=u]

1.3.1 Grids and axes of pseudo-variables

The name of a pseudo-variable, alone, (”I”, “T”, “ZBOX”, etc.) is not sufficient to determine
the underlying axis of the pseudo-variable. The underlying axis may be specified explicitly,
may be inherited from other variables used in the same expression, may be generated dynami-
cally, or may be inherited from the current default grid. The following examples illustrate the
possibilities:

TEMP + Y ! pseudo-variable Y inherits the y axis of variable TEMP
Y[G=TEMP] ! explicit: Y refers to the y axis of variable TEMP
Y[GY=axis_name] ! explicit: Y refers to axis axis_name
Y[Y=0:90:2] ! y axis is dynamically generated (See “dynamic axes”>,

! p. 78)

In the expression

LET A = X + Y

in which the definition provides no explicit coaching, nor are there other variables from which
Y can inherit an axis, the axis of Y will be inherited from the current default grid. The current
default grid is specified by the SET GRID command and may be queried at any time with the
SHOW GRID command. SHOW GRID will respond with “Default grid for DEFINE
VARIABLE is grid”.

Note that when pseudo-variables are buried within a user variable definition they do not inherit
from variables used in conjunction with the user variable. For example, contrast these expres-
sions involving pseudo-variable Y

USE coads_climatology ! has variable SST
LET A = Y ! Y buried inside variable A (axis indeterminate)
LIST SST + A ! y axis inherited from current default grid
LIST SST + Y ! y axis inherited from grid of SST

VARIABLES AND EXPRESSIONS 45

LIST SST + A[G=SST] ! y axis inherited from grid of SST

1.4 User-defined variables

New variables can be defined from existing variables and from abstract mathematical quanti-
ties (such as COS(latitude)) with command DEFINE VARIABLE (alias LET).

See command DEFINE VARIABLE (p. 218) and command LET (p. 226) in the Commands
Reference.

Examples: User-defined variables

1) yes? LET/TITLE="Surface Relief x1000 (meters)" r1000=rose/1000

2) yes? LET/TITLE="Temperature Deviation" tdev=temp - temp[Z=@ave]

1.5 Abstract variables

Ferret can be used to manipulate abstract mathematical quantities such as SIN(x) or
EXP(k*t)—quantities that are independent of file variable values. Such quantities are referred
to as abstract expressions.

Example: Abstract variables

Contour the function
COS(a*Y)/EXP(b*T) where a=0.25 and b=-0.02

over the range
Y=0:45 (degrees) and T=1:100 (hours)

with a resolution of
0.5 degree on the Y axis and 2 hours on the T axis.

Quick and dirty solution:
yes? CONTOUR COS(0.25*Y[Y=0:45:0.5])/EXP(-0.2*T[T=1:100:2])

Nicer (Figure 7); plot is documented with correct units and titles):

yes? DEFINE AXIS/Y=0:45:0.5 /UNIT=DEGREES yax
yes? DEFINE AXIS/T=1:100:2 /UNIT=HOURS tax
yes? DEFINE GRID/T=tax/Y=yax my_grid
yes? SET GRID my_grid
yes? LET a=0.25
yes? LET b=-0.02
yes? CONTOUR/COS(a*Y)/EXP(b*T)

See Chapter 4, section “Grids” (p. 77), for more information on grids.

46 CHAPTER 3

1.6 Missing value flags

Data values that are absent or undefined for mathematical reasons (e.g., 1/0) will be repre-
sented in Ferret with a missing value flag. In SHADE outputs a missing value flag embedded at
some point in a variable will result in a transparent rectangular hole equal to the size of the grid
cell of the missing value. In a CONTOUR or FILL plot it will result in a larger hole—extending
past the grid box edge to the coordinate location of the next adjacent non-missing point—since
contour lines cannot be interpolated between a missing value and its neighboring points. In the
output of the LIST command for cases where the /FORMAT qualifier is not used the missing
value will be represented by 4 dots (“....”). For cases where LIST/FORMAT=FORTRAN-for-
mat is used the numerical value of the missing value flag will be printed using the format pro-
vided.

1.6.1 Missing values in input files

Ferret does not impose a standard for missing value flags in input data sets; each variable in
each data set may have its own distinct missing value flag(s). The flag(s) actually in use by a
data set may be viewed with the SHOW DATA/VARIABLES command. If no missing value
flag is specified for a data set Ferret will assume a default value of –1.E+34.

For EZ input data sets, either binary or ASCII, the missing data flag may be specified with the
SET VARIABLE/BAD= command. A different value may be specified for each variable in the
data set.

VARIABLES AND EXPRESSIONS 47

Figure 7.

For NetCDF input data sets the missing value flag(s) is indicated by the values of the attributes
“missing_value” and “_FillValue.” If both attributes are defined to have different values both
will be recognized and used by Ferret as missing value indicators, however the occurrences of
_FillValue will be replaced with the value of missing_value as the data are read into Ferret’s
memory cache so that only a single missing value flag is apparent inside of Ferret. The com-
mand SET VARIABLE/BAD= can also be applied to NetCDF variables, thereby temporarily
setting a user-imposed value for _FillValue.

1.6.2 Missing values in user-defined variables

User-defined variables may in general be defined as expressions involving multiple variables.
The component variables need not in general agree in their choice of missing value flags. The
result variable will inherit the bad value flag of the first variable in the expression. If the first
component in the expression is a constant or a pseudo-variable, then Ferret imposes its default
missing value flag of –1.E+34.

The function MISSING(variable,replacement) provides a limited control over the choice of
missing values in user-defined variables. Note, however, that while the MISSING function will
replace the missing values with other values it will not change the missing value flag. In other
words, the replacement values will no longer be regarded as missing.

1.6.3 Missing values in output NetCDF files

Values flagged as missing inside Ferret will be faithfully transferred to output files—no substi-
tution will occur as the data are written. In the case of NetCDF output files both of the attributes
missing_value, and _FillValue will be set equal to the missing value flag.

Under some circumstances it is desirable to save a user-defined variable in a NetCDF file and
then to redefine that variable and to append further output. (An example of this is the process of
consolidating several files of input, say, moored measurements, into a gridded output.) The
process of appending will not change any of the NetCDF attributes—neither long_name (title),
units, nor missing_value or _FillValue. If the subsequent variable definitions do not agree in
their choice of missing value flags the resulting output may contain multiple missing value
flags that will not be properly documented.

An easy “trick” that avoids this situation is to begin all of the variable definitions with an addi-
tion of zero, “LET var = 0 +” The addition of zero will not affect the value of the output but it
will guarantee that a missing value flag of –1.E+34 will be consistently used. Of course, you
will want to use the SET VARIABLE/TITLE= command in conjunction with this approach.

48 CHAPTER 3

1.6.4 Displaying the missing value flag

If the LIST command is used, missing values are, by default, displayed as “....” To examine the
flag as a numerical value, use LIST/FORMAT=(E) (or some other suitable format).

2 EXPRESSIONS

Throughout this manual, Ferret commands that require and manipulate data are informally
called “action” commands. These commands are:

PLOT
CONTOUR
FILL (alias for CONTOUR/FILL)
SHADE
VECTOR
POLYGON
WIRE
LIST
STAT
LOAD

Action commands may use any valid algebraic expression involving constants, operators
(+,–,*,...), functions (SIN, MIN, INT,...), pseudo-variables (X, TBOX, ...) and other variables.

A variable name may optionally be followed by square brackets containing region, transforma-
tion, data set, and regridding qualifiers. For example, “temp”, “salt[D=2]”, “u[G=temp”],
“u[Z=0:200@AVE]”.

The expressions may also contain a syntax of:

IF condition THEN expression_1 ELSE expression_2

Examples: Expressions

i) temp ^ 2

temperature squared

ii) temp - temp[Z=@AVE]

for the range of Z in the current context, the temperature deviations from the vertical aver-
age

iii) COS(Y)
the cosine of the Y coordinate of the underlying grid (by default, the y-axis is implied by the
other variables in the expression)

VARIABLES AND EXPRESSIONS 49

iv) IF (vwnd GT vwnd[D=monthly_navy_winds]) THEN vwnd ELSE 0

use the meridional velocity from the current data set wherever it exceeds the value in data
set monthly_navy_winds, zero elsewhere.

2.1 Operators

Valid operators are

+
–
*
/
^ (exponentiate)
AND
OR
GT
GE
LT
LE
EQ
NE

2.2 Multi-dimensional expressions

Operators and functions (discussed in the next section, Functions) may combine variables of
like dimensions or differing dimensions.

If the variables are of like dimension then the result of the combination is of the same
dimensionality as inputs. For example, suppose there are two time series that have data on the
same time axis; the result of a combination will be a time series on the same time axis.

If the variables are of unlike dimensionality, then the following rules apply:

1) To combine variables together in an expression they must be “conformable” along each
axis.

2) Two variables are conformable along an axis if the number of points along the axis is the
same, or if one of the variables has only a single point along the axis (or, equivalently, is nor-
mal to the axis).

3) When a variable of size 1 (a single point) is combined with a variable of larger size, the vari-
able of size 1 is “promoted” by replicating its value to the size of the other variable.

4) If variables are the same size but have different coordinates, they are conformable, but Fer-
ret will issue a message that the coordinates on the axis are ambiguous. The result of the com-

50 CHAPTER 3

bination inherits the coordinates of the FIRST variable encountered that has more than a
single point on the axis.

Examples:

Assume a region J=50/K=1/L=1 for examples 1 and 2. Further assume that variables v1 and v2
share the same x-axis.

1) yes? LET newv = v1[I=1:10] + v2[I=1:10] !same dimension (10)

2) yes? LET newv = v1[I=1:10] + v2[I=5] !newv has length of v1 (10)

3) We want to compare the salt values during the first half of the year with the values for the sec-
ond half. Salt_diff will be placed on the time coordinates of the first variable—L=1:6. Ferret
will issue a warning about ambiguous coordinates.

yes? LET salt_diff = salt[L=1:6] - salt[L=7:12]

4) In this example the variable zero will be promoted along each axis.

yes? LET zero = 0 * (i+j)
yes? LIST/I=1:5/J=1:5 zero !5X5 matrix of 0’s

5) Here we calculate density; salt and temp are on the same grid. This expression is an XYZ vol-
ume of points (100×100×10) of density at 10 depths based on temperature and salinity val-
ues at the top layer (K=1).

yes? SET REGION/I=1:100/J=1:100
yes? LET dens = rho_un (temp[K=1], salt[K=1], Z[G=temp,K=1:10]

2.3 Functions

Functions are utilized with standard mathematical notation in Ferret. The arguments to func-
tions are constants, constant arrays, pseudo-variables, and variables, possibly with associated
qualifiers in square brackets, and expressions. Thus, all of these are valid function references:

• EXP(-1)

• MAX(a,b)

• TAN(a/b)

• SIN(Y[g=my_sst])

• DAYS1900(1989,{3,6,9},1)

A few functions also take strings as arguments. String arguments must be enclosed in double
quotes. For example, a function to write variable “u” into a file named “my_output.v5d”, for-
matted for the Vis5D program might be implemented as

VARIABLES AND EXPRESSIONS 51

• LOAD WRITE_VIS5D(“my_output.v5d”, a)

Valid functions are

Name #Args Description

MAX 2 Compares two fields and selects the point by point maximum.
MAX(temp[K=1], temp[K=2]) returns the maximum tempera-
ture comparing the first 2 z-axis levels

MIN 2 Compares two fields and selects the point by point minimum.
MIN(airt[L=10], airt[L=9]) gives the minimum air tempera-
ture comparing two timesteps

INT 1 Truncates values to integers.
INT(salt) returns the integer portion of variable “salt” for all
values in the current region

ABS 1 Absolute value.
ABS(U) takes the absolute value of U for all points within the
current region

EXP 1 ex—Exponential; argument is real.
EXP(X) raises e to the power X for all points within the current
region

LN 1 logeX—Natural logarithm; argument is real.
LN(X) takes the natural logarithm of X for all points within the
current region

LOG 1 log10X—Common logarithm; argument is real.
LOG(X) takes the common logarithm of X for all points within
the current region

SIN 1 Trigonometric sine; argument is in radians and is treated modulo
2*pi.
SIN(X) computes the sine of X for all points within the current
region

COS 1 Trigonometric cosine; argument is in radians and is treated
modulo 2*pi.
COS(Y) computes the cosine of Y for all points within the current
region

TAN 1 Trigonometric tangent; argument is in radians and is treated
modulo 2*pi.
TAN(theta) computes the tangent of theta for all points within
the current region

ASIN 1 Trigonometric arcsine (-pi/2,pi/2). The result will be flagged as
missing if the absolute value of the argument is greater than 1; re-
sult is in radians.
ASIN(value) computes the arcsine of “value” for all points
within the current region

52 CHAPTER 3

Name #Args Description

ACOS 1 Trigonometric arccosine (0,pi). The result will be flagged as miss-
ing of the absolute value of the argument greater than 1; result is in
radians.
ACOS (value) computes the arccosine of “value” for all points
within the current region

ATAN 1 Trigonometric arctangent (-pi/2,pi/2); result is in radians.
ATAN(value) computes the arctangent of “value” for all points
within the current region

ATAN2 2 2-argument trigonometric arctangent of Y/X (-pi,pi); discontinu-
ous at Y=0.
ATAN2(X,Y) computes the 2-argument arctangent of Y/X for all
points within the current region

MOD 2 Modulo operation (arg1 – arg2*[arg1/arg2]). Returns the remain-
der when the first argument is divided by the second.
MOD(X,2) computes the remainder of X/2 for all points within
the current region

DAYS1900 3 DAYS1900(year,month,day) computes the number of days since 1
Jan 1900. This function is useful in converting dates to Julian
days.

MISSING 2 Replaces missing values in the first argument (multi-dimensional
variable) with the second argument; the second argument may be
any conformable variable.
MISSING(temp, -999) replaces missing values in temp with
–999

MISSING(sst, temp[D=coads_climatology]) replaces missing
sst values with temperature from the COADS climatology

IGNORE0 1 Replaces zeros in a variable with the missing value flag for that
variable.
IGNORE0(salt) replaces zeros in salt with the missing value flag

RANDU 1 Generates a grid of uniformly distributed [0,1] pseudo-random
values. The first valid value in the field is used as the random num-
ber seed. Values that are flagged as bad remain flagged as bad in
the random number field.

RANDU(temp[I=105:135,K=1:5]) generates a field of uni-
formly distributed random values of the same size and shape as the
field “temp[I=105:135,K=1:5]” using temp[I=105,k=1] as the
pseudo-random number seed.

RANDN 1 Generates a grid of normally distributed pseudo-random values.
As above, but normally distributed rather than uniformly distrib-
uted.

VARIABLES AND EXPRESSIONS 53

Name #Args Description

RHO_UN 3 Calculates rho (density kg/m^3) from salt (psu), temperature (deg
C) and pressure (decibars) using the 1980 UNESCO International
Equation of State (IES80). The routine uses the high pressure
equation of state from Millero et al. (1980) and the oneatmosphere
equation of state from Millero and Poisson (1981) as reported in
Gill (1982). The notation follows Millero et al. (1980) and Millero
and Poisson (1981).
RHO_UN(salt, temp, Z)

THETA_FO 4 Calculates local potential temperature field at salt (psu), tempera-
ture (deg C), pressure (decibars) and specified reference pressure.
This calculation uses Bryden (1973) polynomial for adiabatic
lapse rate and Runge-Kutta 4th order integration algorithm. Refer-
ences: Bryden, H., 1973, Deep-Sea Res., 20, 401–408; Fofonoff,
N.M, 1977, Deep-Sea Res., 24, 489–491.
THETA_FO(salt, temp, Z, Z_reference)

RESHAPE 2 The result of the RESHAPE function will be argument A
“wrapped” on the grid of argument B. A common use of this func-
tion is to view multi-year time series data as a 2-dimensional field
of 12 months vs. year.

RESHAPE(Tseries,MonthYear)

ZAXREPLACE 3 ZAXREPLACE(V,ZVALS,ZAX)

Convert between alternative monotonic Zaxes, where the map-
ping between the source and destination Z axes is a function of
X,Y, and or T. Typical applications in the field of oceanography in-
clude converting from a Z axis of layer number to a Z axis in units
of depth (e.g., for sigma coordinate fields) and converting from a
Z axes of depth to one of density (for a stably stratified fluid).

Argument 1, V, is the field of data values, say temperature on the
“source” Z-axis, say, layer number. The second argument,
ZVALS, contains values in units of the desired destination Z axis
(ZAX) on the Z axis as V — for example, depth values associated
with each vertical layer. The third argument, ZAX, is any variable
defined on the destination Z axis, often “Z[gz=zaxis_name]” is
used.

XSEQUENCE 1 Unravels the data from the argument into a 1-dimensional line of
data on an axis ABSTRACT.

YSEQUENCE 1 Unravels the data from the argument into a 1-dimensional line of
data on an axis ABSTRACT.

ZSEQUENCE 1 Unravels the data from the argument into a 1-dimensional line of
data on an axis ABSTRACT.

TSEQUENCE 1 Unravels the data from the argument into a 1-dimensional line of
data on an axis ABSTRACT.

54 CHAPTER 3

2.4 Transformations

Transformations (e.g., averaging, integrating, etc.) may be specified along the axes of a vari-
able. Some transformations (e.g., averaging) reduce a range of data to a point; others (e.g., dif-
ferentiating) retain the range.

When transformations are specified along more than one axis of a single variable the order of
execution is X axis first, then Y then Z then T.

The regridding transformations are described in Chapter 4 (p. 77).

Example syntax: TEMP[Z=0:100@LOC:20] (depth at which temp has value 20)

Valid transformations are

Transform
Default

Argument Description

@DIN definite integral (weighted sum)
@IIN indefinite integral (weighted running sum)
@AVE average
@VAR unweighted variance
@MIN minimum
@MAX maximum
@SHF 1 pt shift
@SBX 3 pt boxcar smoothed
@SBN 3 pt binomial smoothed
@SHN 3 pt Hanning smoothed
@SPZ 3 pt Parzen smoothed
@SWL 3 pt Welch smoothed
@DDC centered derivative
@DDF forward derivative
@DDB backward derivative
@NGD number of valid points
@NBD number of bad (invalid) points flagged
@SUM unweighted sum
@RSUM running unweighted sum
@FAV 3 pt fill missing values with average
@FLN:n 1 pt fill missing values by linear interpolation
@FNR:n 1 pt fill missing values with nearest point
@LOC 0 coordinate of ... (e.g., depth of 20 degrees)
@WEQ “weighted equal” (integrating kernel)
@CDA closest distance above
@CDB closest distance below
@CIA closest index above
@CIB closest index below

VARIABLES AND EXPRESSIONS 55

The command SHOW TRANSFORM will produce a list of currently available transforma-
tions.

Examples: Transformations

U[Z=0:100@AVE] – average of u between 0 and 100 in Z
sst[T=@SBX:10] – box-car smooths sst with a 10 time point filter
tau[L=1:25@DDC] – centered time derivative of tau
v[L=@IIN] – indefinite (accumulated) integral of v
qflux[X=@AVE,Y=@AVE] – XY area-averaged qflux

2.4.1 General information about transformations

Transformations are normally computed axis by axis; if multiple axes have transformations
specified simultaneously (e.g., U[Z=@AVE,L=@SBX:10]) the transformations will be applied se-
quentially in the order X then Y then Z then T. There are two exceptions to this: if @DIN is ap-
plied simultaneously to both the X and Y axes (in units of degrees of longitude and latitude,
respectively) the calculation will be carried out on a per-unit-area basis (as a true double inte-
gral) instead of a per-unit-length basis, sequentially. This ensures that the COSINE(latitude)
factors will be applied correctly. The same applies to @AVE simultaneously on X and Y.

Data that are flagged as invalid are excluded from calculations.

When calculating integrals and derivatives (@IIN, @DIN, @DDC, @DDF, and @DDB) Fer-
ret attempts to use standardized units for the grid coordinates. If the underlying axis is in a
known unit of length Ferret converts grid box lengths to meters. If the underlying axis is in a
known unit of time Ferret converts grid box lengths to seconds. If the underlying axis is de-
grees of longitude a factor of COSINE (latitude) is applied to the grid box lengths in meters.

If the underlying axis units are unknown Ferret uses those unknown units for the grid box
lengths. (If Ferret does not recognize the units of an axis it displays a message to that effect
when the DEFINE AXIS or SET DATA command defines the axis.) See command DEFINE
AXIS/UNITS (p. 214) in the Commands Reference in this manual for a list of recognized units.

All integrations and averaging are accomplished by multiplying the width of each grid box by
the value of the variable in that grid box—then summing and dividing as appropriate for the
particular transformation.

If integration or averaging limits are given as world coordinates, the grid boxes at the edges of
the region specified are weighted according to the fraction of grid box that actually lies within
the specified region. If the transformation limits are given as subscripts, the full box size of
each grid point along the axis is used—including the first and last subscript given. The region
information that is listed with the output reflects this.

56 CHAPTER 3

Some transformations (derivatives, shifts, smoothers) require data points from beyond the
edges of the indicated region in order to perform the calculation. Ferret automatically accesses
this data as needed. It flags edge points as missing values if the required beyond-edge points
are unavailable (e.g., @DDC applied on the X axis at I=1).

2.4.2 Transformations applied to irregular regions

Since transformations are applied along the orthogonal axes of a grid they lend themselves nat-
urally to application over “rectangular” regions (possibly in 3 or 4 dimensions). Ferret has suf-
ficient flexibility, however, to perform transformations over irregular regions.

Suppose, for example, that we wish to determine the average wind speed within an irregularly
shaped region of the globe defined by a threshold sea surface temperature value. We can do this
through the creation of a mask, as in this example:

yes? SET DATA coads_climatology
yes? SET REGION/l=1/@t ! January in the Tropical Pacific
yes? LET sst28_mask = IF sst GT 28 THEN 1
yes? LET masked_wind_speed = wspd * sst28_mask
yes? LIST masked_wind_speed[X=@AVE,Y=@AVE]

The variable sst28_mask is a collection of 1’s and missing values. Using it as a multiplier on
the wind speed field produces a new result that is undefined except in the domain of interest.

When using masking be aware of these considerations:

• Use undefined values rather than zeros to avoid contaminating the calculation with zero
values.

• The masked region is composed of rectangles at the level of resolution of the gridded
variables; the mask does NOT follow smooth contour lines. To obtain a smoother mask it
may be desirable to regrid the calculation to a finer grid.

• Variables from different data sets can be used to mask one another. For example, the
ETOPO60 bathymetry data set can be used to mask regions of land and sea.

2.4.3 General information about smoothing transformations

Ferret provides several transformations for smoothing variables (removing high frequency
variability). These transformations replace each value on the grid to which they are applied
with a weighted average of the surrounding data values along the axis specified. For example,
the expression u[T=@SPZ:3] replaces the value at each (I,J,K,L) grid point of the variable “u”
with the weighted average

u at t = 0.25*(u at t-1) + 0.5*(u at t) + 0.25*(u at t+1)

VARIABLES AND EXPRESSIONS 57

The various choices of smoothing transformations (@SBX, @SBN, @SPZ, @SHN, @SWL)
represent different shapes of weighting functions or “windows” with which the original vari-
able is convolved. New window functions can be obtained by nesting the simple ones pro-
vided. For example, using the definitions

yes? LET ubox = u[L=@SBX:15]
yes? LET utaper = ubox[L=@SHN:7]

produces a 21-point window whose shape is a boxcar (constant weight) with COSINE
(Hanning) tapers at each end.

Ferret may be used to directly examine the shape of any smoothing window: Mathematically,
the shape of the smoothing window can be recovered as a variable by convolving it with a delta
function. In the example below we examine (PLOT) the shape of a 15-point Welch window
(Figure 8).

! define X axis as [-1,1] by 0.2
yes? GO unit_square
yes? SET REGION/X=-1:1
yes? LET delta =

IF X EQ 0 THEN 1 ELSE 0
! convolve delta with Welch window
yes? PLOT delta[I=@SWL:15]

2.4.4 @DIN—definite integral

The transformation @DIN computes the definite integral—a single value that is the integral
between two points along an axis (compare with @IIN). It is obtained as the sum of the

58 CHAPTER 3

Figure 8.

grid_box*variable product at each grid point. Grid points at the ends of the indicated range are
weighted by the fraction of the grid box that falls within the integration interval.

If @DIN is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by indicating a transformation of “@IN4” or “XY integ.”

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@DIN]

In a latitude/longitude coordinate system X=@DIN is sensitive to the COS(latitude) correc-
tion.

2.4.5 @IIN—indefinite integral

The transformation @IIN computes the indefinite integral—at each subscript of the result it is
the value of the integral from the start value to the upper edge of that grid box. It is obtained as a
running sum of the grid_box*variable product at each grid point. Grid points at the ends of the
indicated range are weighted by the fraction of the grid box that falls within the integration in-
terval.

Example:

yes? CONTOUR/X=160E:160W/Z=0 u[Y=5S:5N@IIN]

Note 1: The indefinite integral is always computed in the increasing coordinate direction. To
compute the indefinite integral in the reverse direction use

LET reverse_integral = my_var[Y=lo:hi@DIN] - my_var[X=lo:hi@IIN]

Note 2: In a latitude/longitude coordinate system X=@IIN is sensitive to the COS(latitude)
correction.

Note 3: The result of the indefinite integral is shifted by 1/2 of a grid cell from its “proper” lo-
cation. This is because the result at each grid cell includes the integral computed to the upper
end of that cell. (This was necessary in order that var[I=lo:hi@DIN] and var[I=lo:hi@IIN] pro-
duce consistent results.)

To illustrate, consider these commands

yes? LET one = x-x+1
yes? LIST/I=1:3 one[I=@din]

X-X+1
X: 0.5 to 3.5 (integrated)

3.000
yes? LIST/I=1:3 one[I=@iin]

X-X+1

VARIABLES AND EXPRESSIONS 59

indef. integ. on X
1 / 1: 1.000
2 / 2: 2.000
3 / 3: 3.000

The grid cell at I=1 extends from 0.5 to 1.5. The value of the integral at 1.5 is 1.000 as reported
but the coordinate listed for this value is 1 rather than 1.5. Two methods are available to correct
for this 1/2 grid cell shift.

Method 1: correct the result by subtracting the 1/2 grid cell error

yes? LIST/I=1:3 one[I=@iin] - one/2
ONE[I=@IIN] - ONE/2

1 / 1: 0.500
2 / 2: 1.500
3 / 3: 2.500

Method 2: correct the coordinates by shifting the axis 1/2 of a grid cell

yes? DEFINE AXIS/X=1.5:3.5:1 xshift
yes? LET SHIFTED_INTEGRAL = one[I=@IIN]
yes? LET corrected_integral = shifted_integral[GX=xshift@ASN]
yes? LIST/I=1:3 corrected_integral

SHIFTED_INTEGRAL[GX=XSHIFT@ASN]
1.5 / 1: 1.000
2.5 / 2: 2.000
3.5 / 3: 3.000

2.4.6 @AVE—average

The transformation @AVE computes the average weighted by grid box size—a single number
representing the average of the variable between two endpoints.

If @AVE is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by showing @AV4 or “XY ave” as the transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@AVE]

Note that the unweighted mean can be calculated using the @SUM and @NGD transforma-
tions.

2.4.7 VAR—weighted variance

The transformation @VAR computes the weighted variance of the variable with respect to the
indicated region (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press
et al., 1986).

60 CHAPTER 3

As with @AVE, if @VAR is applied simultaneously to multiple axes the calculation is per-
formed as the variance of a block of data rather than as nested 1-dimensional variances.

2.4.8 MIN—minimum

The transformation @MIN finds the minimum value of the variable within the specified axis
range.

Example:

For fixed Z and Y

yes? PLOT/T="1-JAN-1982":"1-JAN-1983" temp[X=160E:160W@MIN]

plots a time series of the minimum temperature found between longitudes 160 east and 160
west.

2.4.9 @MAX—maximum

The transformation @MAX finds the maximum value of the variable within the specified axis
range. See also @MIN.

2.4.10 @SHF:n—shift

The transformation @SHF shifts the data up or down in subscript by the number of points
given as the argument.

Examples:

U[L=@SHF:2]

associates the value of U[L=3] with the subscript L=1.

U[L=@SHF:1]-U

gives the forward difference of the variable U along the L axis.

2.4.11 @SBX:n—boxcar smoother

The transformation @SBX applies a boxcar window (running mean) to smooth the variable
along the indicated axis. The width of the boxcar is the number of points given as an argument
to the transformation. All points are weighted equally, regardless of the sizes of the grid boxes,
making this transformation best suited to axes with equally spaced points. If the number of
points specified is even, however, @SBX weights the end points of the boxcar smoother as 1/2.

VARIABLES AND EXPRESSIONS 61

Example:

yes? PLOT/X=160W/Y=0 u[L=1:120@SBX:5]

The transformation @SBX does not reduce the number of points along the axis; it replaces
each of the original values with the average of its surrounding points. Regridding can be used
to reduce the number of points.

2.4.12 @SBN:n—binomial smoother

The transformation @SBN applies a binomial window to smooth the variable along the indi-
cated axis. The width of the smoother is the number of points given as an argument to the trans-
formation. The weights are applied without regard to the widths of the grid boxes, making this
transformation best suited to axes with equally spaced points.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@SBN:15]

The transformation @SBN does not reduce the number of points along the axis; it replaces
each of the original values with a weighted sum of its surrounding points. Regridding can be
used to reduce the number of points. The argument specified with @SBN, the number of points
in the smoothing window, must be an odd value; an even value would result in an effective shift
of the data along its axis.

2.4.13 @SHN:n—Hanning smoother

Transformation @SHN applies a Hanning window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation. Note that the
Hanning window used by Ferret contains only non-zero weight values with the window width.
Some interpretations of this window function include zero weights at the end points. Use an ar-
gument of N-2 to achieve this effect (e.g., @SBX:5 is equivalent to a 7-point Hanning window
which has zeros as its first and last weights).

2.4.14 @SPZ:n—Parzen smoother

Transformation @SPZ applies a Parzen window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation.

62 CHAPTER 3

2.4.15 @SWL:n—Welch smoother

Transformation @SWL applies a Welch window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation.

2.4.16 @DDC—centered derivative

The transformation @DDC computes the derivative with respect to the indicated axis using a
centered differencing scheme. The units of the underlying axis are treated as they are with inte-
grations. If the points of the axis are unequally spaced, note that the calculation used is still
(Fi+1 – Fi–1) / (Xi+1 – Xi–1) .

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDC]

2.4.17 @DDF—forward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A for-
ward differencing scheme is used. The units of the underlying axis are treated as they are with
integrations.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDF]

2.4.18 @DDB—backward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A back-
ward differencing scheme is used. The units of the underlying axis are treated as they are with
integrations.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDB]

2.4.19 @NGD—number of good points

The transformation @NGD computes the number of good (valid) points of the variable with re-
spect to the indicated axis. Use @NGD in combination with @SUM to determine the number
of good points in a multi-dimensional region.

VARIABLES AND EXPRESSIONS 63

Note that, as with @VAR, when @NGD is applied simultaneously to multiple axes the calcula-
tion is applied to the entire block of values rather than to the individual axes.

2.4.20 @NBD—number of bad points

The transformation @NBD computes the number of bad (invalid) points of the variable with
respect to the indicated axis. Use @NBD in combination with @SUM to determine the number
of bad points in a multi-dimensional region.

Note that, as with @VAR, when @NBD is applied simultaneously to multiple axes the calcula-
tion is applied to the entire block of values rather than to the individual axes.

2.4.21 @SUM—unweighted sum

The transformation @SUM computes the unweighted sum (arithmetic sum) of the variable
with respect to the indicated axis. This transformation is most appropriate for regions specified
by subscript. If the region is specified in world coordinates, the edge points are not
weighted—they are wholly included in or excluded from the calculation, depending on the lo-
cation of the grid points with respect to the specified limits.

2.4.22 @RSUM—running unweighted sum

The transformation @RSUM computes the running unweighted sum of the variable with re-
spect to the indicated axis. @RSUM is to @IIN as @SUM is to @DIN. The treatment of edge
points is identical to @SUM.

2.4.23 @FAV:n—averaging filler

The transformation @FAV fills holes (values flagged as invalid) in variables with the average
value of the surrounding grid points along the indicated axis. The width of the averaging win-
dow is the number of points given as an argument to the transformation. All of the surrounding
points are weighted equally, regardless of the sizes of the grid boxes, making this transforma-
tion best suited to axes with equally spaced points. If the number of points specified is even,
however, @FAV weights the end points of the filling region by 1/2. If any of the surrounding
points are invalid they are omitted from the calculation. If all of the surrounding points are in-
valid the hole is not filled.

Example:

yes? CONTOUR/X=160W:160E/Y=5S:0 u[X=@FAV:5]

64 CHAPTER 3

2.4.24 @FLN:n—linear interpolation filler

The transformation @FLN:n fills holes in variables with a linear interpolation from the nearest
non-missing surrounding point. n specifies the number of points beyond the edge of the indi-
cated axis limits to include in the search for interpolants (default n = 1). Unlike @FAV, @FLN
is sensitive to unevenly spaced points and computes its linear interpolation based on the world
coordinate locations of grid points.

2.4.25 @FNR:n—nearest neighbor filler

The transformation @FNR:n is similar to @FLN:n, except that it replicates the nearest point to
the missing value. In the case of points being equally spaced around the missing point, the
mean value is used.

2.4.26 @LOC—location of

The transformation @LOC accepts an argument value—the default value is zero if no argu-
ment is specified. The transformation @LOC finds the single location at which the variable
first assumes the value of the argument. The result is in units of the underlying axis. Linear in-
terpolation is used to compute locations between grid points. If the variable does not assume
the value of the argument within the specified region the @LOC transformation returns an in-
valid data flag.

For example, temp[Z=0:200@LOC:18] finds the location along the Z axis (often depth in me-
ters) at which the variable “temp” (often temperature) first assumes the value 18, starting at
Z=0 and searching to Z=200.

yes? CONTOUR/X=160E:160W/Y=10S:10N temp[Z=0:200@LOC:18]

produces a map of the depth of the 18-degree isotherm. See also the General Information about
transformations section in this chapter (p. 56).

Note that the transformation @LOC can be used to locate non-constant values, too, as the fol-
lowing example illustrates:

Example: locating non-constant values

Determine the depth of maximum salinity.

yes? LET max_salt = salt[Z=@MAX]
yes? LET zero_at_max = salt - max_salt
yes? LET depth_of_max = zero_at_max[Z=@LOC:0]

VARIABLES AND EXPRESSIONS 65

2.4.27 @WEQ—weighted equal; integration kernel

The @WEQ (“weighted equal”) transformation is the subtlest and arguably the most powerful
transformation within Ferret. It is a generalized version of @LOC; @LOC always determines
the value of the axis coordinate (the variable X, Y, Z, or T) at the points where the gridded field
has a particular value. More generally, @WEQ can be used to determine the value of any vari-
able at those points.

Like @LOC, the transformation @WEQ finds the location along a given axis at which the vari-
able is equal to the given (or default) argument. For example, V1[Z=@WEQ:5] finds the Z lo-
cations at which V1 equals “5”. But whereas @LOC returns a single value (the linearly
interpolated axis coordinate values at the locations of equality) @WEQ returns instead a field
of the same size as the original variable. For those two grid points that immediately bracket the
location of the argument, @WEQ returns interpolation coefficients. For all other points it re-
turns missing value flags. If the value is found to lie identically on top of a grid point an interpo-
lation coefficient of 1 is returned for that point alone. The default argument value is 0.0 if no
argument is specified.

Example 1

yes? LET v1 = X/4
yes? LIST/X=1:6 v1, v1[X=@WEQ:1], v1[X=@WEQ:1.2]

X v1 @WEQ:1 @WEQ:1.2
___ _____ ______ ________

1: 0.250
2: 0.500
3: 0.750
4: 1.000 1.000 0.2000
5: 1.250 0.8000
6: 1.500

The resulting field can be used as an “integrating kernel,” a weighting function that when mul-
tiplied by another field and integrated will give the value of that new field at the desired loca-
tion.

Example 2

Using variable v1 from the previous example, suppose we wish to know the value of the func-
tion X^2 (X squared) at the location where variable v1 has the value 1.2. We can determine it as
follows:

yes? LET x_squared = X^2
yes? LET integrand = x_squared * v1[X=@WEQ:1.2]
yes? LIST/X=1:6 integrand[X=@SUM] !Ferret output below

X_SQUARED * V1[X=@WEQ:1.2]
X: 1 to 6 (summed)

23.20

Notice that 23.20 = 0.8 * (5^2) + 0.2 * (4^2)

66 CHAPTER 3

Below are two “real world” examples that produce fully labeled plots.

Example 3: salinity on an isotherm

Use the Levitus climatology to contour the salinity of the Pacific Ocean along the 20-degree
isotherm (Figure 9).

yes? SET DATA levitus_climatology ! annual sub-surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? LET isotherm_20 = temp[Z=@WEQ:20] ! depth kernel for 20 degrees

VARIABLES AND EXPRESSIONS 67

Figure 9.

Figure 10.

yes? LET integrand_20 = salt * isotherm_20
yes? SET VARIABLE/TITLE="Salinity on the 20 degree isotherm" integrand_20
yes? PPL CONSET .12 !contour label size (def. .08)
yes? CONTOUR/LEV=(33,37,.2) integrand_20[Z=@SUM]
yes? GO fland !continental fill

Example 4: month with warmest sea surface temperatures

Use the COADS data set to determine the month in which the SST is warmest across the Pacific
Ocean. In this example we use the same principles as above to create an integrating kernel on
the time axis. Using this kernel we determine the value of the time step index (which is also the
month number, 1–12) at the time of maximum SST (Figure 10).

yes? SET DATA coads_climatology ! monthly surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? SET MODE CAL:MONTH
yes? LET zero_at_warmest = sst - sst[l=@max]
yes? LET integrand = L[G=sst] * zero_at_warmest[L=@WEQ] ! “L” is 1 to 12
yes? SET VARIABLE/TITLE="Month of warmest SST" integrand
yes? SHADE/L=1:12/PAL=inverse_grayscale integrand[L=@SUM]

2.4.28 @ITP—interpolate

The @ITP transformation provides the same linear interpolation calculation that is turned on
modally with SET MODE INTERPOLATE but with a higher level of control, as @ITP can be
applied selectively to each axis. @ITP may be applied only to point locations along an axis.
The result is the linear interpolation based on the adjoining values. For example, for a Z axis
with points at Z=0, 10, 20, ...

V[Z=4@ITP] will compute 0.6 * V[Z=0] + 0.4 * V[Z=10]

2.4.29 @CDA—closest distance above

The transformation @CDA will compute at each grid point how far it is to the closest valid
point above this coordinate position on the indicated axis. The distance will be reported in the
units of the axis. If a given grid point is valid (not missing) then the result of @CDA for that
point will be 0.0. See the example for @CDB below. The result’s units are now axis units, e.g.,
degrees of longitude to the next valid point above.

2.4.30 @CDB—closest distance below

The transformation @CDB will compute at each grid point how far it is to the closest valid
point below this coordinate position on the indicated axis. The distance will be reported in the
units of the axis. If a given grid point is valid (not missing) then the result of @CDB for that
point will be 0.0. The result’s units are now axis units, e.g., degrees of longitude to the next
valid point below.

68 CHAPTER 3

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/l=1
yes? LIST sst, sst[x=@cda], sst[x=@cdb] ! results below

Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
Column 2: SST[X=@CDA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

above on X ...)
Column 3: SST[X=@CDB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

below on X ...)

SST SST SST
125W / 108: 6.700 0.000 0.000
123W / 109: 8.000 2.000
121W / 110: 6.000 4.000
119W / 111: 4.000 6.000
117W / 112: 2.000 8.000
115W / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111W / 115: 2.000 2.000
109W / 116: 8.300 0.000 0.000

2.4.31 @CIA—closest index above

The transformation @CIA will compute at each grid point how far it is to the closest valid point
above this coordinate position on the indicated axis. The distance will be reported in terms of
the number of points (distance in index space). If a given grid point is valid (not missing) then
the result of @CIA for that point will be 0.0. See the example for @CIB below. The units of the
result are grid indices; integer number of grid units to the next valid point above.

2.4.32 @CIB—closest index below

The transformation @CIB will compute at each grid point how far it is to the closest valid point
below this coordinate position on the indicated axis. The distance will be reported in terms of
the number of points (distance in index space). If a given grid point is valid (not missing) then
the result of @CIB for that point will be 0.0. The units of the result are grid indices, integer
number of grid units to the next valid point below.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/l=1
yes? LIST sst, sst[x=@cia], sst[x=@cib] ! results below

Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
Column 2: SST[X=@CIA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

above on X ...)
Column 3: SST[X=@CIB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

below on X ...)

SST SST SST
125W / 108: 6.700 0.000 0.000
123W / 109: 4.000 1.000
121W / 110: 3.000 2.000

VARIABLES AND EXPRESSIONS 69

119W / 111: 2.000 3.000
117W / 112: 1.000 4.000
115W / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111W / 115: 1.000 1.000
109W / 116: 8.300 0.000 0.000

2.5 IF-THEN logic (“masking”)

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the IF-THEN
logic is simply (by example)

LET a = IF a1 GT b THEN a1 ELSE a2

(read as “if a1 is greater than b then a1 else a2”).

This syntax is especially useful in creating masks that can be used to perform calculations over
regions of arbitrary shape. For example, we can compute the average air-sea temperature dif-
ference in regions of high wind speed using this logic:

SET DATA coads_climatology
SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast_wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst
LET fast_tdiff = tdiff * fast_wind

The user may find it clearer to think of this logic as WHERE-THEN-ELSE to aviod confusion
with the IF used to control conditional execution of commands.

2.6 Lists of constants (”constant arrays”)

The syntax {val1, val2, val3} is a quick way to enter a list of constants. For example

yes? LIST {1,3,5}, {1,,5}
X: 0.5 to 3.5
Column 1: {1,3,5}
Column 2: {1,,5}

{1,3,5} {1,,5}
1 / 1: 1.000 1.000
2 / 2: 3.000
3 / 3: 5.000 5.000

Note that a constant variable is always an array oriented in the X direction To create a constant
aray oriented in, say, the Y direction use YSEQUENCE

yes? STAT/BRIEF YSEQUENCE({1,3,5})

Total # of data points: 3 (1*3*1*1)
flagged as bad data: 0
Minimum value: 1
Maximum value: 5
Mean value: 3 (unweighted average)

70 CHAPTER 3

Below are two examples illustrating uses of constant arrays

Ex. 1) plot a triangle (or multiple triangles)

LET xtriangle = {0,.5,1}
LET ytriangle = {0,1,0}

Ex. 2) Sample Jan, June, and December from sst in coads_climatology

USE coads_climatology
LET my_sst_months = SAMPLEL({1,6,12}, sst)
STAT/BRIEF my_sst_months

yes? STAT/BRIEF my_sst_months

Total # of data points: 48600 (180*90*1*3)
flagged as bad data: 21831
Minimum value: -2.6
Maximum value: 31.637
Mean value: 17.571 (unweighted average)

3 EMBEDDED EXPRESSIONS

Ferret supports “immediate mode” mathematical expressions—that is, numerical expressions
that may be embedded anywhere within a command line. These expressions are evaluated im-
mediately by Ferret—before the command itself is parsed and executed. Immediate mode ex-
pressions are enclosed in grave accents, the same syntax used by the Unix C shell. Prior to
parsing and executing the command Ferret will replace the full grave accent expression, in-
cluding the accent marks, with an ASCII string representing the numerical value. For example,
if the given command is

CONTOUR/Z=`temp[X=180,Y=0,Z=@LOC:15]` salt

Ferret will evaluate the expression “temp[X=180,Y=0,Z=@LOC:15]” (the depth of the 15-de-
gree isotherm at the equator/dateline—say, it is 234.5 meters). Ferret will generate and execute
the command

VARIABLES AND EXPRESSIONS 71

CONTOUR/Z=234.5 salt

Embedded expressions:

Embedded expressions: the expression must evaluate to a single number, a scalar, or Ferret will
respond that the command contains an error if the result is invalid the numerical string will be
“bad” (see BAD= in following section, p. 73). Region qualifiers that begin a command con-
taining an embedded expression will be used in the evaluation of the expression. If multiple
embedded expressions are used in a single command they will be evaluated from left to right
within the command. This means that embedded expressions used to specify region informa-
tion (e.g., the above example) may influence the evaluation of other embedded expressions to
the right. When embedded expressions are used within commands that are arguments of a
REPEAT command their evaluation is deferred until the commands are actually executed.
Thus the embedded expressions are re-evaluated at each loop index of the REPEAT command.
Grave accents have a higher priority than any other syntax character. Thus grave accent expres-
sions will be evaluated even if they are enclosed within quotation marks, parentheses, square
brackets, etc. Substitutions based on dollar-signs (command script arguments and symbols)
will be made before embedded expressions are evaluated. A double grave accent will be trans-
lated to a single grave accent and not actually evaluated. Thus double grave accents provide a
mechanism to defer evaluation so that grave accent expressions may be passed to the Unix
command line with the SPAWN command or may be passed as arguments to GO scripts (to be
evaluated INSIDE the script). The state of MODE VERIFY will determine if the evaluation of
the embedded expression is echoed at the command line—similar to REPEAT loops.

3.1 Special calculations using embedded expressions

By default Ferret formats the results of embedded expressions using 5 significant digits. If the
result of the expression is invalid (e.g., 1/0) the result by default is the string “bad”. Controls al-
low you to specify the formatting of embedded expression results in both valid and invalid
cases and to query the size and shape of the result.

The syntax to achieve this control is KEYWORD=VALUE pairs inside the grave accents, fol-
lowing the expression and set off by commas. The recognized keywords are “BAD=”,
“PRECISION=”, and “RETURN=”. Only the first character of the keyword is significant, so
they may be abbreviated as “B=”, “P=”, and “R=”.

PRECISION=, BAD=, and RETURN= may be specified simultaneously, in any order, sepa-
rated by commas. If RETURN= is included, however, the other keywords will be ignored.

PRECISION=#digits

can be used to control the number of significant digits displayed, up to a maximum of 10 (actu-
ally at most 7 digits are significant since Ferret calculations are performed in single precision).
Ferret will, however, truncate terminating zeros following the decimal place. Thus

72 CHAPTER 3

SAY `3/10,PRECISION=7`

will result in

0.3

instead of 0.3000000.

If the value specified for #digits is negative Ferret will interpret this as the desired number of
decimal places rather than the number of significant digits. Thus

SAY `35501/100,P=-2`

will result in

355.01

instead of 355.

In the case of a negative precision value, Ferret will again drop terminating zeros to the right of
the decimal point.

BAD=string

can be used to control the text which is produced when the result of the immediate mode ex-
pression is invalid. Thus

SAY `1/0,BAD=missing`

will result in

missing

or

SAY `1/0,B=-999`

will result in

-999

RETURN=

The keyword RETURN= can reveal the size and shape of the result. RETURN= may take argu-
ments

• SHAPE
• ISTART, JSTART, KSTART, or LSTART,

VARIABLES AND EXPRESSIONS 73

• IEND, JEND, KEND, or LEND

RETURN=SHAPE

returns the 4-dimensional shape of the result—i.e., a list of those axes along which the result
comprises more than a single point. For example, a global sea surface temperature field at a
single point in time:

SAY `SST[T=1-JAN-1983],RETURN=SHAPE`

will result in

XY

See Symbol Substitutions in Chapter 7 (p. 136) for examples showing the special utility of this
feature.

RETURN=ISTART (and similarly JSTART, KSTART, and LSTART)

returns the starting index of the result along the indicated axis: I, J, K, or L. For example, if
CAST is a vertical profile with points every 10 meters of depth starting at 10 meters then
Z=100 is the 10th vertical point, so

SAY `CAST[Z=100:200],RETURN=KSTART`

will result in

10

RETURN=IEND (and similarly JEND, KEND, and LEND)

returns the ending index of the result along the indicated axis: I, J, K, or L. In the example
above

SAY `CAST[Z=100:200],RETURN=KEND`

will result in

20

The size and shape information revealed by RESULT= is useful in creating sophisticated
scripts. For example, these lines could be used to verify that the user has passed a 1-dimen-
sional field as the first argument to a script

LET my_expr = $1
DEFINE SYMBOL SHAPE `my_expr,RESULT=SHAPE`
QUERY/IGNORE ($SHAPE%|X|Y|Z|T|<Expression must be 1-dimensional%)

74 CHAPTER 3

4 DEFINING NEW VARIABLES

The ability to define new variables lies at the heart of the computational power that Ferret pro-
vides. Complex analyses in Ferret generally proceed as hierarchies of simple variable defini-
tions. As a simple example, suppose we wish to calculate the root mean squared value of
variable, V, over 100 time steps. We could achieve this with the simple hierarchy of definitions:

LET v_rms = v_mean_sq ^ 0.5
LET v_mean_sq = v_squared[L=@AVE]
LET v_squared = v * v
SET VARIABLE/TITLE="RMS V" v_rms

LIST/L=1:100 v_rms

(listed output not included)

As the example shows, the variables can be defined in any order and without knowledge in ad-
vance of the domain over which they will be evaluated. As variable definitions are given to
Ferret with the LET (alias for DEFINE VARIABLE) command the expressions are parsed but
not evaluated. Evaluation occurs only when an actual request for data is made. In the preceding
example this is the point at which the LIST command is given. At that point Ferret uses the cur-
rent context (SET REGION and SET DATA_SET) and the command qualifiers (e.g.,
“L=1:100”) to determine the domain for evaluation. Ferret achieves great efficiency by evalu-
ating only the minimum subset of data required to satisfy the request.

One consequence of this approach is that definitions such as

LET a = a + 1 ! nonsense

are nonsense within Ferret. The value(s) of variable “a” come into existence only as they are
called for, thus it is nonsense for them to appear simultaneously on the left and right of an equal
sign.

Variable names can be 1 to 24 characters in length and begin with a letter. See the command ref-
erence DEFINE VARIABLE (p. 218) for the available qualifiers.

4.1 Global, local, and default variable definitions

All of the above definitions are examples of “global variable definitions.” A global variable
definition applies to all data sets. In the above example the expression “v_rms[D=dset_1]”
would be based on the values and domain of the variable V from data set dset_1 and
“v_rms[D=dset_2]” would similarly be drawn from data set dset_2. The domain of v_rms, its
size, shape, and resolution, will depend on the particular data set in which it is evaluated.

Although global variables are simple to use they can lead to ambiguities. Suppose, for exam-
ple, that data sets dset_1 and dset_2 contain the following variables:

VARIABLES AND EXPRESSIONS 75

Dset_1 dset_2
______ ______
Speed u, v

If we would like to compare speeds from the two data sets we might be tempted to define a new
variable, speed, as

LET speed = (u*u + v*v)^0.5

In doing so, however, we create an ambiguity of interpretation for the expression
“speed[d=dset_1]”.

To avoid this ambiguity we need to create a variable definition, “speed,” that is local to data set
dset_2. The qualifier /D= used as follows

LET/D=dset_2 speed = (u*u + v*v)^0.5 ! in dset_2, only

provides this capability. The use of /D=dset_2 indicates that this new definition of “speed” ap-
plies only to data set dset_2.

A convenient shortcut is often to define a “default variable.” A default variable is defined using
the /D qualifier with no argument

LET/D speed = (u*u + v*v)^0.5 ! where “speed” doesn’t already exist

As a default variable “speed” is a definition that applies only to data sets that would otherwise
not posses a variable named speed. In this sense it is a fallback default.

5 DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

A complex analysis generally proceeds within Ferret as a complex hierarchy of expressions:
variables defined in terms of other variables defined in terms of other variables, etc., often con-
taining many levels of transformation. When an error message such as “can only contour or
vector a 2D region” occurs it may appear difficult to locate the reason for this message.

A simple strategy to locate the source of such problems is to use the command STAT which
shows the size and shape of variables and expressions (simply edit the offending command
line, replacing the PLOT, CONTOUR, VECTOR, etc. command with STAT and eliminating
qualifiers if necessary) and use SHOW VARIABLE to see the variable definitions. By repeat-
edly using STAT to examine the component variables of definitions one can quickly locate the
source of the problem.

76 CHAPTER 3

Chapter 4: GRIDS AND REGIONS

1 OVERVIEW

Information describing a region in space/time, a data set, and a grid is collectively referred to as
the “context.” The current context may be examined with the commands SHOW DATA_SET,
SHOW REGION, and SHOW GRID. The context may be set explicitly with the commands
SET DATA_SET, SET REGION, and SET GRID.

The context may be modified for the duration of a single command with qualifiers to the com-
mand name (separated by slashes). The same qualifiers in square brackets may also modify sin-
gle variables, changing the context only of that variable:

yes? PLOT/D=levitus_climatology temp, salt

yes? CONTOUR rose[D=etopo20]

yes? FILL/Z=0 temp[L=2] - temp[L=1]

2 GRIDS

Every variable has an underlying grid which defines a coordinate space. All grids are in a sense
4 dimensional (X, Y, Z, and T) but axes normal to the data are represented as “normal” (such as
the Z axis of the surface wind stress).

GRIDS AND REGIONS 77

Figure 11.

Grids can be viewed, specified and created using SHOW GRID, SET GRID, DEFINE AXIS,
and DEFINE GRID. These commands are all in the Commands Reference section of this man-
ual. Data can be regridded by the G= modifier. (See Chapter 4, section “Regridding,” p. 82)

2.1 Defining grids

Axes and grids can be explicitly created by DEFINE AXIS and DEFINE GRID. NetCDF and
TMAP-formatted data set variables have all of the necessary grid and axis definitions embed-
ded in the data set files, but if you are reading data from an ASCII or binary file, you must tell
Ferret about the underlying grid of your data.

If you are creating abstract expressions entirely from pseudo-variables, you may want to define
a grid in order to define the coordinate space of your calculation. This will also help produce a
nicely labeled plot. (See Chapter 3, “Grids and axes of pseudo-variables” (p. 44) and the exam-
ple in the section on “Abstract Variables,” p. 46.)

Example

This example is taken from the demonstration script “file_reading_demo.jnl”. An ASCII file
contains a grid of numbers, 50 rows by 6 columns. Suppose the data are on a 2D grid of 6 longi-
tudes by 50 latitudes (Figure 11).

yes? DEFINE AXIS/X=10E:60E:10/UNIT=DEGREE xlong
yes? DEFINE AXIS/Y=0:49N:1/UNIT=DEGREE ylat
yes? DEFINE GRID/X=xlong/Y=ylat gsnoopy2d
! By default only 1 column is read, /COLUMNS= specifies 6 columns
yes? FILE/VAR=my_2D_var/COL=6/GRID=gsnoopy2d snoopy.dat
yes? CONTOUR my_2D_var

2.2 Dynamic grids and axes

The commands DEFINE AXIS and DEFINE GRID, described in the preceding section, should
be used when the grid or axis will be referenced more than once and/or shared among several
variables. In many cases it is more convenient to use dynamic (a.k.a. “implicit”) grids and axes.
Two quick examples:

PLOT SIN(X[X=0:3.14:.1])

– dynamically creates an axis from 0 to 3.14 by 0.1

SHADE SST[X=140E:160W:5, D=coads_climatology]

– dynamically creates a longitude axis extending from 140E to 160W by 5 degrees,
dynamically creates a grid which is like the grid upon which the variable SST is
defined but with the X axis replaced by the new dynamic axis, and automatically
regrids to this new grid.

78 CHAPTER 4

2.2.1 Dynamic grids

It is often possible to avoid explicitly defining grids. This is useful in two common situations:

• Situation 1

Regridding to specified axes without the need for defining the destination grid.

Syntax: G*=name@transform

where

* – The orientation of the axis to be regridded: “X,” “Y,” “Z,” or “T”
name – The name of an axis or of another variable defined on the desired axis
@transform – The (optional) name of a regridding transform

Example:

sst[GX=x10deg]

Suppose the variable SST is defined on a 2×2 degree grid in latitude/longitude (e.g., SET
DATA coads_climatology). If we wish to regrid to 10-degree spacing in longitude over a
range from 175W to 75W we could use the commands

DEFINE AXIS/X=175w:75w:10/UNITS=degrees x10deg
LET sst10 = sst[GX=x10deg]

Ferret will dynamically create a grid equivalent to new_grid in

DEFINE GRID/LIKE=sst/X=x10deg new_grid.

Figure 12 shows the effects of regridding the 2×2 degree COADS data to a 10-degree spac-
ing in longitude using (default) linear interpolation.

The command SHOW GRID SST10 will show the dynamically created grid. The names of
dynamic grids and axes will always be displayed in parentheses.

Note that the transformation method to be used for regridding may also be specified, so LET
SST10 = SST[GX=x10deg@ave] would create a 10-degree spaced result in which each grid
point was computed as the weighted sum of the source points that fell within its grid
box. The default method for regridding is linear interpolation.

• Situation 2

Automatic reconciliation of incompatible grid shapes

GRIDS AND REGIONS 79

Syntax: G=name@transform

where

Name – The name of a grid or of another variable defined on the desired grid
@transform – The (optional) name of a regridding transform

Example:

VAR1[g=VAR2]

If two variables are defined on grids that are mutually non-conformable because axes exist
in one grid but do not exist (are NORMAL) in another, Ferret will now create a dynamic
grid to resolve the non-conformabilities. This means that an expression of the form
VAR1[G=VAR2] will be meaningful as long as the grid domains overlap.

For example, TEMP[d=levitus_climatology] is defined on an XYZ (time-independent) grid
whereas SST[d=coads_climatology] is defined on an XYT grid. So to evaluate the expres-
sion SST[d=coads_climatology,G=TEMP[d=levitus_climatology]] Ferret will create a dy-
namic intermediate grid equivalent to

DEFINE GRID/LIKE=sst[D=coads_climatology]/X=temp/Y=temp

so that regridding occurs on the X and Y axes but the original grid structure is maintained
with respect to depth and time.

80 CHAPTER 4

Figure 12.

The command SHOW GRID will reveal the resulting dynamically created grid structure.

2.2.2 Dynamic axes

The syntax “GX=lo:hi:delta” can be used in square brackets modifying a variable name to indi-
cate the dynamic creation of an axis with the indicated range and spacing and the immediate
regridding of the variable to a grid containing that axis. For example,
SST[GX=175W:75W:10] will create a dynamic axis of 10-degree regular point spacing, will
create a dynamic grid incorporating this axis (see previous section), and will regrid the variable
SST to this grid.

Similarly, by referring to the grid indices rather than their world coordinates, the expression
SST[GI=1:100:5] will create a dynamic axis that subsamples every 5th longitude point from
SST. In this case the points of the resulting axis may be irregularly spaced if the points of the
original axis were also irregular.

As with the dynamic regridding described above, transformations can be specified to indicate
the regridding technique. Thus SST[GI=1:100:5@AVE] will use averaging instead of the de-
fault linear interpolation to perform the regridding.

As a notational convenience the “G” may be dropped when referring to dynamic axes. Thus
SST[X=175W:75W:10] is equivalent to SST[GX=175W:75W:10] and SST[I=1:100:5@AVE]
is equivalent to SST[GI=1:100:5@AVE]. When using this notational convenience keep in
mind that a regridding is taking place, so the transformation applied (if any) must be a
regridding transformation (see SHOW TRANSFORMS in the command reference section, p.
275).

The lower plot of Figure 12 illustrates the effect of dynamic axes in the command

SHADE SST[GX=175W:75W:10]

2.2.3 Dynamic pseudo-variables

The same notation used for dynamic axes may also be applied to pseudo-variables providing a
simple means for creating arrays of values. For example, X[GX=0.2:1:0.2] is a vector of 5
points from 0.2 to 1 at a regular spacing of 0.2 units. The vector is oriented in the X direction.

An example of using such a vector is (Figure 13)

PLOT SIN(X[GX=0:3.14:.1])

Note that when the lo:high:delta notation is applied to T or L expressed as calendar dates the
units of the delta value will be hours. For example, L[GT=1-jan-1980:1-feb-1980:24] is the in-
tegers 1 to 32 defined on an axis of 32 days, 24 hours apart.

GRIDS AND REGIONS 81

As a notational convenience the “G” may be dropped when referring to dynamic pseudo-vari-
ables. Thus X[X=0.2:1:0.2] is equivalent to X[GX=0.2:1:0.2].

See also the discussion of grids for pseudo-variables in section 3.1.3, p. 44.

2.3 Regridding

Syntax:

var[G=name] for (default) linear interpolation to new grid
or

var[G=name@trn] to regrid all axes using transform “trn” (see below)
or

var[G=name,GX=@TRN,GY=@TRN,...] to control regridding transformations along each axis
separately

where
var is the name of the variable to be regridded (e.g., temp, u, tau, ...)
name is the name of a variable (e.g., temp[G=u]) or the name of a grid (e.g.,

temp[G=gu01])
trn is the name of a special transformation (e.g., @AVE, @ASN, @LIN)

Note that if “name” in var[G=name] is the name of a variable, rather than of a grid, that variable
should be a file variable. If the variable is a user-defined variable, the operation may fail be-
cause the grid of the user-defined variable is unknown to Ferret at the time of the regridding.
Typically, the name of the grid, itself, for that user variable can be used. Often if one precedes
the regridding with the LOAD command the regridding becomes acceptable:

LOAD my_user_variable
CONTOUR V[g=my_user_var]

The Ferret distribution provides a demonstration of many regridding techniques:

yes? GO regridding_demo

82 CHAPTER 4

Figure 13.

Regridding is essential for algebraic operations that combine variables on incompatible grids.
Ferret provides the commands DEFINE AXIS and DEFINE GRID to assist with the creation of
arbitrary grids.

The result grid of a regridding operation does not necessarily match exactly the destination grid
requested. For example, suppose the native grid of variable TEMP3D (Ocean Temperature) is
1 degree resolution in X and Y and 50 meter spacing in Z. If the syntax “[G=sst]” is used to re-
quest regridding to the grid of variable SST (Sea Surface Temperature), which is 2 degree reso-
lution in X and Y, but normal to Z, then the resulting grid will be generated dynamically—
inheriting X and Y axes from SST as requested, but retaining the Z axis of TEMP3D.

Examples

1) Suppose the variables u and temp are on staggered X, Y, and Z axes but share the same T
axis. Then the two variables can be multiplied together on the axes (grid) of the u variable as
follows:

yes? CONTOUR u * temp[G=u]

This will regrid temp onto the u grid by multi-axis linear interpolation before performing
the multiplication.

2) Two variables, v1 and v2, are defined on distinct 4-dimensional grids (X, Y, Z, and T axes).
The T axes of the two grids are identical but the X, Y, and Z axes all differ between the two
variables. (This is often the case in numerical model outputs.)

To obtain the variable v1 on its original Z (depth) locations but regridded in the XY plane to
the grid locations of the variable v2, define a new grid (say, named “new_grid”) that has the
X and Y axes of v2 but the Z axis of v1.

yes? DEFINE GRID/LIKE=v2/Z=v1 new_grid !define new grid
yes? LIST/X=160E:140W/Y=5S:5N v1[G=new_grid] !request regridding

3) In this example we look at temperature data from two data sets. levitus_climatology, an an-
nual climatology, has the variable “temp” on an XYZ grid which is 1×1 degree in XY, and
coads_climatology, a monthly climatology, has the variable “sst” on an XYT grid which is
2×2 degrees in XY. Suppose we wish to look at the sea surface temperatures in January at
the higher XY resolution of the Levitus data.

yes? SET DATA levitus_climatology
yes? SET DATA coads_climatology
yes? SET REGION/L=1/Z=0
yes? !get the name of the grid on which temp is defined
yes? SHOW GRID temp[D=levitus_climatology] ! —> “Glevitr1"
yes? DEFINE GRID/X=glevitr1/Y=glevitr1/Z=sst/L=sst glevitus_xy
yes? LIST/X=150E:155E/Y=0:5N sst[G=glevitus_xy]

GRIDS AND REGIONS 83

2.3.1 Regridding transformations

Ferret version 4.4 supports several regridding transformations. Use the SHOW
TRANSFORMATIONS command to obtain a list of the supported transformations from Fer-
ret. The choice of regridding transformation determines the computation by which data from
the source grid determine the values on the destination grid.

@LIN—linear interpolation (the default if no transform is specified)
Performs regridding by multi-axis linear interpolation.

@AVE—averaging
Computes the length-weighted average of all points on the source grid that lie partly or com-
pletely within each grid cell of the destination grid.

Note: When @AVE is applied simultaneously to the X and Y axes, where X and Y are longi-
tude and latitude, respectively, an area-weighted average (weighted by cos(latitude)) is
used. The @AVE transformation is unique in this respect. In multiple axis applications
other than X and Y @AVE will be applied sequentially to the axes, computing the “average
of the average.” This may not be the desired weighting scheme in some cases. See @VAR
below for an example.

@ASN—(blind) association
Associates by subscript (blindly) the points from the source grid onto destination coordi-
nates.

@VAR
Computes the variance of the points from the source grid that fall within each destination
grid cell. This is a length-weighted computation like the @AVE transformation.

Note: This transformation is suitable for regridding only in a single axis. When applied si-
multaneously to two axes, for example, it will compute the variance of the variance. For ex-
ample, V[gx=130E:80W:10@VAR, gy=205:20W:10@VAR] is equivalent to
tmp[X=130E:80W:10@VAR] where tmp=V[y=20S:20N:10@VAR].

@NGD
Compute the number of points from the source grid that fall within each destination grid
cell. Note that the results of this calculation need not be integers—this is a length-weighted
computation like the @AVE transformation. It is common for a grid cell on the source grid
to span the boundary between grid cells on the destination grid, thereby contributing a frac-
tion of its weight to multiple destination grid cells.

Note: This transformation is suitable only for regridding on a single axis. When applied si-
multaneously to two axes, for example, it will compute a constant. See @VAR for an exam-
ple.

84 CHAPTER 4

@SUM
Computes the length-weighted sum of the points from the source grid that fall within each
destination grid cell. This is a length-weighted computation like the @AVE transformation.

@MIN
Finds the minimum value of those points from the source grid that lie within each destina-
tion grid cell. Note that this is NOT a weighted calculation; the destination grid cell that
“owns” a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

@MAX
Finds the minimum value of those points from the source grid that lie within each destina-
tion grid cell. Note that this is NOT a weighted calculation; the destination grid cell that
“owns” a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

Regridding transformations provide a means to perform a given calculation over a limited
span of coordinates and repeat that calculation for a series of contiguous spans. For exam-
ple, if we wish to compute the variance of the variable SST over 10-degree longitude range
from 180 to 170W we could use the syntax sst[X=180:170w@VAR]. Now, if we wish to per-
form the same operation 10 times in 10-degree wide bands from 180 to 80W we could in-
stead use G=@VAR regridding as in (see Dynamic Grids, p. 78, for an explanation of the
“GX=” syntax):

DEFINE AXIS/X=175w:85w:10/UNITS=degrees ×10deg
LET sst10 = sst[GX=x10deg@VAR]

@XACT
Regridding with G=@XACT (or GX=@XACT, etc.) is a request to transfer values from a
source grid to a destination grid only at those positions where there is an exact coordinate
match between the source and destination axis points on the axis in question. Other destina-
tion points will be set to “missing”. This transformation is especially useful for taking multi-
ple in-situ data profiles, such as oceanographic cast data, and regridding them onto a regular
(sparse) grid. For example: grep

yes? LET xcoarse = sin(x[x=0:20:10])
yes? LIST xcoarse

SIN(X[X=0:20:10])
0 / 1: 0.0000
10 / 2: -0.5440
20 / 3: 0.9129

yes? DEFINE AXIS/X=0:20:5 xfine
yes? LIST xcoarse[gx=xfine@XACT]

SIN(X[X=0:20:10])
regrid: 5 delta on X@XACT

0 / 1: 0.0000
5 / 2:
10 / 3: -0.5440
15 / 4:
20 / 5: 0.9129

GRIDS AND REGIONS 85

@MOD
Creates climatologies from time series by regridding to a time series axis with a modulo
regridding transformation. See section Modulo Regridding (p. 87) for details.

Examples

1) Let variable temp be defined on a grid with points spaced regularly at 1-degree intervals in
both longitude and latitude (X and Y). Let grid “g10” possess points spaced regularly at
10-degree intervals in both X and Y.

yes? PLOT temp[G=g10] ! uses linear interpolation (@LIN)
yes? PLOT temp[G=g10@AVE] ! area-averages 10x10 degrees of source\

points into each destination point.
yes? PLOT temp[G=g10,GX=@AVE] ! averages 10 degrees of longitude but\

interpolates (@LIN) in Y.

2) @ASN has the effect of bypassing Ferret’s protections against misrepresenting data (Figure
14).

yes? SET DATA levitus_climatology
yes? SET REGION/X=180/Y=0 ! true profile
yes? PLOT/Z=0:5000 temp
yes? DEFINE AXIS/DEPTH /Z=100:2000:100 zfalse
yes? DEFINE GRID/LIKE=temp /Z=zfalse gfalse ! false profile
yes? PLOT/Z=0:5000/OVER temp[G=gfalse@ASN]

86 CHAPTER 4

Figure 14.

2.4 Modulo regridding

Ferret can create climatologies from time series simply by regridding to a climatological axis
with a modulo regridding transformation. For example, if the axis named month_reg is a
12-point monthly climatological (modulo) axis then the expression

LET sst_climatology = sst[D=coads,GT=month_reg@MOD]

is a 12-month climatology computed by averaging the full time domain of the input variable
(576 points for coads) modulo fashion into the 12 points of the climatological axis.

Ferret has three pre-defined climatological axes: seasonal_reg (Feb, May, Aug, Nov),
month_reg (middle of every month), and month_irreg (15th of every month).

yes? USE climatological_axes
*** NOTE: regarding ... climatological_axes.cdf
*** NOTE: Climatological axes SEASONAL_REG, MONTH_REG, and MONTH_IRREG

defined
yes? CANCEL DATA climatological_axes ! the axes are still defined

To generate a climatology based on a restricted range of input data simply define an intermedi-
ate variable with the desired points. For example, a monthly climatological time series based
on data from the 1960s could be computed using

LET sst_1960s = sst[D=coads,T=1-jan-1960:31-dec-1969]
PLOT sst_1960s[GT=month_reg@MOD]

In a similar fashion intermediate variables can be defined that mask out certain input points.

GRIDS AND REGIONS 87

Figure 15.

This example shows the entire sequence necessary to generate a plot of climatological SST at
40N, 40W based on the January 1982 to December 1992 Fleet Numerical wind data set. Figure
15 shows the output of these calculations.

! use the predefined climatological axes
USE climatological_axes
CANCEL DATA climatological_axes

! use the Fleet Numerical winds
SET DATA monthly_navy_winds

! plot the raw data (top figure)
SET REGION/X=40w/Y=40n
plot uwnd

! plot the 12 month climatology (middle figure)
LET uwnd_clim = uwnd[GT=month_reg@MOD]
PLOT uwnd_clim

! since uwnd_clim is on a climatological axis
! Ferret can also plot it on the calendar axis with the raw data
PLOT/T=16-jan-1982:17-dec-1992 uwnd,uwnd_clim

In many cases the volume of input data needed to perform climatological calculations is very
large. In the example above the command

CONTOUR/X=0:360/Y=90s:90n sst_climatology[L=1]

to plot January from the climatology would require Nx*Ny*Nt=72*72*576=3 Megawords of
data. Such calculations may be too large to fit into memory. However, if the region is fully
specified (as shown for the X and Y limits in the example) Ferret’s internal memory manager
will break up the calculation as needed to produce the result. (See Memory Use in Chapter 9, p.
153, for further details.)

88 CHAPTER 4

Figure 16.

Unlike other transformations and regridding, modulo regridding is performed as an unweight-
ed average: each non-missing source point contributes 100% of its weight to the destination
grid box within which it falls. If the source and destination axes are not properly aligned this
can lead to apparent shifts in the data. For example, if a monthly time series has data points at
the first of each month and a climatological axis is defined at midmonths, then unweighted
modulo averaging will lead to an apparent 1/2-month shift. To avoid situations of this type sim-
ply regrid to the climatological axis using linear interpolation prior to the modulo regridding.

Here is an example that illustrates the situation and the use of linear interpolation to repair it.
Figure 16 shows the output of these calculations.

! define test_var, an illustrative variable with 1 year periodicity
! Note: test_var points are at the **beginnings** of months
DEFINE AXIS/T=1-jan-1970:1-jan-1974:`365.25/12`/UNITS=days t10years
DEFINE GRID/T=t10years gg
LET test_var = SIN(L[G=gg]*2*3.14/12)

! plot 4 years of the cycle
PLOT test_var

! define climatological axes at the midpoints of months
USE climatological_axes
CANC DATA climatological_axes

! notice that modulo regridding appears to shift the data
! (due to mis-aligned source and destination axes) (top figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var[GT=month_reg@MOD]

! to avoid the shift we can first regrid test_var to mid-month
! points using linear interpolation (the default regridding method)
! notice that the function test_var is largely unchanged by this
LET test_var_centered = test_var[GT=month_reg]
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered

! finally perform a modulo regridding on well-aligned data
! notice that the shift is gone (bottom figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered[GT=month_reg]

2.4.1 Modulo regridding statistics

In addition to the modulo averaging calculation performed by @MOD Ferret provides other
statistics of the regridding. All modulo regridding calculations are unweighted as discussed un-
der @MOD.

@MODVAR
the variance of source points within each destination grid box (SUM(var-varbar)^2)/(n-1))

@MODSUM
the sum of the source points within each destination grid box

@MODNGD
the number of source points contributing to each destination grid box

GRIDS AND REGIONS 89

@MODMIN
the minimum value of the source points contributing to each destination grid box

@MODMAX
the maximum value of the source points contributing to each destination grid box

3 REGIONS

The region in space and time where expressions are evaluated may be specified in 3 different
ways:

1) with the command SET REGION
2) with qualifiers to the command name (slash-delimited)
3) with qualifiers to variable names (in square brackets, comma-delimited)

If SET REGION is used, Ferret remembers the region as the default context for future com-
mands, whereas a qualifier to a command name specifies the region for that command only,
and a qualifier to a variable name specifies the region for that variable and command only.

Regions may be manipulated using DEFINE REGION, SET REGION, @ notation, and
CANCEL REGION. The Commands Reference section of this manual covers all of these top-
ics.

Region information is normally specified in the following form:

QUAL=val or
QUAL=lo_val:hi_val or
QUAL=val@transform (as a variable qualifier only) or
QUAL=lo_val:hi_val@transform (as a variable qualifier only)

When the region for an axis is specified as a single value (instead of a range) Ferret, by default,
selects the grid point of the grid box containing this value. The Ferret mode “interpolate” can
control this behavior. See command SET MODE INTERPOLATE in Commands Reference, p.
255.

Examples: Regions

Examples of valid region specifications.

1) Fully specify the region in an XY plane with the first vertical (Z) level and time 27739.

yes? SET REGION/X=140E:160W/Y=10S:20N/K=1/T=27739

2) Contour vertical heat advection within whatever region is the current default (previously set
with SET REGION).

90 CHAPTER 4

yes? CONTOUR qadz

3) Define, modify and set a named region and then modify with delta notation.

yes? DEFINE/REGION/Y=5S:5N YT !define region YT to be 5S:5N
yes? DEFINE REGION/DY=-1:+1 YT !modify region YT to be 6S:6N
yes? SET REGION/@YT !set current region to YT
yes? SET REGION/DY=-1:+1 !modify current region to 7S:7N

4) List meridional currents calculated by averaging values between the surface and a depth of
50 m.

yes? LIST v[Z=0:50@AVE]

5) Equivalent to v[Z=10] - v[Z=0:100@AVE], the anomaly at z=10 between v and the 0 to 100
meter depth average of v.

yes? LIST/Z=10 v - v[Z=0:100@AVE]

3.1 Latitude

Specify latitude or a latitude range with the qualifier Y or J. Specifications using J are integers
between 1 and the number of points on the Y axis. Specifications using Y are in the units of the
Y axis.

The units may be examined with SHOW GRID/Y. If the Y axis units are degrees of latitude
then the Y positions may be specified as numbers followed by the letters “N” or “S”.

Examples

yes? CONTOUR temp[Y=15S:10N]
yes? LIST/J=50 u

3.2 Longitude

Specify longitude or a longitude range with the qualifier X or I. Specifications using I are inte-
gers between 1 and the number of points on the X axis. Specifications using X are in the units of
the X axis.

The units may be examined with SHOW GRID/X. If the units are degrees, then X values may
be given as numbers followed by “W” or “E” (e.g., 160E, 110.5W) or as values between 0 and
360 with Greenwich at 0 increasing eastward. Note: If the X axis is “modulo” then it is some-
times desirable to use X greater than 360.

Examples

GRIDS AND REGIONS 91

yes? CONTOUR temp[Y=160E:140W]
yes? LIST/I=100 u
yes? SHADE/X=100:460 temp !360 degrees centered at 100W

See Chapter 4, section “Modulo Axes” (p. 94), for help with globe-encircling axes.

3.3 Depth

Specify depth or a depth range with the qualifier Z or K. Specifications using K are integers be-
tween 1 and the number of points on the Z axis. Specifications using Z are in the units of the Z
axis.

The units may be examined with SHOW GRID/Z.

Examples

yes? CONTOUR temp[Z=0:100]
yes? LIST/K=3 u

3.4 Time

Specify time or a time range with the qualifier T or L. Specifications using L are integers be-
tween 1 and the number of points on the T axis. Specifications using T may refer to calendar
dates or to the time step units in which the time axis of the data set is defined.

Calendar date/time values are entered in the format dd-mmm-yyyy:hh:mm:ss, for example
14-FEB-1988:12:30:00. At a minimum the string must contain day, month, and year. If the
string contains any colons it must be enclosed in quotation marks to differentiate from colons
used to designate a range. If a time increment is specified with the repeat command given in
calendar format (e.g., REPEAT/T="1-JAN-1982":"15-JAN-1982":6) it is interpreted as hours
always. Calendar dates in the years 0000 and 0001 are regarded as year-independent dates
(suitable for climatological data).

SHOW GRID/T can be used to display time step values. (Units may vary between data sets.)
The commands SET MODE CALENDAR and CANCEL MODE CALENDAR can be used to
view date strings or time steps, respectively.

Examples

yes? LIST/T="1-JAN-1982:13:50":"15-FEB-1982" density
yes? CONTOUR temp[T=27740:30000]
yes? LIST/L=90 u

See Chapter 4, section “Modulo Axes” (p. 94) for help with climatological axes.

92 CHAPTER 4

3.5 Delta

The notation q=lo:hi:delta (e.g., Y=20S:20N:5) specifies that the data in the requested range is
regularly subsampled at interval “delta.”

This notation is valid only for the REPEAT, SHOW GRID, and DEFINE AXIS commands, and
the qualifiers /XLIMITS and /YLIMITS used in action commands with graphical output.

@ notation

Regions may be named and referred to using the syntax “@name”. Some commonly used re-
gions are predefined. See commands SET REGION (p. 261) and DEFINE REGION (p. 217)
in the Commands Reference section for further information.

If a region is specified using a combination of “@” notation and explicit axis limits the explicit
axis limits will be evaluated after the “@” specification, possibly superseding the “@” limits.

Note: It is not advised to use the @notation inside of variable definitions, as redefinitions of the
named region can cause code errors that lead to wrong results.

Using the @ notation only sets/alters the axis limits specified in the named region. For exam-
ple, suppose that region “XY” is defined for the X and Y axes, but not for the Z and T axes.
Then

yes? SET REGION/@XY

modifies only X and Y limits. BUT,

yes? SET REGION XY

modifies all axes—X and Y to the limits specified by XY, and Z and T to unspecified (even if
they were previously specified).

Examples

1) Contour the 25th time step of temperature data at depth 10 within region T, the “Tropical Pa-
cific.”

yes? CONTOUR/@T/Z=10/L=25 temp

2) Produce a contour plot over region W, the “Whole Pacific Ocean,” in the XY plane (the vari-
able to be contoured as well as the depth and time will be inferred from the current context).

yes? CONTOUR/@W var1

3) Set the default region to “T”, the Tropical Pacific Ocean (latitude 23.5S to 23.5N).

GRIDS AND REGIONS 93

yes? SET REGION/@T

4) Define a region and then supersede with an axis limit specification.

yes? DEFINE REGION/X=180:140W/Y=2S:2N/Z=5 BOX1
yes? SET REGION/@BOX1/Z=15 !replace Z

Pre-defined regions

As a convenience in the analysis of the Tropical Pacific Ocean the following regions are
pre-defined:

Name Region Latitude Longitude

T Tropical Pacific 23.5S:23.5N 130E:70W
N Narrow Pacific 10.0S:10.0N 130E:70W
W Whole Pacific 30.0S:50.0N 130E:70W

These may be redefined by the user for the duration of a Ferret session or until the definitions
are canceled.

3.6 Modulo axes

Some axes are inherently “modulo,” indicating that the axis wraps around—the first point im-
mediately following the last.

To determine if an axis is modulo use SHOW AXIS or SHOW GRID. A letter “m” following
the number of points in the axis indicates a modulo axis. The command SHOW GRID qualified
by the appropriate axis limits can be used to examine any part of the axis—including points be-
yond the nominal length of the axis. The commands SET AXIS/MODULO and CANCEL
AXIS/MODULO can be used to control this feature on an axis-by-axis basis.

Example

yes? SET DATA coads_climatology
yes? SHOW GRID/I=180:183 sst !range request beyond last point
GRID COADS1
name axis # pts start end
COADSX LONGITUDE 180mr 21E 19E(379)
[text omitted]

I X BOX_SIZ
180> 19E(379) 2
181> 21E(381) 2
182> 23E(383) 2
183> 25E(385) 2

94 CHAPTER 4

The most common uses of modulo axes are:

1) As longitude axes for globe-encircling data sets. This allows any starting and any ending
longitudes to be used, for example, X=140E:140E indicates the entire earth with data be-
ginning and ending at 140E.

2) As time axes for climatological data. By this device the time axis appears to extend from
0 to infinity and the climatological data can be referred to at any point in time. This facili-
tates comparisons with data sets at fixed times.

3.7 Region Conflicts

Conflicting region information can be given to Ferret in obvious ways such as

LIST/I=1:3 I[I=1:10]

in which it is not clear if the request is for 10 points or for 3, or in subtler, disguised ways such
as

LET A = I[I=1:10] LIST/I=1:3 A

In both examples Ferret would resolve the conflict by listing just the three values I=1:3.

Internally, Ferret uses the region closest to the variable to perform the calculation. Thus, in
both of the examples above Ferret will perform the calculation on I=1:10, since the “[I=1:10]”
directly modifies the variable name. If Ferret sees conflicting regions it attempts to use the re-
gions further from the variable to clip the calculation. Thus 10 points are clipped to 3 in the
above examples.

Unresolvable conflicts such as

LIST/I=11:13 I[I=1:10]

will result in a warning message that invalid limits have been ignored.

GRIDS AND REGIONS 95

Chapter 5: ANIMATIONS AND GIF IMAGES

1 OVERVIEW

Asequence of Ferret plots can be stored and then animated. Each plot is stored as one frame in a
movie file. Ferret stores movie frames in Hierarchical Data Format (HDF), a format designed
by the National Center for Supercomputing Applications (NCSA). A movie file can then be
displayed as an animated sequence of frames with NCSA’s xds—X Data Slice (not distributed
with Ferret; see Chapter 5, section “Displaying an HDF movie” (p. 98), for details).

2 CREATING AN HDF MOVIE

Creating a movie requires two steps:

1) designate an output file with SET MOVIE
2) generate a sequence of frames with REPEAT and FRAME

See commands SET MOVIE (p. 260), CANCEL MOVIE (p. 206), SHOW MOVIE (p. 274),
FRAME (p. 222), and REPEAT (p. 240) in the Commands Reference section of this manual.

Example: basic movie

yes? SET DATA coads_climatology !specify data set
yes? SET REGION/@W !specify Pacific Ocean
yes? LET/TITLE="SST Anomaly" SST_ANOM = SST - SST[L=1:12@AVE]
yes? REPEAT/L=1:12 (FILL sst_anom; FRAME/FILE=my_movie.mgm)

!filled contour of sea surface\
temp anomaly captured and\
written to HDF file

Optionally, “.mgm” will be assigned to the movie file.

REPEAT executes its argument (in the above example, FILL) successively for each timestep
specified. REPEAT can have multiple arguments separated by semi-colons and enclosed in pa-
rentheses.

FRAME is a stand-alone command, but also a qualifier for the graphical output commands
PLOT, CONTOUR, FILL (alias for CONTOUR/FILL), SHADE, VECTOR and WIRE.

The saved animation frames are exactly the size and shape of the window from which they are
created. Thus a large window results in a larger, slower animation that demands more disk
space and memory to play back. The SET WINDOW/SIZE= command is generally used to
specify minimally acceptable frame size.

See Chapter 5, section “Advanced Movie-making” (p. 98), for more examples.

ANIMATIONS AND GIF IMAGES 97

3 DISPLAYING AN HDF MOVIE

Viewing a movie requires software which is not included with the Ferret distribution (although
in some cases we have made the binary available in Ferret’s anonymous ftp area). NCSA’s X
Data Slice reads HDF files and is available via anonymous ftp from NCSA. It requires about
1.7Mb of disk space. NCSA’s ftp server is

ftp.ncsa.uiuc.edu login id is “anonymous”, give your e-mail address as the password

Consult the README files you will find there for instructions on obtaining X Data Slice.
Other utilities from NCSA can also be used for animations.

4 ADVANCED MOVIE-MAKING

4.1 REPEAT command

The REPEAT command is quite flexible. It allows you to repeat a sequence of commands, not
just a single command as in the basic example above. You can give the GO command as an ar-
gument to REPEAT. The following examples demonstrate these techniques.

Note: MODE VERIFY must be SET (this is the default state) for loop counting to work.

Example 1

Here we give multiple arguments to REPEAT; note the semi-colon separation and the parenthe-
ses. Note that FRAME, in this example, is used as a stand-alone command.

yes? REPEAT/L=1:12 (FILL SST; GO fland; FRAME/file=my_movie.mgm)

Example 2

In this example we use the REPEAT command to pan and zoom over a sea surface temperature
field.

SET DATA coads_climatology
SET REGION/L=1
SET REGION/X=120E:60W/Y=45S:45N
SHADE sst; GO fland

! ZOOM
REPEAT/K=1:5 (SET REGION/DX=+8:-8/DY=+8:-8; SHADE sst; GO fland; FRAME)

! PAN
REPEAT/K=1:5 (SET REGION/DX=+5; SHADE/LEV=(20,30,.5) sst; FRAME)

98 CHAPTER 5

Example 3

In this example the user calls setup_movie.jnl (text included below), title.jnl, which creates a
title frame, then repeats main_movie.jnl (text included below) for each time step desired.
Finally, the user adds a frame of credits at the end of the movie. Each of the scripts would end
with the FRAME command (except setup_movie). Using GO scripts as arguments to REPEAT
allows you to customize the plot with many commands before finally issuing FRAME, as the
text of main_movie.jnl below demonstrates.

yes? ! make the movie
yes? GO setup_movie
yes? GO title
yes? REPEAT/L=1:12 GO main_movie
yes? GO credits

! Setup_movie.jnl
SET WINDOW/SIZE=.45/ASPECT=0.7
SET MOVIE/file=my_movie.mgm
SET DATA coads_climatology
SET REGION/X=130E:75W/Y=8S:8N
SET MODE CALENDAR:months
GO bold
PPL SHAKEY ,,.15,.2
PPL AXLEN 8.8,4.8

! Main_movie.jnl
FILL/SET_UP/LEVELS=(16,31,1) sst
PPL LABS; PPL TITLE
PPL FILL
LABEL 210,9.5,0,0,.22 @TRCOADS MONTHLY CLIMATOLOGY (1946-1989)
LABEL 210,-12,0,0,.22 @TRSEA SURFACE TEMPERATURE (DEG C)
LABEL 130,11,-1,0,.22 @TR’LAB4’
FRAME

Note: If you use the FILL command, we suggest that you use SHADE while customizing and
fine-tuning your movie, then use FILL for the final run. SHADE is much faster.

4.1.1 Initializing the color table

If you create a movie with a title frame, or a first frame which otherwise uses different colors
than the rest of the movie, you should be aware of an HDF peculiarity: all the colors that you
plan to use in your movie must be in the first frame, or else color behavior will be unpredictable
when you animate.

To “reserve” the colors you need, use overlapping full-window viewports. Make a representa-
tive plot in the title frame, then cover over it with either a black or white rectangle and finally
write the title text. Here is a script which initializes the color table while creating a title frame.

! define 3 identical full-frame viewports
DEFINE VIEW full1; DEFINE VIEW full2; DEFINE VIEW full3

! draw frame one of the movie in full color
SET VIEW full1
SET DATA coads_climatology
SHADE/LEVELS=(16,31,1)/L=1 sst ! dummy frame

ANIMATIONS AND GIF IMAGES 99

! white-out over the picture
SET VIEW full2
GO setup_text
SHADE/PALETTE=white/NOLAB/NOKEY/i=1:2/j=1:2 (i+j)*0

!put on title frame labels (using [0,1] coordinate space)
SET VIEW full3
GO setup_text
PPL PLOT
LABEL .5,.7,0,0,.3 @TRMy Title
PPL ALINE 1,.2,.55,.8,.55
PPL ALINE 1,.2,.53,.8,.53
LABEL .5,.4,0,0,.2 @CRBy me

!capture the title frame and clean up
FRAME
GO cleanup_text

4.1.2 Making movies in batch mode

Ferret, like other Unix applications, can be run in “batch” mode by redirecting standard input
and output. Thus

ferret -unmapped <movie_commands.jnl >&movie.log&

will make a movie running in background mode based on the commands in file movie_com-
mands.jnl logging standard output and standard error in file movie.log.

Note, however, that when used in this mode to make a movie Ferret will still require access to
an X windows display (as in “setenv DISPLAY node:0”). To eliminate this requirement we rec-
ommend the use of the X11R6 “virtual frame buffer” (Xvfb). This application permits the
movie frames to be generated in the absence of any physical display device. Consult your sys-
tem manager for the availability of X11R6 for your system.

5 CREATING GIF IMAGES

GIF is a highly compressed format suitable for single images. (Ferret will not directly create
GIF89 animations.) The procedure for creating a GIF image is nearly identical to the creation
of a single frame of an HDF file. The modification is generally just to select a file name with the
“.gif” extension; Ferret will automatically sense this as a request to create a GIF-formatted im-
age file. Alternatively, any file name can be used if the GIF format is specified explicitly using

FRAME/FORMAT=GIF

If a number of GIF images are created using the same file name Ferret will automatically re-
name subsequent versions with a version number. Thus a repeat loop can be used to generate
many GIF images.

100 CHAPTER 5

Example:

REPEAT/L=1:12(FILL sst; GO fland; FRAME/file=myimage.gif)

Note: In this mode of grabbing an image, Ferret creates a GIF file by requesting the image back
from your screen (your X server). That means that the X server normally has to be configured
as pseudo-color.

An alternative approach to creating GIF’s (which does not share this restriction) is to invoke
Ferret with the -gif command line switch “ferret -gif” (p. 6).

6 CREATING MPEG ANIMATIONS

MPEG animations can be created from the outputs of the FRAME command—either HDF ani-
mation files or a sequence of GIF images. Various public domain utilities are available to per-
form the conversion from Ferret’s output formats into MPEG animations. The routine
hdf2mpeg (available in 1995 from ftp.ncsa.uiuc.edu in HDF/contrib/NCSA/HDF2MPEG) can
be used to convert HDF files into MPEG animations; mpeg_encode (available from
mm-ftp.CS.Berkeley.EDU in /pub/multimedia/mpeg/encode) can be used to convert se-
quences of GIF files. New and improved routines may have become available since the time of
this writing. See further documentation on this topic in the FAQ file from the Ferret WWW
home page.

ANIMATIONS AND GIF IMAGES 101

Chapter 6: CUSTOMIZING PLOTS

1 OVERVIEW

Detailed control is possible over most aspects of Ferret graphical outputs. A custom modifica-
tion will require the user to either add a qualifier to a Ferret command or communicate directly
with the graphical package PPLUS, which is contained inside of Ferret. The most commonly
used PPLUS commands are listed in the following sections of this chapter. Consult the PLOT
PLUS for Ferret manual for complete command lists and the specifics of command syntax.

Ferret communicates with PPLUS by sending a sequence of commands to PPLUS (the com-
mand PPL ECHO ON causes the sequence of commands that Ferret sends to PPLUS to be
logged in the file fort.40.). The user can give further commands to PPLUS directly using the
Ferret command PPL (e.g., yes? PPL AXLEN 10,7). Some results can be attained in two
ways—with either Ferret or PPLUS commands. However, the interaction of the two is com-
plex and the inexperienced user may get unexpected results, so when possible, use only Ferret
commands.1

PPLUS uses a deferred mode of output—various commands are given to PPLUS which de-
scribe the plot state but produce no immediate output; the entire plot is then rendered by a sin-
gle command. Some plot states (e.g., axis labels) are set by Ferret with every plotted output; to
customize these states it is necessary to use the /SET_UP qualifier (which sets up the plot in-
side of PPLUS) and then modify the state with direct PPL commands. Other plot states are
never set by Ferret and, if modified at any time, remain in their specified state for all subse-
quent plots. Still other states are modified by Ferret only under special circumstances. Here is a
very simple customization (Figure 17):

CUSTOMIZING PLOTS 103

Figure 17.

1
Note that throughout this discussion a distinction has been made between Ferret commands and

PPLUS commands. In reality, the user issues Ferret commands only. “PPLUS commands” in this context
refers to PPLUS commands issued via the Ferret command PPL.

yes? PLOT/X=1:100/TITLE="My SIN Plot"/SET_UP sin(x/6) !use /SET_UP
yes? PPL YLAB “SIN value”
yes? PPL PLOT

The examples throughout this chapter show how the /SET_UP qualifier on graphics commands
can be used to delay rendering of a plot while the user modifies plot appearance with PPLUS
commands.

Below is a list of PPLUS commands which are reset by Ferret:

PPLUS command when reset by Ferret

XFOR, YFOR reset for every plot
XLAB, YLAB reset for every plot
XAXIS, YAXIS reset for every plot
LABS reset for every plot
ALINE reset for every plot
TAXIS OFF reset for every plot
TITLE reset for every plot
TICS reset for every plot (small tic size, only)
WINDOW ON reset for every plot
PEN 1,n reset for every plot
LIMITS reset for every plot
ORIGIN reset by SET WINDOW/ASPECT and SET VIEWPORT; Y origin

may be shifted to accommodate many line style keys
AXLEN modified by SET WINDOW/ASPECT and SET VIEWPORT
VIEWPORT modified by WIRE/VIEW
LEV modified by CONTOUR and SHADE unless /LEVELS_SAME

given
VECSET modified by VECTOR unless /LENGTH_SAME given
WINDOW modified for “fresh” plots but not for overlay plots

2 GRAPHICAL OUTPUT

2.1 Ferret graphical output controls

Ferret command Function

CONTOUR produces a contour plot of a single field
FILL alias for CONTOUR/FILL; produces color-filled contour plot
PLOT produces a line or symbol plot of one or more arrays
SHADE produces a shaded representation (rectangular cells)
VECTOR produces a vector arrow plot
WIRE produces a 3D wire frame plot

104 CHAPTER 6

Ferret command Function

SET WINDOW manipulates graphics windows
SET VIEWPORT places graphics output into a sub-window (pane)

2.2 PPLUS graphical output commands

Whenever a plot is customized using /SET_UP to delay display, the plot will ultimately be ren-
dered using a PPLUS graphical output command (not the Ferret counterpart). A customized
contour or filled-contour plot is rendered with PPL CONTOUR, a wire frame plot with PPL
VIEW and so on.

Command Function

CONTOUR makes a contour plot
PLOT plots x-y pairs for all lines of data
PLOTUV makes a stick plot of vector data
SHADE makes a shaded representation
VIEW makes a wire frame plot
VECTOR makes a plot of a vector field

The graphical output command PLOTUV can be used to make stick plots easily, as the follow-
ing time series example shows.

yes? SET DATA coads; SET REGION/X=180/Y=0/L=400:500
yes? PLOT/SET uwnd, vwnd
yes? PPL PLOTUV

3 AXES

By default, Ferret displays X- and Y-axes with tics and numeric labels at reasonable intervals
and a label for each axis. Time axes are also automatically formatted and used as needed. These
axis features can be modified or suppressed using the following Ferret direct controls and
PPLUS commands.

3.1 Ferret axis controls

The following qualifiers are used with graphical output commands PLOT, VECTOR, SHADE,
and CONTOUR to specify axis limits, tic spacing, and possible axis reversal:

CUSTOMIZING PLOTS 105

Ferret qualifers

/XLIMITS, /YLIMITS, /NOAXIS

The /XLIMITS and /YLIMITS qualifiers use the syntax /XLIMITS=lo:hi:delta. Tic marks are
placed every “delta” units, starting at “lo” and ending at “hi”. Every other tic mark is labeled.
“delta” may be negative, in which case the axis is reversed.

The /NOAXIS qualifier removes both X and Y axes from the plot. This is particularly useful
for plots using curvilinear coordinates (map projections) where the final axis values represent
transformed axis values rather than world coordinates.

The following arguments to SET MODE and CANCEL MODE determine axis style (e.g., SET
MODE CALENDAR:days) :

Ferret arguments

CALENDAR
LATIT_LABEL
LONG_LABEL

See the Commands Reference section of this manual (p. 203) for more information.

3.2 PPLUS axis commands

Command Function

XAXIS* controls numeric labeling and tics on the X axis (redundant with /XLIMITS)
YAXIS* controls numeric labeling and tics on the Y axis (redundant with /YLIMITS)
AXATIC sets number of large tics automatically for X and Y
AXLABP locates or omits axis labels at top/bottom or left/right of plot
AXLEN** sets axis lengths
AXLINT sets numeric label interval for axes every nth large tic
AXLSZE sets axis label heights
AXNMTC sets number of small tics between large tics on axes
AXNSIG sets number of significant digits in numeric axis labels
AXSET allows omission of plotting of any axis
AXTYPE sets axis type (linear, log, inv. log) for x- and y-axis
TICS sets axis tic size and placement inside or outside axes
XFOR* sets format of x-axis numeric labels
YFOR* sets format of y-axis numeric labels
XLAB* sets label of x-axis
YLAB* sets label of y-axis
TXLABP establishes time axis label position (or absence)

106 CHAPTER 6

Command Function

TXTYPE* sets the style of the time axis
TXLINT* specifies which time axis tics will be labeled
TXLSZE sets height of time axis labels
TXNMTC sets number of small tics between large tics on time axis
* issued by Ferret with every relevant plot
** issued by Ferret upon SET WINDOW/ASPECT or SET VIEWPORT

Examples

1) Plot with no axis labels (character or numeric) and no tics (Figure 18). (Equivalent to yes?

GO box_plot PLOT/I=1:10/NOLABEL 1/i)

yes? PLOT/i=1:30/NOLABEL/SET 1/i
yes? PPL AXLABP 0,0 !turn off numeric labels
yes? PPL TICS 0,0,0,0 !suppress small and large tics
yes? PPL PLOT !render plot
yes? PPL TICS .125,.25,.125,.25 !reset tics to default
yes? PPL AXLABP -1,-1 !reset numeric labels

2) customize x-axis label (Figure 19); XLAB always reset by Ferret)

yes? PLOT/SET/i=1:100 sin(x/6)
yes? PPL XLAB My Custom Axis Label
yes? PPL PLOT

3) specify tic frequency for y axis

yes? PLOT/i=1:30/YLIM=0:1:.2 1/i

CUSTOMIZING PLOTS 107

Figure 18. Figure 19.

4 LABELS

Ferret, by default, produces labeled axes, a plot title, documentation about the plot axes normal
to the plot, and a signature (current date and Ferret version number) when a plot is rendered.
The /NOLABELS qualifier suppresses the plot title, the documentation and signature, but not
the axis labels of independent axes; PPLUS commands XLAB, YLAB, and AXLABP control
axis labels.

4.1 Listing labels

The PPLUS command PPL LIST LABELS can be used to list the currently defined labels. For
example,

yes? PPL LIST LABELS
@ACSEA SURFACE TEMPERATURE (Deg C)
@ASLONGITUDE
@ASLATITUDE

XPOS YPOS HGT ROT UNITS
LAB 1 8.000E+00 7.200E+00 0.060 0 SYSTEM @ASFERRET Ver. 4.40
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 2 8.000E+00 7.100E+00 0.060 0 SYSTEM @ASNOAA/PMEL TMAP
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 3 8.000E+00 7.000E+00 0.060 0 SYSTEM @ASOct 22 1996 09:24
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 4 0.000E+00 6.600E+00 0.120 0 SYSTEM @ASTIME : 16-JAN
LINE PT: 0.000E+00 0.000E+00 NO LINE LEFT JUSTIFY LABEL

.

.

.

The first three lines of output show the plot title, the X axis label, and the Y axis label. These la-
bels are controlled by the PPL TITLE, PPL XLAB, and PPL YLAB commands, respectively.
The three characters “@AS” indicate the font of the label—in this case “ASCII Simplex” (see
Chapter 6, section 6, “Fonts,” p. 120).

Next is a table of “movable labels”—labels that were defined using the PPL LABS command.
Labels are generally simpler to control with the GO unlabel and LABEL commands described
in the following sections, rather than with the PPL LABS command.

Each label is described with two lines. The column headers refer to the first of the two. The co-
ordinates of each label, (XPOS,YPOS), may be in units of “inches” or may be in the units of the
axes. This is reflected in the UNITS field of the output, which will contain “SYSTEM” if the
coordinates are in inches or “USER” if the coordinates are axis units. (The /NOUSER qualifier
on the PPL LABS command is used to indicate that coordinates are being given in inches.) Co-
ordinates are calculated relative to the axis origins. The PPL HLABS and PPL RLABS com-
mands control label height and rotations, respectively.

The second line of the label description contains information about an optional line on the plot
which can be used to point to the label (refer to the PPLUS command LLABS or see section

108 CHAPTER 6

4.7, “Positioning labels using the mouse pointer,” p. 112). At the end of this line is the text of
the movable label.

4.2 Adding labels

The Ferret command LABEL adds a label to a plot and takes the following arguments:

yes? LABEL xpos,ypos,center,angle,size text

where xpos and ypos are in user (axis) units, size is in inches, angle is in degrees (0 at 3 o’clock)
and center is -1, 0, or +1 for left, center, or right justification. The label position will adjust it-
self automatically when the plot aspect ratio or the viewport is changed.

If you prefer to locate labels using inches rather than using data units issue the command

yes? LABEL/NOUSER xpos,ypos,...

Note, however, that the layout of a plot in inches—lengths of axes, label positions, etc.—shifts
with changes in window aspect ratio (SET WINDOW/ASPECT) and with the use of
viewports. Labels specified using LABEL/NOUSER will need to be adjusted if the aspect ratio
or viewport is changed.

Notes:

1) If you use the command PPL LABS instead of LABEL, be aware that when defining a new
movable label, all lower-numbered labels must already be defined.

2) The Ferret command LABEL is an alias for PPL %LABEL. PPLUS does NOT consider a la-
bel created with LABEL a movable label. Consequently, no label number is assigned and
the label cannot be manipulated as a movable label.

3) %LABEL is an unusual command in that the label appears on the plot immediately after the
command is given, rather than being deferred. This has ramifications for the user who has
multiple plot windows open and is in MODE METAFILE, since a metafile is not closed un-
til a new plot is begun. If the user produces a plot in window B, and then returns to a previ-
ous window A and adds a label with LABEL, that label will appear on the screen correctly,
but will be in the metafile corresponding to window B.

Example

yes? PLOT/I=1:100 sin(i/6)
yes? LABEL 50, 1.2, 0, 0, .2 @P2MY SIN PLOT

CUSTOMIZING PLOTS 109

4.3 Removing movable labels

Removing a movable label is a two step process: identifying the label number and then deleting
the label. PPLUS internally refers to all movable labels with label reference numbers. The
PPLUS command LIST LABELS will list the PPLUS labels and the text strings they contain.
Then the user can use “GO unlabel n”, where n is the reference number, to delete a label.

Example

In this example we plot the same figure in two viewports, one plot with the default “signature,”
and one plot with the signature removed (Figure 20).

!upper viewport has a “signature”
yes? PPL BOX on
yes? SET VIEW upper
yes? PLOT/I=1:100 sin(i/6)

!in the lower viewport
!the signature has been removed
yes? SET VIEW lower
yes? GO unlabel 1
yes? GO unlabel 2
yes? GO unlabel 3
yes? PPL PLOT
yes? CANCEL VIEWPORT

110 CHAPTER 6

Figure 20.

4.4 Axis labels and title

Special commands and special logic govern the labels of axes and titles. Use the PLOT+ com-
mands XLAB, YLAB, and TITLE in conjunction with the Ferret plotting qualifier /SET_UP to
modify the labeling choices that Ferret makes.

For two-dimensional plots (CONTOUR, FILL) Ferret will label the plot axes with the titles and
units from the appropriate axes of the grid. The command SHOW GRID can be used to see the
labels that will be used. The title will be the title of the variable (see SHOW VARIABLE, p.
275, and SHOW DATA/VARIABLE, p. 270) modified by the units and comments about trans-
formations in parentheses.

For one-dimensional plots (PLOT) other than PLOT/VS the independent axis will be labeled
using the title and units from the appropriate axis of the grid. The dependent axis will be la-
beled with the units of the variable being plotted. The title will be labeled as for two-dimen-
sional plots.

For output of the PLOT/VS command the axes will be labeled with the titles of the variables
(see SHOW VARIABLE, p. 275, and SHOW DATA/VARIABLE, p. 270) each modified by its
units and comments about transformations in parentheses.

4.5 Ferret label controls

In addition to LABEL (discussed above), Ferret controls include the /NOLABELS qualifier,
which suppresses default plot title, documentation and signature, and /TITLE qualifier to
graphical output commands PLOT, SHADE, CONTOUR, VECTOR, and WIRE:

Ferret qualifiers

/NOLABELS
/TITLE=

and arguments to SET MODE and CANCEL MODE:

Ferret arguments

ASCII_FONT
CALENDAR
LATIT_LABEL
LONG_LABEL

CUSTOMIZING PLOTS 111

4.6 PPLUS label commands

Ferret stores the text strings of the following labels in PPLUS symbols. The symbol names are:

symbol name label

LABTIT title label
LABX X axis label
LABY Y axis label
LABn nth movable label

As stated above, PPLUS commands regarding movable labels are largely superceded by the
Ferret command LABEL and “GO unlabel n”.

Command Function

LIST LABELS shows the currently defined labels
LABS* makes, removes, or alters a movable label
HLABS sets height of each movable label
RLABS sets angle for each movable label
LABSET sets character heights for labels
LLABS sets start position for and draws a line to a movable label
TITLE* sets and clears main plot label
XLAB* sets label of X axis
YLAB* sets label of Y axis
* issued by Ferret with every relevant plot

Example

This example customizes a plot using PPLUS label controls.

yes? PLOT/Z=20/I=1:100/SET_UP z * sin(i/6)
yes? PPL LABS 4,48,0,0 @p2’lab4’
yes? PPL HLABS 4,.25
yes? PPL LABS/NOUSER 5,0,6.3,-1 *** Magnified SIN function ***
yes? PPL LABSET ,,,.35
yes? PPL PLOT

4.7 Positioning labels using the mouse pointer

Often it is awkward precisely to position plot labels. Using the mouse pointer can simplify this
as mouse clicks can be used to place labels and other annotations on plots. The full syntax of
the LABEL command is

LABEL xpos, ypos, justify, rotate, height “text”

112 CHAPTER 6

xpos,ypos are the (x,y) position of the label
justify = -1, 0, 1 for left, center, right justification — default = left
rotate is given in degrees counter-clockwise — default = 0
height is in “inches”
text to be plotted. This argument may include font and color specifications

Note that the LABEL /NOUSER qualifier is not relevant for mouse input.

If either of the first two arguments (label position) are omitted it is a signal that mouse input is
desired. For example

yes? GO ptest
yes? LABEL “this is a test”

will wait for mouse input, using the indicated point as the lower left corner of the text string.
Equivalent to this is

yes? LABEL ,,-1,0,.12 “this is a test”

Note that left justification will always be used in this mode, regardless of the value specified.

For mouse control over justification and/or to draw a line or arrow associating a label with a
feature on the plot, explicitly omit the justification argument. Ferret will put up a menu
requesting a selection of “Arrow”, “Line”, “Right”, “Center”, “Left”. If Arrow or Line is se-
lected two mouse inputs are required — the first indicating the feature to be marked, the second
indicating the lower left corner of the text area. If “Right”, “Center” or “Left” is specified the
text will be justified accordingly.

Note that the mouse-driven LABEL command defines the symbols XMOUSE and YMOUSE
and writes comments regarding their definitions into the current journal file (if any) as de-
scribed under the WHERE alias.

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Com-
ments which include the digitized position are also written to the current journal file (if open).
The WHERE command can be embedded into scripts to allow interactive positioning of color
keys, boxes, lines, and other annotations.

4.8 Labeling details with arrows and text

Using the technique described in section 4.7 it is also simple to create a label with a line or ar-
row indicating a detail of a plot. Follow the procedure outlined above but select “Line” or
“Fancy line” (arrow) from the menu that appears in the plot window. Then click on the detail
which is to be labeled. The menu will appear again—this time select the justification and click
on the label position.

CUSTOMIZING PLOTS 113

To see the precise numerical coordinates of the arrow and label use the PPL ECHO ON com-
mand prior to the PPLUS command which redraws the plot. The endpoint coordinates of the
arrow will appear as a comment line which begins with “C LLABS” in the echo file, fort.41.
The coordinates of the label will appear as a comment line which begins with “C LABS”.
(Easily viewed with “spawn tail -2 fort.41”.)

5 COLOR

Ferret and PPLUS use colors stored by index. Storage indices 0 and 1 are used as window back-
ground and foreground colors. Indices 1–6 are reserved for lines. As the user makes SHADE
and FILL requests, each color is assigned to the next available storage index beginning at 7,
and that assignment is automatically “protected” when viewports or color overlays are added.

If your SHADE and FILL commands request more colors than there are storage indices (256),
you will be informed with an error message and the color behavior may become unpredictable.
For example, if you have multiple viewports defined within a window you may run out of color
storage indices. If you are using the same color palette(s) in each viewport, you can free up in-
dices by canceling the color protections with PPL SHASET RESET. See the examples later in
this section for details on removing color protection. Currently, there is no way to ask PPLUS
how many colors it is using in a plot.

The following discussion is divided into a treatment of text and line colors, and a discussion of
shade and fill color.

5.1 Text and line colors2

Line and text colors are regulated by use of storage indices 1–6, each index associated with a
default color. It is possible to change the six available line colors with the PPLUS enhance-
ments command COLOR. (See Plotplus Plus: Enhancements to Plotplus.) When you create a
plot with multiple data lines, Ferret automatically draws each line in a different color. By de-
fault, axes, labels, and the first data line are all drawn in the same color. You can modify this be-
havior with the following Ferret and PPLUS commands.

5.1.1 Ferret color controls for lines

Plotted line colors can be set using

114 CHAPTER 6

2
In the following discussion, “line color/thickness” is used as equivalent to “line style” for the sake of

simplicity. However, if you are using a black and white printer, then the metafile translator will substitute a
dash pattern for each line color. See Plotplus Plus: Enhancements to Plotplus to see monochrome line
styles.

yes? PLOT/LINE=n
yes? VECTOR/PEN=n
yes? CONTOUR/PEN=n

where “n” is an integer between 1 and 18.

5.1.2 PPLUS text and line color commands

The PPLUS command PEN assigns a color and thickness index to a specified pen. The com-
mand takes the form:

yes? PPL PEN pen_#, color_thickness

where pen_# is the PPLUS pen number and color_thickness is a color and thickness index.
PPLUS uses different pens for different tasks. By default, color_thickness index 1 is assigned
to pen 0. The following chart may be helpful.

pen number default color_thickness index drawing task

0 1 (black or white) axes and labels
1 1 (black or white) first data line
2 2 (red) second data line
3 3 (green) third data line
4 4 (blue) fourth data line
5 5 (cyan) fifth data line
6 6 (magenta) sixth data line

Note: Whether you plot several data lines simultaneously, or use the /OVERLAY qualifier on
your Ferret commands, the color/thickness result will be the same. But the Ferret/PPLUS inter-
action is different. When Ferret plots multiple data lines simultaneously, PPLUS automatically
cycles through pen numbers 1 through 6 combined with symbols. Type GO line_samples in
Ferret to see the 36 different line styles. However, if you are using /OVERLAY for additional
data lines, Ferret controls the color_thickness assigned to pen 1 and PPLUS draws each overlay
line with pen 1.

Pen numbers range from 0 to 6, and color_thickness indices range from 0 to 18. The values 1 to
18 follow the formula:

color_thickness = 6 * (thickness - 1) + color

where thickness ranges from 1 to 3 and color from 1 to 6. Type “GO line_thickness” in Ferret to
see actual colors and thicknesses.

The special color_thickness index 0 refers to the background color, which produces “invisible”
lines that can be used as “white-out” for special purposes.

CUSTOMIZING PLOTS 115

The following PPLUS commands use the color_thickness index.

Command Function

@Cnnn uses color_thickness index “nnn” when embedded in a label
PEN sets color_thickness index for each data line (see chart above)
LEV sets color_thickness index for contour plot lines

Examples

1) Ferret’s default behavior—these two plots will look identical

yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-i) !3 curves with 3 pens
yes? PLOT/i=1:10 1/i !first curve with pen 1
yes? PLOT/OVER/i=1:10 1/(i+3) !overlay with pen 1 (next index)
yes? PLOT/OVER/i=1:10 1/i+1/(10-i) !overlay with pen 1 (next index)

2) select different colors for pens 0 and 1

yes? PLOT/i=1:10/SET 1/i
yes? PPL PEN 1 4 !assign color_thickness 4 to pen 1 (plot curve)
yes? PPL PEN 0 3 !assign color_thickness 3 to pen 0 (axes & labels)
yes? PPL PLOT !render the plot
yes? PPL PEN 0 1 !reset pen 0 to default color_thickness (not\

reset by Ferret as is pen 1)

3) better way to do above plot:

yes? PLOT/i=1:10/LINE=4/SET 1/i !include line style with qualifer /LINE
yes? PPL PEN 0 3 ; PPL PLOT
yes? PPL PEN 0 1

5.2 Shade and fill colors

Colors specified with the PPLUS SHASET command or in pallette files (also called spectrum
files) contain pre-defined color palettes. With Ferret 5.0 there are now three ways to specify
how colors are set in SHADE, FILL, and POLYGON plots: the earlier Percent RGB mapping,
and also By_value and By_level.

The Percent method defines points along an abstract path in RGB color space that runs from 0
to 100 percent. The pallette file bluescale.spk, for example, contains these lines:

0 0 0 95
100 95 95 95

The first number on a line is the percentage distance along the path in color space, and the fol-
lowing numbers are the percents of red, green, and blue, respectively. The actual colors used by
SHADE or FILL are determined by dividing this abstract color scale into N equal increments,

116 CHAPTER 6

where N is the number of colors, and linearly interpolating between the red, green, and blue
values from the neighboring SHASET percentage points.

For compatibility with older palette files, the Percent RGB mapping method is the default, and
pre-5.0 palette files will be interpreted correctly. Palette files using Percent RGB mapping
written out with Ferret 5.0 will have a slightly different format; for example the bluescale pal-
ette saved with Ferret 5.0 will look like this:

RGB_Mapping Percent

!SetPt Red Green Blue

0 0 0 95
100 95 95 95

The first line informs Ferret that the RGB mapping method is Percent. Lines beginning with an
exclamation point are comments and ignored when read in—palette files created or modified
using a text editor can contain comment lines as documentation.

The new RGB mapping method By_value uses color interpolation similar to the Percent
method, with the significant difference that colors are based on the values of the variable being
plotted rather than an abstract zero to 100 percent axis. When you use the same By_value pal-
ette in several plots, identical values of one variable will be represented by the same color in
each plot. For example with the following palette, ocean_temp.spk:

RGB_Mapping By_value

!SetPt Red Green Blue

–2.0 80.0 0.0 100.0
0.0 30.0 20.0 100.0

10.0 0.0 60.0 30.0
20.0 100.0 100.0 0.0
30.0 100.0 0.0 0.0
35.0 60.0 0.0 0.0

a particular temperature, say 25 degrees, will have the same color on a SHADE or FILL plot
with levels ranging from 0 to 30, and on a plot with levels between 20 and 30 degrees.

The second new RGB mapping method By_level allows the user to select the precise color to
be used at each level in SHADE and FILL plots. Unlike the other methods, no interpolation of
RGB values is done. Colors specified in the palette will be used exactly as defined. If there are
more SHADE or FILL levels than colors specified, the color palette will repeat. In the follow-
ing palette, by_level_rainbow.spk,

CUSTOMIZING PLOTS 117

RGB_Mapping By_level

!Level Red Green Blue

1 80.0 0.0 100.0
2 30.0 20.0 100.0
3 0.0 60.0 30.0
4 100.0 100.0 0.0
5 100.0 0.0 0.0
6 60.0 0.0 0.0

for example, with 6 colors defined and used in a plot with 10 levels, the colors used at each plot
level will be as follows:

Plot level Color

1 1
2 2
3 3
4 4
5 5
6 6
7 1
8 2
9 9

10 10

5.2.1 Ferret shade and fill color controls

By default, Ferret will use the PPLUS spectrum file default.spk for shades and fills (normally
default.spk is a Unix soft link to rnb.spk). Ferret comes with many color palettes. The UNIX
command “Fenv” lists the environment variable $FER_PALETTE which is a list of paths to be
searched for palette files (the palette file names all end in .spk). The UNIX command
“Fpalette” allows you to find and examine these files (type “Fpalette -help” at the Unix
prompt). You can easily create your own palette files with a text editor.

Use the Ferret qualifier /PALETTE= with Ferret graphical output commands
CONTOUR/FILL and SHADE to specify a color palette. See Chapter 6 section “Contouring,”
p. 124, for details on the CONTOUR qualifier /LEV, which controls colors and dash patterns,
as well as sets contour levels.

Ferret qualifiers

/PALETTE= (alias for PPL SHASET SPECTRUM=)

118 CHAPTER 6

/LEV=

PALETTE is also a stand-alone command alias; it sets a new default color palette.

Be aware that when you use /PALETTE= in conjunction with /SET_UP, the color spectrum
you specify becomes the new default palette; to restore the default palette use command
PALETTE with no argument.

5.2.2 PPLUS shade color commands

Command Function

SHASET sets colors used by SHADE

SHASET is an enhancement of PPLUS designed for Ferret. You can specify a color spectrum,
save a spectrum, change an individual color in the spectrum, or remove the protection (PPL
SHASET RESET) for colors already on the screen. See Plotplus Plus: Enhancements to
Plotplus for more information.

If you need precise control over each individual RGB color on your plot, run “GO exact_col-
ors”, which contains instructions on modifying individual colors in a palette using SHASET.

Examples

1) look at the relief of the earth’s surface

yes? SET DATA etopo120
yes? SHADE rose !Ferret’s default behavior
yes? SHADE/PAL=land_sea rose !emphasize land and sea with palette

2) Perhaps you would like to compare two topography resolutions. To illustrate what happens
when you use more colors than are available, request an excessively large number of levels:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER !upper half
yes? SHADE/LEV=(-8000,8000,100) rose !160 colors, default palette
yes? SET VIEWPORT LOWER !lower half
yes? SET DATA etopo20 !high resolution
yes? SHADE/LEV rose[d=etopo20] !another 160 colors (320 > 256!)
yes? CANCEL VIEWPORT

PPL+ error: You’re attempting to use more colors than are available.
Using SHASET RESET to re-use protected colors may help.

If you reuse the same palette, as in this example, you can issue PPL SHASET RESET after the
first plot and plot the second picture without error:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20

CUSTOMIZING PLOTS 119

yes? SET VIEWPORT UPPER
yes? SHADE/LEV=(-8000,8000,100) rose
yes? SET VIEWPORT LOWER
yes? PPL SHASET RESET !reuse color storage indices
yes? SET DATA etopo20
yes? SHADE/LEV rose[d=etopo20]
yes? CANCEL VIEWPORT

6 FONTS

6.1 Ferret font controls

By default, Ferret produces all plot labels using the fonts ASCII Simplex (code AS) and ASCII
Complex (code AC). For upper and lower case letters these fonts are identical to the fonts Sim-
plex Roman (SR) and Complex Roman (CR), respectively. In addition, however, fonts AS and
AC include the complete set of ASCII punctuation characters and ignore the special PPLUS in-
terpretations of the characters “^” (superscript), “_” (subscript), and “@” (change font or pen).
Using a text editor, the ESCAPE character (decimal 27) may be inserted before the special
characters to restore their special interpretation.

The Ferret command CANCEL MODE ASCII causes Ferret to generate PPLUS labels which
have the font unspecified. When the font is unspecified the PPLUS command DFLTFNT deter-
mines the default font and PPLUS responds to the special characters “^”, “_”, and “@”. SET
MODE ASCII restores normal font behavior.

6.2 PPLUS font commands

Command Function

DFLTFNT Sets default character font for all labeling.
@AB In a label string, selects the font for which AB is a two-letter abbreviation

(i.e., @CI for complex italic—see PPLUS manual for fonts).

Note that many ASCII punctuation characters are printable only in ASCII simplex and com-
plex fonts. In all other fonts these characters “@”, “^”, and “_” have special meanings: @ =
font change; ^ = superscript; _ = subscript.

Examples

1) axis labels in custom fonts (Figure 21)

yes? PLOT/SET/i=1:10/NOLAB 1/i
yes? PPL XLAB @CImy x-axis label
yes? PPL YLAB @GEmy y-axis label
yes? PPL PLOT

120 CHAPTER 6

2) set default font for all labeling (Figure 22)

yes? CANCEL MODE ASCII
yes? PPL DFLTFNT CS !complex script
yes? PLOT/I=1:100/TITLE="sin curve" sin(i/6)
yes? SET MODE ASCII
yes? PPL DFLTFNT SR !numeric axis labels unaffected by SET MODE ASCII

7 PLOT LAYOUT

7.1 Ferret layout controls

Layout of plots can be controlled with commands which modify window size and aspect ratio,
and viewports.

Ferret command

SET WINDOW/SIZE=/NEW/ASPECT=
DEFINE VIEWPORT/XLIMITS=/YLIMITS=/TEXT= view_name
SET VIEWPORT view_name
CANCEL VIEWPORT

7.1.1 Viewports

Aviewport is a sub-rectangle of a full window. Viewports can be used to put multiple plots onto
a single window. Issuing the command SET VIEWPORT is best thought of as entering
“viewport mode.” While in viewport mode all previously drawn viewports remain on the
screen until explicitly cleared with either SET WINDOW/CLEAR or CANCEL VIEWPORT.
If multiple plots are drawn in a single viewport without the use of /OVERLAY the current plot
will erase and replace the previous one; the graphics in other viewports will be affected only if
the viewports overlap. If viewports overlap the most recently drawn graphics will always lie on

CUSTOMIZING PLOTS 121

Figure 21. Figure 22.

top, possibly obscuring what is underneath. By default, the state of “viewport mode” is can-
celed. A number of the most commonly desired viewports are pre-defined.

7.1.2 Pre-defined viewports

Name Description

FULL full window
LL lower left quadrant of window
LR lower right quadrant of window
UR upper right quadrant of window
UL upper left quadrant of window
RIGHT right half of window
LEFT left half of window
UPPER upper half of window
LOWER lower half of window

Example: Graphics Viewports

Plot four variables from coads_climatology into the four quadrants of a single window (Figure
23).

yes? SET DATA coads_climatology
yes? SET REGION/@W/L=8
yes? SET VIEWPORT LL
yes? CONTOUR sst !sea surface temperature

122 CHAPTER 6

Figure 23.

yes? SET VIEWPORT LR
yes? CONTOUR airt !air temperature
yes? SET VIEWPORT UL
yes? CONTOUR slp !sea level pressure
yes? SET VIEWPORT UR
yes? VECTOR/XSKIP=4/YSKIP=4 uwnd,vwnd !zonal wind, meridional wind
yes? CANCEL VIEWPORT

7.1.3 Advanced usage of viewports

For the purposes of defining viewports, a graphics window is considered to have length 1 and
height 1. All viewport commands refer to positions relative to the current aspect ratio of the
window. Thus,

yes? DEFINE VIEWPORT/XLIM=.5,1/YLIM=.5,1 V5

will locate the origin of viewport V5 in the upper right of the output window regardless of the
shape of the window.

yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM= 0,.3 V1
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.3,.6 V2
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.6,.9 V3

defines three viewports; each takes a third of the height of the page, and the entire width.

The qualifiers /XLIMITS=x1,x2 and /YLIMITS=y1,y2 allow the user to specify a portion of
the graphics window to be the defined viewport. The arguments must be values between [0,1]
(NOT world coordinates). x1 and x2 indicate the lower and upper bounds for the length of the
window to be defined as the viewport; y1 and y2 serve an analogous purpose for height.

The /TEXT=n qualifier allows the user control over the shrinkage or enlargement of text on the
plot. A value of /TEXT=1 indicates that the text size should be the same as it is on the full
screen output. If a value less than 1 is specified the text will shrink. If a value is not specified
Ferret chooses a value appropriate to the viewport size. Acceptable values are 0 < n < inf. but
only values up to about 2 yield useful results.

7.2 PPLUS layout commands

Command Function

ORIGIN sets distance of plot origin from lower left corner
BOX controls drawing of a box around the plotting area
CROSS controls drawing of lines through (0, 0) on graph
ROTATE rotates plot by 90 degrees on screen and plotter
AXLEN sets axis lengths
SHAKEY locates the color key
VECKEY locates the vector key

CUSTOMIZING PLOTS 123

Command Function

AXSET includes/excludes particular axes
SIZE sets the overall size of the graphics window

7.3 Controlling the white space around plots

The location and size of the axis rectangle within the viewport or window determines the
amount of white space surrounding a plot. Complete control over this is possible using low
level controls, DEFINE VIEWPORT/TEXT_PROMINENCE, PPL ORIGIN, and PPL
AXLEN, but these commands are sometimes awkward to work with. A simpler strategy is to
use the GO tool

yes? GO margins

When given without arguments this command will report the amount of white space surround-
ing a plot. With arguments it will adjust the axis origins and lengths according to the requested
margins. Try the Unix command

> Fgo -more margins

for further documentation.

8 CONTOURING

8.1 Ferret contour controls

The following qualifiers to the Ferret command CONTOUR allow customization of a contour
plot.

Qualfier Function

/FILL produces a color-filled contour plot (command FILL is an alias for
CONTOUR/FILL)

/LEVELS specifies contour levels, dash patterns, line thickness and color
/KEY turns on display of color key for color-filled contour plots (default)
/NOKEY turns off display of color key for color-filled plots
/NOAXIS turns off display of X and Y axes (useful for map projections)
/LINE adds contour lines to a color-filled plot (lines replace key)
/PALETTE= specifies a color palette for color-filled contour plot
/PEN= sets line style for contour lines (same arguments as PLOT/LINE=. See

Chapter 6 section “Text and Line Colors,” p. 114.)

124 CHAPTER 6

8.1.1 /LEVELS qualifier

The /LEVELS qualifier is a powerful and multi-functional tool.

The /LEVELS= qualifier takes the form /LEVELS=levels_descriptor

/LEVELS
without an argument /LEVELS instructs Ferret to reuse CONTOUR or SHADE levels from
the last CONTOUR or SHADE plot

/LEVELS=n
specifying a simple numerical argument such as /LEVELS=25 instructs Ferret to select ap-
proximately 25 levels automatically, based upon the limits of the data to be plotted

/LEVELS=nC (centered levels)
appending a “C” to the suggested number of levels instructs Ferret to select levels which are
centered about the zero level. Such levels are suitable for zero-symmetric quantities such as
anomalies and velocity components.

/LEVELS=x.xD (delta levels)
Use of “D” as a suffix instructs Ferret to use the preceding value as the delta value between
contour levels. Thus /LEVELS=0.25D will cause Ferret to select contour levels that span
the range of the data to be contoured with a delta value of 0.25 between contour levels. The
“D” and “C” notations can be combined. For example, /LEVELS=0.25DC instructs Ferret
to create zero-centered levels with a delta of 0.25 spanning the range of the data.

/LEVELS=(lo, hi, delta)
or

/LEVELS=(lo, hi, delta, ndigits)
or

/LEVELS=(value)
where ndigits is the number of decimal places to use on contour levels as
-1 for integer format

or
-3 to omit numerical labels

Examples

/LEVELS=(10,50,5)
/LEVELS=(-20,20,2)
/LEVELS=(33.5,35.0,.025,3)
/LEVELS=(5)

CUSTOMIZING PLOTS 125

Refinements to the basic levels may be applied using the syntaxes below. If blanks are in-
cluded, surround the entire levels descriptor in double quotation marks.

1) To request additional levels, simply append additional (lo, hi, delta) and/or (value) specifi-
ers.

Example: /LEVELS="(-100,100,10) (100,1000,100) (2000)"

2) To remove selected levels, append the specifier DEL(lo, hi, delta) or DEL(value).

Example: /LEVELS="(-100,100,10) DEL(10)"

3) To specify the line type as dark (heavy line), append DARK(lo, hi, delta) or DARK(value).
Similar syntax can be applied to LINE (solid, thin) or DASH.

Example: /LEVELS="(-100,100,10) DARK(100) DARK(-100)"

4) To specify the color_thickness index of contour lines (see Chapter 6 section “Color, ” p.
114, for a discussion of color_thickness indices), append PEN(lo, hi, delta, index).

Example: /LEVELS="(-100,100,10) PEN(-100,-10,10,2) PEN(10,100,10,4)"

8.2 PPLUS contour commands

Command Function

CONPRE sets prefix for contour labels (usually a font, e.g., “@TR”)
CONPST sets suffix for contour labels (usually units, e.g., “cm”)
CONSET controls various aspects of contour labels and curves (see below)

CONSET is a modified version of the PPLUS command. Two new parameters have been
added—“spline_tension” and “draftsman”. “spline_tension” controls a spline fitting routine
for contour lines, and is primarily used in conjunction with the narc parameter. The new param-
eter “draftsman” enables the user to specify horizontally oriented contour labels (draftsman
style) or the default, labels oriented along contour lines. Arguments for CONSET are as fol-
lows:

CONSET hgt,nsig,narc,dashln,spacln,cay,nrng,dslab,spline_tension,draftsman

hgt = height of contour labels. default=.08 inches

nsig = no. of significant digits in contour labels. default=2

narc = number of line segments to use to connect contour points. default=1

126 CHAPTER 6

dashln = dash length of dashes mode. default=.04 inches

spacln = space length of dashes mode. default=.04 inches

cay This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User’s Guide and also in the discussion of objective analysis under command USER in the
Commands Reference section of this manual.

nrng This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User’s Guide and also (as parameter “rng”) in the discussion of objective analysis under
command USER in the Commands Reference section of this manual.

dslab= nominal distance between labels on a contour line. default=5.0 inches.

spline_tension = a real value that affects the fit of the contour line. default=0. This parameter is
only applied if narc is greater than 1. Otherwise, straight lines are drawn between data
points and no interpolated points are contoured. This value indicates the curviness desired.

abs(spline_tension) is nearly zero (e.g., .01). The resulting curve is approximately a
cubic spline.

abs(spline_tension) is large (e.g., 10.). The resulting curve is nearly a polygonal
line.

spline_tension = 0. The resulting curve is a cubic spline (the default algorithm in
ppl).

A typical value for spline_tension is 1, and the typical useful range of values is .01 to 10.

draftsman = a real value that controls the label format. default = 0.
0. = original label style—labels oriented along contour arcs
> 0. = draftsman label style—labels oriented horizontally on the page
< 0. = reserved for future use

Examples

Run the demonstration on custom contouring for many examples of label styles, contour line
styles (color, thickness dash pattern), and contour intervals— yes? GO custom_contour

1) Color-filled contour plot of sea surface temperature

yes? SET DATA coads_climatology
yes? SET REGION/@t/l=6 !specify tropical Pacific, month 6
yes? SET VIEWPORT upper
yes? FILL sst !filled contour plot
yes? SET VIEWPORT lower
yes? FILL/LINE sst !make the plot with contour lines

2) Let’s improve on the earlier example (5.2.2) of shaded bathymetry with blue palette

CUSTOMIZING PLOTS 127

yes? SET DATA ETOPO60
yes? LET/TITLE="Surface relief x1000 (meters)" r1000 rose/1000
yes? FILL/PAL=ocean_blue/LINE/LEV=(-8,-1,1,-3)LINE(-8,-1,1,-3)/PEN=4 r1000

Here is a breakdown of the final command line:

FILL color-filled contour plot (alias for CONTOUR/FILL)
PAL specifies color palette for fill colors
LINE specifies that contour lines be overlaid on the filled plot (in lieu of a key)
LEV first arg specifies contour levels without numerical labels, next requests solid

lines (dashed lines are the default for negative contour values)
PEN assigns line style 4 (blue) to contour lines

9 MAP PROJECTIONS AND CURVILINEAR COORDINATES

9.1 Three-argument (curvilinear) version of SHADE, FILL, CONTOUR, and
VECTOR

The SHADE, FILL, CONTOUR and VECTOR commands now have a 3-argument mode
which allows them to create output in “curvilinear” coordinates. This allows for easy genera-
tion of output plots using sigma coordinates as well as the application of various map projec-
tions. A typical command line entry will look like:

yes? SHADE sst, x_page, y_page

where the second and third arguments, x_page(i,j) and y_page(i,j), must be (at least) 2-di-
mensional grids which specify the X page (horizontal) position and Y page (vertical) position
for each (i,j) index pair. The page positions may be in any units; Ferret will scale the plot ac-
cording to the ranges of values in the position fields.

Note: The default axis labeling for the 3-argument commands will be the ranges of the position
fields: inappropriate when map projections are being used. The /NOAXIS qualifier is provided
for this purpose.

The /NOAXIS qualifier causes the axes and axis labels to be omitted from the plot. (See the
AXSET command in the PLOT+ Users Guide). The qualifier has been added to support the
curvilinear coordinate and map projection capabilities of the 3-argument versions of SHADE,
FILL, CONTOUR and VECTOR in which linear axes are inappropriate.

Note that if the /SET_UP qualifier is used in conjunction with /NOAXIS a Ferret state is altered
such that future plots will be drawn without axes. Ferret will warn you of this and coach you to
use PPL AXSET 1, 1, 1, 1 to restore normal axis drawing.

128 CHAPTER 6

9.2 Gridded data sets on curvilinear coordinates

If a given gridded variable is defined on a curvilinear coordinate system, then one need only
provide the X and Y coordinate fields in the 3-argument SHADE or FILL command to accu-
rately depict the field. For example, if a data set contained a variable TEMP, which was Nx x
Ny in the longitude-latitude plane, and the data set also contained variables LON_POSITION
and LAT_POSITION of the same size, then the command:

yes? SHADE TEMP, LON_POSITION, LAT_POSITION

would render the curvilinear plot.

9.3 Layered (sigma) coordinates

The capability to render curvilinear coordinates allows Ferret to display sigma coordinate
fields without interpolating or regridding the variable to be displayed.

In this example from the Ferret FAQ the variable flow is defined on the gg grid where the Z axis
is in layers. To display the field we need only create multidimensional fields specifying the rel-
ative positions of (i,j) pairs and use the new curvilinear coordinate commands:

let depth = h[k=@rsum]-h/2
set variable/title="DEPTH function"/unit=meters depth
! regrid ‘Y’ to the data grid
let ygg = y[g=gg]
set variable/title="Y"/unit=kilometers ygg
shade flow[x=0,l=1], ygg, depth[x=0,i=1]

For a detailed example illustrating the use of curvilinear coordinates to analyze sigma-coordi-
nate fields see the FERRET FAQ entry, How to handle sigma coordinate output in Ferret.

CUSTOMIZING PLOTS 129

9.4 Map Projections

Along with general capabilities for curvilinear coordinates, version 4.9 of Ferret and later pro-
vide a series of scripts for many common map projections.

Each map projection script will create the following variables:

mp_central_meridian central longitude calculated from the currently set region

mp_standard_parallel central latitude calculated from the currently set region

x_page two dimensional array mapping X world coordinates to page
coordinates

y_page two dimensional array mapping Y world coordinates to page
coordinates

mp_mask mask two hide “back side” data in orthographic or other 3-D
projections

9.4.1 Using Map Projection scripts

To create output with a particular map projection you must do the following:

1. set grid for the variable you wish to plot
2. run the map projection script
3. adjust the window aspect ratio (if desired)
4. multiply the variable of interest by mp_mask (required for “3-D” projections)
5. give the three-argument plotting command

Example

yes? use coads_climatology
yes? set region/l=1
yes? set grid sst
yes? go mp_hammer
yes? go mp_aspect
yes? shade/noaxis mp_mask, x_page, y_page

130 CHAPTER 6

9.4.2 Overlays with Map Projections

Overlays can be drawn once a map projection script has been run. To add a filled land mask, sea
level pressure and wind vectors onto our SST map we would issue the following commands:

yes? set grid uwnd
yes? go mp_fland
yes? vector/over/pen=1 uwnd*mp_mask, vwnd*mp_mask, x_page, y_page
yes? set grid slp
yes? contour/over/pen=5 slp*mp_mask, x_page, y_page

If, instead, we wished to overlay sea level pressure for the South Atlantic only, we would need
to take advantage of the mp_central_meridian and mp_standard_parallel variables.
Normally, the map projection scripts calculate the central meridian and standard parallel from
the currently set region and generate the x_page and y_page coordinate transformations ac-
cordingly. When we overlay a subregion, we need to rerun the map projection script and pass in
values for mp_central_meridian and mp_standard_parallel so that they are match the previ-
ous values and are not calculated from the subregion associated with the overlay.

yes? use coads_climatology
yes? set region/l=1
yes? set grid sst
yes? go mp_hammer
yes? go mp_aspect
yes? shade/noaxis sst*mp_mask, x_page, y_page
yes? go mp_fland
yes? list mp_central_meridian, mp_standard_parallel

LONGITUDE: 20E to 20E(380)
LATITUDE: 90S to 90N

Column 1: MP_CENTRAL_MERIDIAN is (MP_X[I=@MAX] + MP_X[I=@MIN])/2
Column 2: MP_STANDARD_PARALELL is (MP_Y[J=@MAX] + MP_Y[J=@MIN])/2

MP_CENTRMP_STAND
I / *: 200.0 0.0000
yes? go mp_hammer 200 0
yes? set region/x=60w:20e/y=45s:0n
yes? set grid slp
yes? contour/over slp, x_page, y_page

CUSTOMIZING PLOTS 131

Note: Had we used go mp_hammer 200 0 in the beginning we would not have had to rerun
mp_hammer.

9.4.3 Map Projection scripts

Here is the list of map projection scripts delivered with Ferret. (The techniques used are quite
general and can be applied to most map projections.)

Ferret script Projection name

mp_bonne.jnl Bonne
mp_craster_parabolic.jnl Craster Parabolic
mp_eckert_greifendorff.jnl Eckert Grifendorff
mp_eckert_iii.jnl Eckert III
mp_eckert_v.jnl Eckert V
mp_hammer.jnl Hammer
mp_lambert_cyl.jnl Lambert Cylindrical Equal Area
mp_mcbryde_fpp.jnl McBryde Flat Polar Parabolic
mp_orthographic.jnl Orthographic
mp_plate_caree.jnl Plate Caree
mp_polyconic.jnl Polyconic
mp_sinusoidal.jnl Sinusoidal
mp_stereographic_eq.jnl Stereographic Equatorial
mp_stereographic_south.jnl Stereographic North
mp_vertical_perspective.jnl Stereographic South
mp_vertical_perspective.jnl Vertical Perspective
mp_wagner_vii.jnl Wagner VII
mp_winkel_i.jnl Winkel I

132 CHAPTER 6

Here is the list of utility scripts to support curvilinear coordinates

Ferret script Function

mp_demo.jnl demonstration of various map projections
mp_fland.jnl curvilinear version of fland.jnl
mp_graticule.jnl creates a graticule (lines of longitude and lati-

tude) over the whole globe or any portion
mp_label.jnl correctly places labels using lat-lon coordi-

nates
mp_land.jnl curvilinear version of land.jnl
mp_land_stripmap.jnl creates a land-centric interrupted map using

the current projection
mp_line.jnl correctly plots user lat-lon data on the map
mp_ocean_stripmap.jnl creates an ocean-centric interrupted map us-

ing the current projection
mp_polygon overlays a “map projected” polygon

CUSTOMIZING PLOTS 133

HANDLING STRING DATA: “SYMBOLS” 135

Chapter 7: HANDLING STRING DATA: “SYMBOLS”

Ferret offers a variety of tools for manipulating strings through the use of “symbols” (variables
defined to be strings). The following are the relevant commands:

DEFINE SYMBOL
usage:

DEFINE SYMBOL symbol_name = string

SHOW SYMBOL
usage:

SHOW SYMBOL/ALL
SHOW SYMBOL symbol_name
SHOW SYMBOL partial_name

CANCEL SYMBOL
usage:

CANCEL SYMBOL/ALL
CANCEL SYMBOL symbol_name

Legal symbol names must begin with a letter and contain only letters, digits, underscores, and
dollar signs.

To invoke symbol substitution—the replacement of the symbol name with its (text)
value—within a Ferret command include the name of the symbol preceded by a dollar sign in
parentheses.

For example,

yes? DEFINE SYMBOL hi = hello everyone
yes? MESSAGE ($hi) ! issues “hello everyone” msg

It is also possible to nest symbol definitions, as the following commands illustrate:

yes? DEFINE SYMBOL label_2 = My test label
yes? DEFINE SYMBOL number = 2
yes? SAY ($label_($number))

My test label

1 AUTOMATICALLY GENERATED SYMBOLS

A number of useful symbols are automatically defined whenever Ferret sets up a plot. Follow-
ing any plotting command issue the command SHOW SYMBOLS/ALL to see a list. Consult
the PLOT PLUS for Ferret Users Guide (section “General Global Symbols”) for detailed de-
scriptions of the plot symbols. For example, if we wish to place a label “hello” at the upper
right corner of a plot we might do the following

yes? PLOT/I=1:100 SIN(I/6)
yes? LABEL/NOUSER (pplxlen) (pplylen) 1 0 .2 hello

This labeling procedure would work regardless of the aspect ratio of the plot. Use the com-
mand SHOW SYMBOL/ALL to see the symbols (and see “General Global Symbols” in the
PLOT+ Users Guide).

2 USE WITH EMBEDDED EXPRESSIONS

When used together with Ferret embedded expressions symbols can be used to perform arith-
metic on the plot geometry. For example, this command will locate the plot title in bold at the
center of a plot regardless of the aspect ratio:

yes? LABEL/NOUSER `(pplxlen)/2` `(pplylen)/2` 0 0 .2 @AC($labtit)

3 ORDER OF STRING SUBSTITUTIONS

The above example illustrates that the order in which Ferret performs string substitutions and
evaluates immediate mode expressions in the command line is significant. The successful eval-
uation of the embedded expression `(pplxlen)/2` requires that (pplxlen) is evaluated
before attempting the divide by 2 operation. The order of Ferret string substitutions is as fol-
lows:

1. substitute “GO” command arguments of the form “$1”, “$2”, ...
2. substitute symbols of the form ($symbol_name) (discussed here)
3. substitute command aliases
4. substitute immediate mode mathematical expressions

For example, if the script snoopy.jnl contains

DEFINE SYMBOL fcn = $1
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=(“Result is ”,$2)
ANSWER `($fcn)(($3^2)/2)`+5

then the command

yes? GO snoopy EXP F5.2 2.25

would evaluate to

DEFINE SYMBOL fcn = EXP
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=(“Result is ”,F5.2)
LIST/NOHEAD/FORMAT=(“Result is ”,F5.2) `EXP((2.25^2)/2)`+5

and would result in Ferret output of “Result is 17.57.”

136 CHAPTER 7

HANDLING STRING DATA: “SYMBOLS” 137

4 CUSTOMIZING THE POSITION AND STYLE OF PLOT
LABELS

All of the plot labels generated by Ferret are automatically defined as symbols. This includes
the title ($labtit), X and Y axis labels ($labx),($laby), as well as the position labels (latitude,
longitude, depth, time), which are normally placed at the upper left on a plot (see “Labels,” p.
108). Sometimes it is desirable to change the location, size or fonts of these labels. The symbol
facility makes it possible to do this in a way that is independent of the particular label strings or
plot aspect ratio. See the demonstration script symbol_demo.jnl for an example.

5 USING SYMBOLS IN COMMAND FILES

Often in Ferret command files the identical argument substitutions must be repeated at several
points in the file. Using symbols it is possible to write “cleaner” Ferret scripts in which the ar-
gument substitution occurs only once—to define a symbol which is used in place of the argu-
ment thereafter. See the demonstration script symbol_demo.jnl for an example.

6 PLOT+ STRING EDITING TOOLS

The PLOT+ program provides a variety of tools for editing symbol strings. See the PLOT+
Users Guide for further information. A sample usage:

yes? DEFINE SYMBOL test = my string
yes? PPL SET upper_test $EDIT(test,UPCASE)
yes? SHOW SYMBOL upper_test
UPPER_TEST = “MY STRING”

7 SYMBOL EDITING

Symbols may be edited and checked using the same controls that apply to journal file argu-
ments.

The section of this users guide entitled “Arguments to GO tools” describes the syntax for
checking and editing arguments. The identical syntax applies to symbols. As with the GO tool
arguments (e.g., “$4”), all string manipulations are case insensitive.

In brief, the capabilities include:

default strings

If a symbol is undefined a default value may be provided using the pattern ($my_sym-
bol%my default string%). For example,

($SHAPE%XY%)

check against list of acceptable values

A list of acceptable string values may be provided using the pattern
($my_symbol%|option 1|option 2|%). For example,

($SHAPE%|X|Y|Z|T|%)

will ensure that only 1-dimensional shapes (X, Y, Z, or T) are acceptable.

string substitution

Any of the optional string matches provided can invoke a substitution using the pattern
($my_symbol%|option 1>replacement|%). For example,

($SHAPE%|X>I|Y>J|Z>K|T>L|%)

will substitute I for X or J for Y, etc.

Asterisk (“*”) provides default substitution

The asterisk character matches any string. For example,

($SHAPE%|X|Y|Z|T|*>other%)

will always result in “X,” “Y,” “Z,” “T,” or “other.”

Asterisk (“*”) provides limited string edited

The asterisk character, when used on the right hand side of a string substitution, inserts the
original symbol contents

($SHAPE%|*>The shape is *|%)

error message control

An error message can be provided if the symbol is undefined or doesn’t match any options.
The pattern for this is
($my_symbol%|option 1|option 2|<error message text %). For example,

($SHAPE%|X|Y|Z|T|<Not a 1-dimensional shape%)

138 CHAPTER 7

HANDLING STRING DATA: “SYMBOLS” 139

8 SPECIAL SYMBOLS

There are two symbols, generated automatically by plots, which are not documented in the
PLOT PLUS for Ferret Users Guide. Those are

PPL$XPIXEL
PPL$YPIXEL

the number of pixels in the horizontal (X) and vertical (Y) size of the current Ferret output win-
dow.

Chapter 8: WORKING WITH SPECIAL DATA SETS

1 WHAT IS NON-GRIDDED DATA?

Many data sets which are not normally regarded as “gridded” can nonetheless be managed, an-
alyzed, and visualized effectively in a gridded data framework. Track lines, “point data”, etc.
are common examples of “non-gridded” data. Profiles and time series, although they are indi-
vidually simple one-dimensional grids, have a non-gridded structure when considered as a col-
lection, which is often essential.

This chapter addresses a number of classes of non-gridded data sets and offers approaches that
make it straightforward to work with these data types in Ferret’s gridded data framework. The
approaches are all conceived to facilitate a fusion of these data types—so that multiple data
types may be easily combined in calculations..

“Point data” refers to collections of values at scattered locations and times. An example would
be the column burden of oceanic NO3 and the scattered locations and times at which the mea-
surements were made.

• If at each point of the data scattered there is a vertical profile of values then see
COLLECTIONS OF VERTICAL PROFILES (p. 144).

• If at each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 148).

• If at each point of the data scattered there is a 2-dimensional grid in the ZT plane then see
COLLECTIONS OF TIME SERIES (p. 148).

• If at each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 148).

2 POINT DATA

In a gridded context point data is best viewed as a collection of 1-dimensional variables, where
the axis of each variable is the index value, 1, 2, 3, ... of the individual point in the scatter. Thus,
continuing our example of an oceanic NO3 data set, we would want to view this as four vari-
ables, longitude, latitude, date, and burden, where each variable was defined on a one-dimen-
sional axis of earthquake number. Typically, this sort of data is organized in a table of the form

index longitude latitude year month day NO3
1 160 30 1968 11 -999 6.2
2 33.1 60.2 1992 5 13 5.5
...

WORKING WITH SPECIAL DATA SETS 141

2.1 Getting point data into Ferret

Since point data sets are most commonly available in table form, where the columns of the ta-
ble are the variables and each row of the table is a separate point. Chapter 2, section 5.1 Read-
ing ASCII files (p. 35), example 2 and subsequent examples show how such a file might be
read into Ferret.

For example, let us suppose that the file above is introduced to Ferret with the command

yes? FILE/VAR="index,lon,lat,yr,mn,day,NO3"/SKIP=1 my_data_file.dat
yes? SHOW DATA my_data_file.dat

currently SET data sets:
1> ./my_data_file.dat (default)

name title I J K L
LON LON 1:20480 …
LAT LAT 1:20480 …
YR YR 1:20480 …
MN MN 1:20480 …
DAY DAY 1:20480 …
NO3 NO3 1:20480 …

Note that the SET VARIABLE command would normally be used as well to assign titles, units,
and missing value flags to the variables.

Also note that until the first data is actually requested from the file, Ferret does not know the
size of the file. The /GRID= option may be used to tell Ferret what size to expect. Lacking a
/GRID specification the “1:20480” is the size of the default grid “EZ.” After the first data ac-
cess SHOW GRID will reveal the true size of the file, instead. If the size still appears to be
20480 it may be that the default grid EZ was not large enough, and the /GRID qualifier must be
used to pre-allocate sufficient space.

2.2 How point data is structured in Ferret

In table form (above) each column represents a dependent variable; the column for “burden”
and the column for “latitude” have equal status. In many cases this is an adequate representa-
tion. For example, a plot of NO3 burden versus latitude could be produced with the command

yes? PLOT/VS lat, NO3

To combine point data organized in tables with gridded data sources, say a gridded field of oce-
anic temperature two approaches are available. Either the gridded data may be viewed in the
structure of the table, or the scattered data may be viewed in a geo-referenced 1-dimensional
grid structure. The problem to be solved determines which approach is suitable. The next two
sections describe these two approaches.

142 CHAPTER 8

2.2.1 Working with dates

Ferret V5.0 does not understand formatted dates inside of generic data ASCII files. To use the
dates intelligibly inside of Ferret you

1. Need to get the year, month, and day fields broken out separately or provide a Julian day.
2. Can create a Julian date from year, month, day using function DAYS1900. If a time ori-

gin other that 1-jan-1900 is needed subtract DAYS1900(year0, mon0, day0)
3. Can create an axis of dates as done in the preceding latitude axis example.

See Chapter 4, Section 3.4, “Time” (p. 92) and Chapter 10, Section 3.5.7, “Converting time
word data to numerical data” (p. 171) for details of creating time axes.

2.3 Subsampling gridded fields onto point data locations and times

Ferret can be used as a tool to extract variables from gridded data sets at time/space locations to
match the scatter of the point data. In this form they may, effectively, be combined into the table
of data read from the ASCII (or binary) file. For example, suppose we want to obtain values of
sea surface temperature at the locations of our NO3 samples, from a climatological annual av-
erage SST field. This may be accomplished simply with

yes? use coads climatology
yes? let ssttav = sst[l=1:12@ave]
yes? let my_lon = lon[d=my_data_file.dat]
yes? let my_lat = lat[d=my_data_file.dat]
yes? LET sst_xy = SAMPLEXY(ssttav, my_lon, my_lat)

Suppose that, instead our SST variable was a monthly climatology field. The variable sst_xy as
defined above would then have a two-dimensional structure: sample index by 12 months. To
sample in time, as well, we use

yes? LET sst_t = SAMPLET_DATE(sst_xy,0,mn,day,0,0,0)

Note that the year was entered simply as 0, since SST is a climatological variable.

2.4 Defining gridded variables from point data

For some calculations one may want to let Ferret know which of the variables are dependent
(measurements) and which are independent (coordinates). For example, suppose we wish to
compute the average column burden of NO3 as a function of latitude. Burden here is an integral
of the concentration NO3 over depth. For this, we will want to see our variable burden on an
axis of latitude.

The steps to do this are

WORKING WITH SPECIAL DATA SETS 143

1. In general, the latitude variable will not be sorted into strictly increasing order — needed
to create an axis. Determine the sorting order for latitude using
yes?LET lat_index = SORTI(lat)

2. Create a latitude grid
yes? DEFINE AXIS/FROM/NAME=lat_ax/Y/UNITS=degrees SAMPLEI(lat_index,
lat)

yes? DEFINE GRID/Y=lat_ax glat
yes? LET NEW = index[g=glat] ! a dummy variable to use in RESHAPE below

3. Define your function for the burden based on the variable NO3, on the command line or
using your script my_brdn.jnl.
yes? GO my_brdn NO3 burden

4. Define a new variable burden_on_lat using this axis
yes? LET sorted_burden = SAMPLEI(lat_index, burden)
yes? LET burden_on_lat = RESHAPE(sorted_burden, glat)

5. Now, to plot the NO3 burden averaged into 5 degree latitude bands we could use
yes? PLOT burden_on_lat[Y=60s:30n:5@AVE]

2.5 Visualization techniques for point data

Scattered point data can be displayed in a number of ways.

A simple scatter plot showing the locations of points

yes? PLOT/VS lon,lat
yes? GO land

Use GO/help land for an explanation of resolving incompatible longitude encodings, should
they arise.

A scatter plot in which the symbols are colored by value with control over the color palette and
resolution can be made using the polymark.jnl script. For example, to plot using stars symbols
in color levels by 10s use

yes? GO polymark POLYGON/LEV=(0,100,10) lon lat NO3 star.

Type GO/HELP polymark for more options.

See also Chapter 6 on Map Projections (p. 128) for guidance on plotting scattered data. The
map projection scripts can be used in conjunction with the above.

3 VERTICAL PROFILES

A single profile, possibly consisting of multiple variables, can be regarded as a simple 1-di-
mensional data set. Ferret’s plotting and analysis tools apply in a straightforward manner.

Collections of profiles resemble point data sets in their X,Y, and T structure, however at each
point there is a 1-dimensional Z-axis structure. In general, the Z axes at each point may differ.

144 CHAPTER 8

3.1 How collections of profiles are structured in Ferret

If the collection of profiles is sufficiently small (say 4 or fewer) then it is straightforward to
handle them simply as 4 separate data sets. The D= qualifier may be used to designate which
profile is being referred to. The IF ... THEN ... ELSE syntax may be used to combine the pro-
files into expressions.

As the number of profiles in the collection grows larger, however, it becomes necessary to
merge them into a single structure. Typically, the sequence number of the profile, 1, 2, ...,N, be-
comes the X axis of the collection. The longitude, latitude, and time of each profile become de-
pendent variables indexed by the sequence number. The Z structures of the profiles are blended
into a single Z axis by a choice of techniques. The steps to creating a blended data set then be-
come:

1. Determine the nature of the Z axis to be used and the collection of variables to be defined
on the grid

2. Create an empty grid with the desired structure in a file
3. Populate the file with the profiles, each profile in turn.

The determination of the Z axis structure may be by any of these techniques:

1. Supply an arbitrary Z axis to which all of the individual profiles will be regridded by lin-
ear interpolation. This technique produces a data set which is very easy to work with and
small in size, however, some of the data have been altered by linear interpolation. The de-
fault Ferret regridding (GZ=@LIN) is used for this technique.

2. Create a Z axis which is a superset of the Z axis points from all of the grids. In the final
data set this axis will be sparsely populated, containing only those Z points that were actu-
ally present in each profile.

3. This technique produces a data set which is 100% faithful to the original data and reason-
ably easy to work with, but may become very large if the number of profiles is large and
the Z axes vary greatly. Ferret “exact match” regridding (GZ=@XACT) is used for this
technique.

4. Do not create a Z axis at all — instead store the Z coordinates as a dependent variable.
The Z axis becomes simply an index counter of length equal to the longest profile. This
technique produces a data set which is 100% faithful to the original data and of modest
size, however it is the most laborious to work with.

The choice of technique depends on the nature of the profile collection and the types of analysis
or visualization to be done. Often it is desirable to combine technique 1, which is fast and sim-
ple with 2 or 3, which can be used for spot checking if there is a question of data fidelity. If
method 3 is chosen (Z coordinates in a dependent variable) the techniques for handling the
variables are very similar to sigma coordinate data, described in a separate section of this chap-
ter (p. 149).

WORKING WITH SPECIAL DATA SETS 145

3.2 Getting profile data into Ferret

As of 4/99 the approaches to merging collections of profiles into a single structure are still
“manual.” (Data which are stored as global attributes in the input files, as is done in EPIC files,
are lost in this process.) This text describes an example of the manual process used, where the
target Z axis is created arbitrarily and data are interpolated to it. In this example the profiles are
read from ASCII files, so the Z axis of each profile has to be created. This example does not
save the longitude, latitude, and time positions of the casts.

! for this example we begin by manufacturing some data
! ... pretend this is one of your casts - unequal vertical spacing
list/file=test_cast.dat/nohead/form=(2f)/i=1:10 10*i+randu(i), sin(i/6)

! create a grid suitable for ALL casts together
! make the points regular in X and Z ... they need not be, however
define axis/depth/z=0:1000:20/unit=meters zall ! ARBITRARTY Z AXIS
define axis/x=0:9:1/unit="sequence" xall
define grid/x=xall/z=zall gall

! create an empty output file
! if we were reading netCDF files we would create variables to hold
! longitude, latitude, and time (year, month, day).
! A latitude output variable, for example, is created below
let outvar = 1/0 * x[g=gall] * z[g=gall]
set variable/title="My merged var"/units="my units" outvar
save/file=all_casts.cdf/ilimits=1:10/zlimits=0:1000 outvar
let lat = 1/0*X[gx=gall]
set variable/title="Latitude"/Units="degrees" lat
save/append/file=all_casts.cdf/ilimits=1:10 lat

! read in a single cast (the fake data we created)
! if we were reading a NetCDF file this block would be unnecessary
file/var=depth,invar test_cast.dat
define axis/from_data/z/depth/name=z1cast/unit=meters depth ! make Z

! axis for 1 profile
define axis/x=0:0:1/unit="sequence" x1cast ! sequence no. of first cast
define grid/x=x1cast/z=z1cast g1cast
canc data 1

! save first cast interpolated to many-point Z axis
file/var="-,invar"/grid=g1cast test_cast.dat
let outvar = invar[g=gall]
save/append/file=all_casts.cdf outvar[I=1]
canc data 1
! if available, output latitude thusly
! LET lat = 0*X[g=gall] + RESHAPE(Y[G=invar],X[gx=gall])
! SAVE/append/file=all_casts.cdf lat[I=1]

! save next cast
define axis/x=1:1:1/unit="sequence" x1cast ! X position of 2nd cast
file/var="-,invar"/grid=g1cast test_cast2.dat
save/append/file=all_casts.cdf outvar[I=2]
canc data 1

! etc for next 8 casts …
! This may be automated with: REPEAT/I=1:10 GO output_one_profile
! where the script output_one_profile.jnl reads profile file names from a
list

The output data set which we create will be structured as follows:

146 CHAPTER 8

yes? use all_casts
yes? show data

currently SET data sets:
1> ./all_casts.cdf (default)

name title I J K L
OUTVAR My merged var 1:10 ... 1:51 …
LAT Latitude 1:10 …

3.3 Defining vertical sections from profiles

In the data set created above the profiles may or may not be ordered as needed to create a valid
section. There are many possible ways to order the data. Often more than one technique is ap-
plicable to a single data set. The data may be ordered along a ship track, ordered by increasing
latitude, ordered by path distance along a regression line, etc.

Continuing with the example above, we can order the profiles into increasing latitude with:

yes? let order = SORTI(lat)
yes? let section = SAMPLEI(order, outvar)

Other definitions of the variable order may be created by straightforward means to apply other
ordering principles.

As defined above, “section” has an X axis which is the values 1, 2, 3,...N from the Ferret
ABSTRACT axis. To cast this on a proper latitude axis, use these two steps:

yes? DEFINE AXIS/Y/NAME=yax_sect/FROM_DATA/UNITS=degrees SAMPLEI(order,lat)
yes? LET ysection = RESHAPE(section,Y[gy=yax_sect]+Z[gz=all])

3.4 Visualization and analysis techniques for profile sections

The variables “section” and “ysection” defined above may be plotted and analyzed with the
normal gridded plot commands. For examples,

yes? CONTOUR section ! contour plot ordered on X=1,2,3,...
yes? FILL ysection ! color contour plot on formatted latitude axis
yes? PLOT/Y=20S/Z=100:500 ysection ! profile at 20 south
yes? PLOT ysection[Z=@loc:20] ! depth of 20 degree isotherm

3.5 Subsampling gridded fields onto profile coordinates and times

The technique described for sampling grids at scattered point values will work unmodified for
collections of vertical profiles. The Z coordinate of the gridded variable will be retained un-
modified throughout the sampling operations. Regrid the final result variable to other Z axes as
desired.

WORKING WITH SPECIAL DATA SETS 147

4 COLLECTIONS OF TIME SERIES

Handling of collections of time series is analogous to handling collections of vertical profiles,
described above. The choices of

1. a single interpolated time axis (using the default, GT=@LIN, regridding)
2. a super-set of all times axis (using “exact match,” GT=@XACT, regridding)

should be considered. Choice 3, in which time would be handled as an independent variable, is
possible, but awkward, due to the multiplicity of time encodings.

5 COLLECTIONS OF 2-DIMENSIONAL GRIDS

Handling collections of 2-dimensional grids (e.g. ZT grids from acoustic current profilers) is a
straightforward extension of the techniques described under collections of profiles. If the time
axes of the input grids are all identical, no additional work is needed beyond the techniques de-
scribed there. If the time axes differ then follow the guidance given under Collections of Time
Series, using intermediate variable definitions that reconcile the time axes into a single uniform
axis before saving the input variables into a merged output file.

6 LAGRANGIAN DATA

Lagrangian data (ship tracks, drifters, etc.) is a special case of scattered point data described in
a preceding section. In the terminology of “Defining gridded variables from point data”
Lagrangian data is simply point data organized onto a 1-dimensional time axis grid.

6.1 Visualization techniques for Lagrangian data

Ferret has several visualization tools that specifically address the needs of Lagrangian data.
There are three scripts:

polymark
(polymark_demo)

marks value-colored symbol at each location

polytube (polytube_demo) creates a line following the Lagrangian track with color
varying according to a Lagrangian variable

trackplot (trackplot_demo) creates a line plot of a Lagrangian variable where the zero
line of the plot follows the Lagrangian track

Overlays of the trackplot script are useful to visualize more than one variable. Run the demon-
stration scripts noted above for each tool for an example of its use with Lagrangian data.

148 CHAPTER 8

7 SIGMA COORDINATE DATA

With sigma coordinate data the vertical coordinate (or layer thickness) is available as a depend-
ent variable and the Z axis of the sigma-encoded variables is layer number (the Z index). This is
precisely analogous to method 3 of handling collections of profiles, above.

See also the FAQ on Using Sigma Coordinates.

7.1 Visualization techniques for sigma coordinate data

Visualizations of sigma coordinate data in vertical section planes are best handled with the
3-argument versions of the SHADE, FILL, CONTOUR and VECTOR commands. See further
information in Customizing Plots (Chapter 6, p. 103).

For visualization of sigma coordinate data in other planes or orientations use the techniques de-
scribed in the next section.

7.2 Analysis techniques for sigma coordinate data

Analysis of sigma coordinate data, which requires shifting to depth or pressure coordinates, is
facilitated by the function ZAXREPLACE, which converts from layer number to other vertical
coordinate axes. If the data set provides layer thickness rather than depth a depth variable may
be created using integration with @iin.

8 CURVILINEAR COORDINATE DATA

By “curvilinear coordinate data” we refer to data which is curvilinear in in the XY plane there.
We presume that the X,Y coordinates (typically longitude, latitude) are available through other
dependent variables.

8.1 Visualization techniques for curvilinear coordinate data

Visualizations of curvilinear coordinate data in the XY plane section planes are best handled
with the 3-argument versions of the SHADE, FILL, and Contour commands. See further infor-
mation in Customizing Plots (Chapter 6, p. 103).

For visualization of curvilinear coordinate data in other planes or orientations use the tech-
niques described under “Analysis techniques for curvilinear coordinate data.”

WORKING WITH SPECIAL DATA SETS 149

../../../FAQ/data_management/sigma_coordinate_demo.html

8.2 Analysis techniques for curvilinear coordinate data

Analysis of coordinate coordinate data, may be done in the curvilinear coordinate system or in
a rectilinear (including lat-long) coordinate system. If the analysis is done in the curvilinear co-
ordinate system, it is the responsibility of the user to ensure that the proper geometric factor are
applied when integrals and derivatives are computed. Converting other fields to the curvilinear
coordinate system is most easily accomplished with the function SAMPLEXY.

To perform the analysis in a rectilinear coordinate system, the conversion of the curvilinear
data is most easily done with SAMPLEXY_CURV (under development—7/99).

9 POLYGONAL DATA

By “polygonal data” we refer to a class of point data set where each point represents a polygo-
nal region rather than a single coordinate. An example of polygonal data would be a value asso-
ciated with each state in the United States.

9.1 Visualization techniques for polygonal data

Visualizations of polygonal data is best handled with the POLYGON command. If the coordi-
nates of the polygon vertices are available in 2-dimensional arrays, xpoly and ypoly, in which
the axes of the arrays are the polygon vertices and the sequence of polygons the use of the
POLYGON command is straightforward. The POLYGON command can also handle se-
quences of polygons encoded in 1-dimensional arrays with missing values separating each
polygon.

9.2 Analysis techniques for polygonal data

Ferret version 5.0 does not have any tools specifically addressing the analysis of polygonal
data sets. The analysis of these data sets in Ferret requires the creation of a gridded mask field
corresponding to the polygonal regions (an external function could be written that would create
a gridded mask of arbitrary resolution from polygonal coordinates.)

Once the mask is created, the standard gridded operators for averaging, integrating, etc. can be
used. For example, if variable cal_mask contains a gridded mask of the state of California on
latitude and longitude axes of 10 minute resolution then this definition would compute the av-
erage of a gridded variable, var, over California:

yes? let cal_var = mask * var[g=mask]
yes? let cal_average = cal_var[x=@ave, y=@ave]

150 CHAPTER 8

Chapter 9: COMPUTING ENVIRONMENT

1 SETTING UP AN ACCOUNT

This discussion assumes that Ferret is already installed on your system. Installation documen-
tation is available separately from node abyss.pmel.noaa.gov.

STEP 1

Execute interactively or add to your .login file the Unix C-shell command

% source /usr/local/ferret_paths

(Note: If this command doesn’t work consult your system manager, who may have placed
ferret_paths in a different directory.)

The Ferret program requires access to several files and directories. These Unix paths are
stored in environment variables defined by the file “ferret_paths”. Your Unix account must
be “made aware” of where the Ferret utilities are located. This is done by adding to the defi-
nition of your environment variable PATH the directory “$FER_DIR/bin”. Unless your sys-
tem manager has modified the typical setup, this will occur automatically when you execute
the above command.

STEP 2 (personal customizations—optional)

Execute the “cp” command below:

% cp $FER_DIR/bin/my_ferret_paths_template \

$HOME/my_ferret_paths

Then use a text editor to customize my_ferret_paths. Instructions are inside the file.

Some of the Ferret environment variables identify files and directories that are integral to
the Ferret program, but others identify files that you may maintain—your data files, GO
scripts, and palette files, for example. (The environment variables that you may want to cus-
tomize are discussed at the end of this section.) To assist in customizing the Ferret environ-
ment variables the template file in the “cp” command, above, has been provided. The file is
self-explanatory.

STEP 3

Execute the command below interactively or add it to your .login file.

% setenv DISPLAY node:0.0 e.g., % setenv DISPLAY anorak:0.0

COMPUTING ENVIRONMENT 151

This command sets the environment variable “DISPLAY” to point to the workstation con-
sole or X-terminal where you want Ferret graphical output displayed. In the example above,
graphical output is directed to the screen of workstation “anorak.”

2 FILES AND ENVIRONMENT VARIABLES USED BY FERRET

.ferret—the Ferret initialization file. This optional file holds a list of Ferret commands that will
be executed immediately each time Ferret is started, permitting Ferret to be tailored to individ-
ual needs and styles. The file must be located in your $HOME (login) directory. A simple way
to set up such a file is to enter Ferret, enter the commands that you want executed each time you
enter Ferret, exit Ferret and rename the file “ferret.jnl” to “.ferret”. Thereafter, all commands in
“.ferret” will be executed automatically whenever you enter Ferret.

The following environment variables are defined in the file ferret_paths:

FER_DATA—a list of directories to be searched to locate data files. Usually this list includes
“.”, the current directory, and $FER_DSETS/data, a directory of sample data sets provided
with Ferret. Your system manager may have set this variable to include other data areas as
well. This is the list of directories searched to locate NetCDF files.

FER_DESCR—a list of directories to be searched to locate descriptor files. Descriptors are re-
quired by Ferret to access data sets that are in Ferret’s “GT” (grids at timesteps) or “TS”
(time series) formats. Usually this list includes “.”, the current directory, and
$FER_DSETS/descr, a directory of sample descriptors provided with Ferret.

FER_GRIDS—a list of directories to be searched to locate grid definition files. Data sets will
usually have a grid definition file associated with them so that the grids on which the data
are defined may be known.

FER_DIR—top directory of the Ferret distribution on your system.

FER_DSETS—directory of sample data sets provided with the Ferret distribution.

FER_PALETTE—a list of directories to be searched to locate palette files. Usually this list in-
cludes “.” and $FER_DIR/ppl.

FER_GO—a list of directories to be searched to locate GO scripts. This list usually includes
“.”, $FER_DIR/go, $FER_DIR/examples (demonstrations and tutorial), and
$FER_DIR/contrib (user contributions demonstrating various applications; accuracy not
guaranteed).

FER_EXTERNAL_FUNCTIONS—a list of directories to be searched to locate the shared ob-
ject files (.so files) for external functions. By default this list includes the location of the ex-
ample functions and the functions included with the Ferret distribution.

152 CHAPTER 9

3 MEMORY USE

Ferret indicates memory problems by issuing the error message “insufficient memory.” If
memory is a problem running Ferret the following suggestions may help:

1) Use the command SET MEMORY/SIZE=nnn to increase the memory cache region avail-
able to Ferret.

2) Use the command SET MODE DESPERATE to determine the threshold size of memory
objects at which Ferret will break a large calculation into fragments. A smaller argument
value will induce stricter memory management but at a penalty in performance.

3) Use CANCEL MEMORY whenever you are sure that the data referenced thus far by Ferret
will not be referenced again. This is particularly appropriate to batch procedures that use
Ferret. This eliminates any memory fragmentation that may be left by previous commands.

4) Use CANCEL MODE SEGMENTS to minimize the memory usage by graphics (on a few
X-window systems this may prevent windows from being restored after they are obscured).

5) When using DEFINE VARIABLE (alias LET) avoid embedding upper and lower axis
bounds within the variable definition. Ferret cannot split up large calculations along axes
when the limits are fixed in the definition. For example,

yes? LET V2=TEMP/10
yes? PLOT/K=1:10 V2

is preferable to

yes? LET V2=TEMP[K=1:10]/10
yes? PLOT V2

6) Try to group together calculations that are on smaller dimensioned objects. For example, the
expression VAR[i=1:100, j=1:100]*2*PI will make less efficient use of cpu and memory
than the expression VAR[i=1:100, j=1:100]*(2*PI). The former multiplies each of the
10000 points of VAR by 2 and then performs a second multiplication of the 10000 result
points by PI. The latter computes the scalar 2*PI and uses it only once in multiplying the
10000 points of VAR.

7) If one has SET MODE STUPID:weak_cache, then make sure that the region is fully defined
(i.e., check SHOW REGION and check the region qualifiers of your command). When the
region along some axis is not specified Ferret defaults to the full span of the data along that
axis and is unable to optimize memory usage.

COMPUTING ENVIRONMENT 153

4 HARD COPY AND METAFILE TRANSLATION

4.1 Hard copy

To obtain hard copy of plots produced by Ferret, follow these steps:

1) Within Ferret, enter the command

yes? SET MODE METAFILE

This tells Ferret to generate a graphic metafile (ANSI/ISO GKSM format) for each plot cre-
ated thereafter. To stop making the metafiles type

yes? CANCEL MODE METAFILE

2) Produce each plot as you would normally. Each new plot on your screen generates an addi-
tional file named “metafile.plt.~n~” where “n” will be incremented for each metafile. Over-
lay commands do not produce additional metafiles. (The metafile name may be set by the
SET MODE METAFILE command.)

3) After exiting from Ferret use the command Fprint.

Note: If it is necessary to use Fprint without exiting Ferret, then issue
the command yes? PPL CLSPLT. This will close the current metafile.
Note that neither overlays nor additional viewports can be added to
the plot after the metafile has been closed.

Fprint is a script which translates metafiles generated by Ferret. It uses the program “gksm2ps”
and is intended to simplify sending plots to printers, to an output file only, or to a workstation
screen.

For monochrome printers the metafile translator, gskm2ps, uses different line styles (dash-dot
patterns) rather than colors for different lines. See Appendix I of Plotplus Plus: Enhancements
to Plotplus for a complete list of line styles for monochrome devices.

The Fprint script translates metafiles to Encapsulated PostScript or X-window output. Your
system manager should customize the script at your site to permit your specification of the ac-
tual printers you have as output devices. Fprint uses standard Unix command line syntax.

Fprint [-h] [-P printer || -o file_name || -X]

[-p orient] [-# n] [-l line] [-R] metafile(s)

154 CHAPTER 9

Options

-h displays help on your terminal.

-P printer Routes output to named printer. Files will not be renamed by previewing.
You will be prompted, however, with an option to delete each metafile after
previewing. The output window size will be equivalent to the default size
in Ferret (SET WINDOW/SIZE=0.7).

-o file_name Routes output to named disk postscript file.

-X Routes output to your workstation screen. Files will not be renamed by pre-
viewing. You will be prompted, however, with an option to delete each
metafile after previewing. The output window size will be equivalent to the
default size in Ferret (SET WINDOW/SIZE=0.7).

-p orient The page orientation option determines whether the plot will be placed on
the page in landscape format, with the horizontal side longer than the verti-
cal, or portrait, with the vertical side longer. Valid option values are “land-
scape” and “portrait”. The default behavior is to orient the plot to best fit
the page.

-# n Specifies number of copies (n).

-l line This option lets you specify line styles. Valid options are “ps” and “cps”.
“ps” uses dot-dashed line types; “cps” uses colored lines. The default is
“ps” for monochrome printers and “cps” for color printers.

-R Turns off the default behavior of the metafile translator to append a date
stamp to metafile names when they are sent to a printer or a disk file. The
default action is intended to distinguish metafiles that have been printed
out; this option keeps the metafile names unmodified.

Examples

% Fprint metafile.plt

renders “metafile.plt” on the default printer identified by the environment
variable PRINTER.

% Fprint -P myprinter -R metafile.plt*

renders all versions of “metafile.plt” on printer myprinter. Does not date
stamp them.

% Fprint -o my_plot.ps metafile.plt.~1~

writes plot “metafile.plt.~1~” to a postscript file named “my_plot.ps”.

COMPUTING ENVIRONMENT 155

4.2 Metafile translation

The command “gksm2ps” allows you to control the translation of the device-independent
metafiles made by Ferret into device-specific output files. “gksm2ps” was written by Larry
Oolman at the University of Wyoming and modified at NOAA/PMEL for use with Ferret. The
“gksm2ps” command uses standard Unix command line syntax. See usage hints provided by
the -h option.

gksm2ps [-h] [-p landscape||portrait] [-l ps||cps] [-d cps||phaser] \

[-X || -o <ps_output_file>] [-R] [-a] [-g WxH+X+Y] file(s)

Options

-h prints help message.

-p orient The page orientation option determines whether the plot will be placed
on the page in landscape format, with the horizontal side longer than the
vertical, or portrait, with the vertical side longer. The default is to orient
the plot to best fit the page.

-l line This option permits specification of line styles in the hardcopy plot. Valid
options are “ps” (the default) and “cps”. “ps” renders lines as solid and
dot-dashed and is suited for monochrome printers. “cps” renders lines in
color.

-d devtype The target device type of the translator. If the -d option is omitted and
output is to a file gksm2ps will use devtype “ps”.

Valid devtype values:

Cps – color PostScript
phaser – Tektronix Phaser PX. The phaser is a PostScript printer, but it

uses transfer sheets that reduce the usable page size.

-X Sends the output to your X-window for preview.

-o ofile The output will be directed to the file “ofile.” Omit both this and the de-
vice type option when directing output to your workstation screen with
-X. If neither -o nor -X is specified, gksm2ps creates a postscript file in
the current directory called “gksm2ps_output.ps”.

-a Makes the plot the size of the original plot as specified in PPLUS inches
(absolute size), rather than fitting the plot to the page (the default behav-
ior).

-g WxH+X+Y The -g option (-g WxH+X+Y) provides detailed control over the size,
position, and aspect ratio of the plot on the printed page. The arguments
W, H, X, and Y are given in units of points (1/72 of an inch).

Normally when using this option you will want to specify an identical
value for both W and H—the size (in points) you want the longer dimen-
sion of the plot to be. Unequal values of W and H will alter the aspect ra-
tio of the plot relative to its appearance on your workstation screen.

156 CHAPTER 9

Options

The X and Y values are the offset of the lower left corner of the plot from
the lower left corner of the page. If you want your plot’s longer side to be
5 inches long, 3 inches right from the corner, and 2 inches up, for exam-
ple, specify

> lpr my_plot.ps

-R Turns off the default behavior of the metafile translator to append a date
stamp to metafile names when they are sent to a printer or a disk file. The
default action is intended to distinguish metafiles that have been printed
out; this option keeps the metafile names unmodified.

If the user does not specify an output option (-o or -X) gksm2ps translates the metafile and pro-
duces a PostScript file called gksm2ps_output.ps. After translation by gksm2ps, metafiles are
renamed with a date stamp unless -R was specified. To get hard copy printed, the output Post-
Script file needs to be sent to the appropriate printer.

5 OUTPUT FILE NAMING

Ferret uses a file naming scheme to differentiate successive graphic metafiles and journal files.
The scheme is styled after the gnu (Free Software Foundation) emacs editor. The scheme ap-
pends numbers to the end of the file name as in the following examples:

Metafile.plt.~2~
metafile.plt.~12~
metafile.plt

The third example, “metafile.plt” with no suffix appended, is the most recent file. When the
next successive file is created, this file will have the suffix “.~nnn~” appended to its name.
“nnn” is the current highest file suffix number plus one.

Two Unix tools are provided to assist with managing multiple file suffix numbers:

Fpurge removes all but the current version of the named file (that is, all but the most re-
cent).
Example: % Fpurge ferret.jnl

Fsort sorts the versions of a file into increasing numerical order
Example: % Fprint ‘Fsort metafile.plt*’

See Chapter 1 section “Unix tools,” p. 22, for further information.

COMPUTING ENVIRONMENT 157

6 INPUT FILE NAMING

There are several Ferret commands that use filenames. These include:

GO filename
SET DATA filename
LIST/FILE=filename (do not use relative versions (below) with LIST)
USER/FILE=filename
SET MODE META filename
SET MODE JOURNAL filename
SET MODE PPLLIST filename

The filename specified can be just the filename itself, or it can include the path to the file. For
example:

GO ferret.jnl or GO “/home/disk1/jnl_files/far_side.jnl”

Note that if the path is specified as part of the filename, the entire name must be enclosed in
quotation marks.

6.1 Relative version numbers

Under some circumstances (see the GO command, p. 222) a special syntax called “relative ver-
sion numbers” will apply. If a filename has a version value of zero or less its value is interpreted
relative to the current highest version number.

For example, if the current directory contains the files

ferret.jnl ferret.jnl.~1~ ferret.jnl.~2~ ... ferret.jnl.~99~

then the filename ferret.jnl.~0~ refers to ferret.jnl and the filename ferret.jnl.~-1~

refers to ferret.jnl.~99~.

The syntax for relative version numbers is quite flexible. For example, if the desired file is fer-
ret.jnl.~99~, both of the following are valid:

yes? GO ferret.jnl.~-1~ or yes? GO ferret.jnl~-1

158 CHAPTER 9

Chapter 10: CONVERTING TO NetCDF

1 OVERVIEW

The Network Common Data Format (NetCDF) is an interface to a library of data access rou-
tines for storing and retrieving scientific data. NetCDF allows the creation of data sets that are
self-describing and network-transparent. NetCDF was created under contract with the Divi-
sion of Atmospheric Sciences of the National Scientific Foundation and is available from the
Unidata Program Center in Boulder, Colorado (on Internet: unidata.ucar.edu).

This chapter provides directions for creating NetCDF data files. In addition to the documenta-
tion provided here, refer to the NetCDF User’s Guide, published by Unidata Program Center,
for further guidance. A user who uses and creates NetCDF files within the Ferret environment
needs no additional software.

NetCDF is a very flexible standard. In most cases there are multiple styles or profiles that could
be used to encode data into NetCDF. To resolve the ambiguities inherent in this multiplicity
communities of users have banded together to develop profiles—documents that provide more
detail on how data should be encoded into NetCDF. Ferret adheres to the COARDS standard.
The full standard is available through the Ferret home page on the World Wide Web.

2 SIMPLE CONVERSIONS USING FERRET

In straightforward conversion operations where ASCII or unformatted binary data files are al-
ready readable by Ferret, the conversion to direct access, self-describing NetCDF formatted
data can be accomplished by Ferret itself. The following set of examples illustrates these pro-
cedures:

Example 1

Consider an ASCII file uv.data, with two variables, u and v, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a NetCDF format-
ted data set:

yes? DEFINE AXIS/x=1:360:1/units=degrees xaxis
yes? DEFINE AXIS/y=1:180:1/units=degrees yaxis
yes? DEFINE GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR="u,v" uv.data
yes? SET VARIABLE/TITLE="zonal velocity" u
yes? SAVE/FILE=uv.cdf u,v

See command DEFINE AXIS in the Commands Reference (p. 211). See Chapter 4 (p. 77) for
setting up formatted latitude, longitude and time axes.

CONVERTING TO NETCDF 159

Example 2

Consider now two separate ASCII files, u.data and v.data, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a single NetCDF
formatted data set:

yes? DEF AXIS/x=1:360:1/units=degrees xaxis
yes? DEF AXIS/y=1:180:1/units=degrees yaxis
yes? DEF GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR=u u.data
yes? FILE/GRID=uv_grid/BAD=-999/VAR=v v.data
yes? SAVE/FILE=uv2.cdf u[D=1]
yes? SAVE/APPEND/FILE=uv2.cdf v[D=2]

Example 3—multiple time steps

Consider 12 ASCII files, uv.data1 to uv.data12, each defined on the same grid as above but
each representing a successive time step. The following set of commands illustrates how to
save these data into a single NetCDF data set (time series):

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/t=1:1:1 taxis1
yes? DEF GRID/x=xaxis/y=yaxis/t=taxis1 uv_grid1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? SAVE/FILE=uv1_12t.cdf u,v
yes? CANCEL DATA uv.data1
yes? DEF AXIS/t=2:2:1 taxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/APPEND/FILE=uv1_12t.cdf u,v
. . .

and so on, redefining the time axis to be 3:3:1, 4:4:1, ... each time a new file is set.

Example 4—multiple slabs

The procedure used in example 3, above, is possible because NetCDF files can be extended
along the time axis. In order to append multiple levels (Z axis), the NetCDF file must first be
created including all of its vertical levels (the levels initially are filled with a missing data flag).

Consider 5 ASCII files, uv.data1 to uv.data5, each defined on the same grid as above but each
representing a successive vertical level. The following set of commands illustrates how to save
these data into a single NetCDF data set:

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/Z=0:100:25/DEPTH zaxis
yes? DEF GRID/X=xaxis/Y=yaxis/Z=zaxis uv_grid
yes? DEF AXIS/Z=0:0:1 zaxis1
yes? DEF GRID/LIKE=uv_grid/Z=zaxis1 uv_grid1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? LET/TITLE="My U data" u1 = u[G=uv_grid]
yes? LET/TITLE="My V data" v1 = v[G=uv_grid]
yes? SAVE/FILE=uv1_5z.cdf/KLIMITS=1:5 u1, v1
yes? CANCEL DATA uv.data1

160 CHAPTER 10

yes? DEF AXIS/Z=25:25:1 zaxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/FILE=uv1_5z.cdf/APPEND u1,v1
. . .

The NetCDF utilities “ncdump” and “ncgen” can also be combined with a text editor to make
final refinements to the NetCDF files created by SAVE. (These utilities are not provided with
the Ferret distribution; they can be obtained from unidata.ucar.edu.) Here is a simple example
that removes all “history” attributes from a NetCDF file using pipes and the Unix “grep” util-
ity:

% ncdump old_file.cdf | grep -v history | ncgen -o new_file.cdf

3 WRITING A CONVERSION PROGRAM

There are three steps required to convert data to NetCDF if your data is not already readable by
Ferret:

1. Create a CDL (the ASCII NetCDF Description Language) file that describes the axes, grids,
and variables of the desired output data set. Note: Ferret itself often provides the simplest
way to create the CDL file (see the following section).

2. Convert this CDL file into a NetCDF file with the ncgen utility.

3. Create a program that will read your particular data and insert them into the NetCDF file.
The ncgen utility will create most of the FORTRAN or C code needed for this task.

The file converting_to_netcdf.f which is located in the Ferret documentation directory
($FER_DIR/doc) contains a complete description and example of these three steps. The re-
mainder of this section provides further details.

3.1 Creating a CDL file with Ferret

Suppose that we wish to create a CDL file to describe a data set entitled “My Global Data”
which contains variables u and v in cm/sec on a 5×5 degree global lat/long grid. The following
commands would achieve the goal with Ferret doing the majority of the work:

• From Ferret issue the commands

DEFINE AXIS/X=2.5E:2.5W:5/UNITS=degrees xlong
DEFINE AXIS/Y=87.5S:87.5N:5/UNITS=degrees ylat
DEFINE GRID/X=xlong/Y=ylat my_grid
LET shape_2d = x[G=my_grid]+y[G=my_grid]
LET U = 1/0*SHAPE_2D
LET V = 1/0*SHAPE_2D
SET VARIABLE/TITLE="Zonal Velocity"/UNITS="cm/sec" u
SET VARIABLE/TITLE="Meridional Velocity"/UNITS="cm/sec" v

CONVERTING TO NETCDF 161

SAVE/FILE=my_file.cdf/TITLE="My Global Data" u,v
QUIT

• From Unix issue the command

ncdump -c my_file.cdf > my_file.cdl

The resulting file my_file.cdl is ready to use or to make final modifications to with an editor.

3.2 The CDL file

A CDL file consists of three sections: Dimensions, Variables, and Data. All of the following
text in Courier font constitutes a real CDL file; it can be copied verbatim and used to gen-
erate a NetCDF file. The full text of this file is included with the Ferret distribution as
$FER_DIR/doc/converting_to_netcdf.basic.

netcdf converting_to_netcdf.basic {

3.2.1 Dimensions

In this section, the sizes of the grid dimensions are specified. One of these dimensions can be of
“unlimited” size (i.e., it can grow).

Dimensions:

lon = 160 ; // longitude
lat = 100 ; // latitude
depth = 27 ; // depth
time = unlimited ;

These are essentially parameter statements that assign certain numbers that will be used in the
Variables section to define axes and variable dimensions. The “//” is the CDL comment syntax.

3.2.2 Variables

Variables, variable attributes, axes, axis attributes, and global attributes are specified.

variables:

float temp(time, depth, lat, lon) ;
temp: long_name = “TEMPERATURE” ;
temp: units = “deg. C” ;
temp: _FillValue = 1E34 ;

float salt(time, depth, lat, lon) ;
salt: long_name = “(SALINITY(ppt) - 35) /1000" ;
salt: units = ”frac. by wt. less .035" ;
salt: _FillValue = -999. ;

162 CHAPTER 10

The declaration “float” indicates that the variable is to be stored as single precision, floating
point (32-bit IEEE representation). The declarations “long” (32-bit integer), “short” (16-bit in-
teger), “byte” (8-bit integer) and “double” (64-bit IEEE floating point) are also supported by
Ferret. Note that although these data types may result in smaller files, they will not affect Fer-
ret’s memory usage, as all variables are converted to “float” internally as they are read by Fer-
ret.

Variable names in NetCDF files should follow the same guidelines as Ferret variable names:

• case insensitive (avoid names that are identical apart from case)
• 1 to 24 characters (letters, digits, $ and _) beginning with a letter
• avoid reserved names (I, J, K, L, X, Y, Z, T, XBOX, ...)

The _FillValue attribute informs Ferret that any data value matching this value is a missing (in-
valid) data point. For example, an ocean data set may label land locations with a value such as
1E34. By identifying 1E34 as a fill value, Ferret knows to ignore points matching this value.
The attribute “missing_value” is similar to “_FillValue” when reading data; but “_FillValue”
also specifies a value to be inserted into unspecified regions during file creation. You may
specify two distinct flags for invalid data in the same variable by using “_FillValue” and “miss-
ing_value” together.

Ferret variables may have from 1 to 4 dimensions. If any of the axes have the special interpreta-
tions of: 1) latitude, 2) longitude, 3) depth, or 4) time (date), then the relative order of those
axes in the CDL variable declaration must be T, then Z, then Y, and then X, as above. Any of
these special axes can be omitted and other axes (for example, an axis called “distance”) may
be inserted between them.

axis definitions:

double lon(lon) ;
lon: units = “degrees”;

double lat(lat) ;
lat: units = “degrees”;

double depth(depth) ;
depth: units = “meters”;

double time(time) ;
time: units = “seconds since 1972-01-01";

Axes are distinguished from other 1-dimensional NetCDF variables by their variable names
being identical to their dimension names. Special axis interpretations are inferred by Ferret
through a variety of “clues.”

Date/time axes are inferred by units of “years,” “days,” “hours,” “minutes,” or “seconds,” or by
axis names “time,” “date,” or “t” (case-insensitive). Calendar date formatting requires the
“units” attribute to be formatted with both a valid time unit and “since dd-mm-yyyy”.

Vertical axes are identified by axis names containing the strings “depth”, “elev”, or “z”, or by
units of “millibars.” Depth axes are positive downward by default. The attribute positive=
“down” can also be used to create a downward-pointing axis.

CONVERTING TO NETCDF 163

Latitude axes are inferred by units of “degrees” or “latitude” with axis names containing the
strings “lat” or “y”. Longitude axes are inferred by units of “degrees” or “longitude” with axis
names containing the strings “lon” or “x”.

Global attributes, or attributes that apply to the entire data set, can be specified as well.

global attributes:
:title = “NetCDF Example”;
:message = “This message will be displayed when the CDF file is

opened by Ferret”;
:history = “Documentation on the origins and evolution of this data

set or variable”;

3.2.3 Data

In this section, values are assigned to grid coordinates and to the variables of the file. Below are
100 latitude coordinates entered (in degrees) into the variable axis “lat”, 160 longitude coordi-
nates in “lon”, and 27 depth coordinates (in meters) in “depth”. Longitude coordinates must be
specified with 0 at Greenwich, continuous across the dateline, with positive eastward (modulo
360).

Data:

lat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.151357650,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.987424850,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.169393539,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
lon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,142
.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,154.5,
155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,166.5,167
.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,178.5,179.5,
180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,190.5,191.5,192
.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,202.5,203.5,204.5,
205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,214.5,215.5,216.5,217
.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,226.5,227.5,228.5,229.5,
230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,238.5,239.5,240.5,241.5,242
.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,250.5,251.5,252.5,253.5,254.5,
255.5,256.5,257.5,258.5,259.5,260.5,261.5,262.5,263.5,264.5,265.5,266.5,267
.5,268.5,269.5,270.5,271.5,272.5,273.5,274.5,275.5,276.5,277.5,278.5,279.5,
280.5,281.5,282.5,283.5,284.5,285.5,286.5,287.5,288.5,289.5;
depth=

164 CHAPTER 10

5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174.0
,3824.0; }

To use this CDL file type:

% ncgen -o my_data.cdf converting_to_netcdf.basic

This will will create a file called “my_data.cdf” to which data can be directed (see next sec-
tion).

Another NetCDF command, “ncdump”, can be used to generate a CDL file from an existing
NetCDF file. The command

% ncdump -h my_data.cdf

will list the CDL representation of a preexisting my_data.cdf without the Data section, while

% ncdump my_data.cdf

will list the CDL file with the Data section. The command

% ncdump -c my_data.cdf

will create a CDL file in which only coordinate variables are included in the Data section. The
listed output can be redirected to a file as in the command

% ncdump -c my_data.cdf > my_data.cdl

3.3 Standardized NetCDF attributes

A document detailing the COARDS NetCDF conventions to which the Ferret program adheres
are available on line through the Ferret home page on the World Wide Web and at

http://www.unidata.ucar.edu/packages/netcdf/conventions.html

The following are the attributes most commonly used with Ferret. They are described in greater
detail in the reference document named above.

Global Attributes
:title = “my data set title”
:history = “general background information”

Data Variable Attributes
long_name = “title of my variable”
units = “units for this variable”
_FillValue = missing value flag

CONVERTING TO NETCDF 165

http://www.unidata.ucar.edu/packages/netcdf/conventions.html

missing_value = alternative missing value flag
scale_factor = (optional) the data are to be multiplied by this factor
add_offset = (optional) this number is to be added to the data

Special Coordinate Variable Attributes
time_axis:units = “seconds since 1992-10-8 15:15:42.5 -6:00"; // example
y_axis:units = “degrees_north”
x_axis:units = “degrees_east”
z_axis:positive = “down”; // to indicate preferred plotting orientation
my_axis:point_spacing = “even”; // improved performance if present

3.4 Directing data to a CDF file

The following is an example program which can be used on-line to convert existing data sets
into NetCDF files. It also should provide guidance on sending data generated by numerical
models directly to NetCDF files. This program assumes you have created the NetCDF file as
described in the previous section. It is included in the distribution as $FER_DIR/doc/convert-
ing_to_netcdf.f.

program converting_to_netcdf

c written by Dan Trueman
c updated 4/94 *sh*

c This program provides a model for converting a data set to NetCDF.
c The basic strategy used in this program is to open an existing NetCDF
c file, query the file for the ID’s of the variables it contains, and
c then write the data to those variables.

c The output NetCDF file must be created **before** this program is run.
c The simplest way to do this is to cd to your scratch directory and
c % cp $FER_DIR/doc/converting_to_netcdf.basic converting_to_netcdf.cdl
c and then edit converting_to_netcdf.cdl (an ASCII file) to describe YOUR
c data set. If your data set requires unequally spaced axes, climatological c
time axes, staggered grids, etc. then converting_to_netcdf.supplement may c be
a better starting point then the “basic” file used above.
c After you edit converting_to_netcdf.cdl then create the NetCDF file with
c the command
c % ncgen -o converting_to_netcdf.cdf converting_to_netcdf.cdl

c Now we will read in **your** data (gridded oceanic temperature and
c salt in this example) and write it out into the NetCDF file
c converting_to_netcdf.cdf. Note that the axis coordinates can be written
c out exactly the same methodology - including time step values (as below).

c An alternative to modifying this program is to use the command:

c ncgen -f converting_to_netcdf.cdl

c This will create a large source code to which select lines can
c be added to write out your data.

c To compile and link converting_to_netcdf.f, use:

c f77 -o converting_to_netcdf converting_to_netcdf.f -lnetcdf

166 CHAPTER 10

c include file necessary for NetCDF

include ‘netcdf.inc’ ! may be found in $FER_DIR/fmt/cmn

c parameters relevant to the data being read in
c THESE NORMALLY MATCH THE DIMENSIONS IN THE CDL FILE
c (except nt which may be “unlimited”)

integer imt, jmt, km, nt, lnew, inlun
parameter (imt=160, jmt=100, km=27, nt=5)

c imt is longitude, jmt latitude, km depth, and nt number of time steps

c variable declaration

real temp(imt,jmt,km),salt(imt,jmt,km),time_step

integer cdfid, rcode
c ** cdfid = id number for the NetCDF file my_data.cdf
c ** rcode = error id number

integer tid, sid, timeaxid
c ** tid = variable id number for temperature
c ** sid = variable id number for salt
c ** timeaxid = variable id for the time axis

integer itime
c ** itime = index for do loop

c dimension corner and step for defining size of gridded data

integer corner(4)
integer step(4)

c corner and step are used to define the size of the gridded data
c to be written out. Since temp and salt are four dimensional arrays,
c corner and step must be four dimensions as well. In each output
c to my_data.cdf within the do loop, the entire array of data (160 long.
c pts, 100 lat. pts., 27 depth pts.) will be written for one time step.
c Corner tells NetCDF where to start, and step indicates how many steps
c in each dimension to take.

data corner/1, 1, 1, -1/ ! -1 is arbitrary; the time value
!

of corner will be initialized
! within the do loop.

data step/imt, jmt, km, 1/ ! NOT /1, km, jmt, imt/

c ***NOTE*** Since Fortran and C access data differently, the order of
c the variables in the Fortran code must be opposite that in the CDL
c file. In Fortran, the first index varies fastest while in C, the
c last index varies fastest.
**
c initialize cdfid by using ncopn

cdfid = ncopn(‘converting_to_netcdf.cdf’, ncwrite, rcode)
if (rcode.ne.ncnoerr) stop ‘error with ncopn’

**
c get variable id’s by using ncvid
c THE VARIABLE NAMES MUST MATCH THE CDL FILE (case sensitive)

tid = ncvid(cdfid, ‘temp’, rcode)
if (rcode.ne.ncnoerr) stop ‘error with tid’
sid = ncvid(cdfid, ‘salt’, rcode)
if (rcode.ne.ncnoerr) stop ‘error with sid’
timeaxid = ncvid(cdfid, ‘time’, rcode)
if (rcode.ne.ncnoerr) stop ‘error with timeaxid’

CONVERTING TO NETCDF 167

**
c this is a good place to open your input data file

! OPEN (FILE=my_data.dat,STATUS=’OLD’)
**
c begin do loop. Each step will read in one time step of data
c and then write it out to my_data.cdf.

do 10 itime = 1, nt

corner(4) = itime ! initialize time step in corner
time_step = float(itime) ! or you may read this from your file

* insert your data reading routine here
! CALL READ_MY_DATA(temp,salt) ! you write this

write (6,*) ‘writing time step: ‘,itime, time_step ! diagnostic output

call ncvpt(cdfid,tid,corner,step,temp(1,1,1),rcode) ! write data to
if (rcode.ne.ncnoerr) stop ‘error with t-put’
call ncvpt(cdfid,sid,corner,step,salt(1,1,1),rcode) ! my_data.cdf with
if (rcode.ne.ncnoerr) stop ‘error with s-put’
call ncvpt1(cdfid,timeaxid,itime,time_step,rcode) ! ncvpt
if (rcode.ne.ncnoerr) stop ‘error with timax-put’

c ncvpt1 writes a single data point to the specified location within
c timeaxid. The itime argument in ncvpt1 specifies the location within
c time to write.
c float(itime) is used (rather than simply itime) so the type matches the
c type of time declared in the CDL file.

10 continue
**
c close my_data.cdf using ncclos

call ncclos(cdfid, rcode)
if (rcode.ne.ncnoerr) stop ‘error with ncclos’

**
stop
end

3.5 Advanced NetCDF procedures

This section describes:

1. Setting up a CDL file capable of handling data on staggered grids.
2. Defining coordinate systems such that the data in the NetCDF file may be regarded as

hyperslabs of larger coordinate spaces.
3. Defining boundaries between unevenly spaced axis coordinates (used in numerical integra-

tions).
4. Setting up “modulo” axes such as climatological time and longitude.
5. Converting dates into numerical data appropriate for a NetCDF time axis.

The final section of this chapter contains the text of the CDL file for the example we use
throughout this section.

In this sample data set, we will consider wind, salt, and velocity calculated using a stag-
gered-grid, finite-difference technique. The wind data is limited to the surface layer of the

168 CHAPTER 10

ocean (i.e., normal to the depth axis). We will also consider the salt data to be limited to a nar-
row slab from 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for all depth and
time values.

3.5.1 Staggered grid

Ferret permits each variable of a NetCDF file to be defined on distinct axes and grids. Stag-
gered grids are a straightforward application of this principle. Dimensions for each grid axis
must be defined, the axes themselves must be defined (in Variables), and the coordinate values
for each axis must be initialized (in Data). In the case of the example we use throughout this
and the next section, there are two grids—a wind grid, and a velocity grid; slon, slat and sdepth
are defined for the wind grid, and ulon, ulat, and wdepth for the velocity grid. The variables are
then given dimensions to place them in their proper grids (i.e., wind(time, sdepth, slat, slon)).

3.5.2 Hyperslabs

There are a number of steps required to set up a NetCDF data set that represents a hyperslab of
data from a larger grid definition (a parent grid).

1. Define a dimension named “grid_definition.” This dimension should be set equal to 1.

2. Define parent grids in Variables with the argument “grid_definition”.

char wind_grid(grid_definition) ;
char salt_grid(grid_definition) ;

3. Define the 4 axes of the parent grids using the “axes” attribute.

wind_grid: axes = “slon slat normal time” ;
salt_grid: axes = “slon slat sdepth time” ;

The arguments are always a list of four axis names. Note that the order of arguments is opposite
that in the variable declaration. The argument “normal” indicates that wind_grid is normal to
the depth axis.

4. Define the variables that are hyperslabs of these grids with the proper dimensions.

float wind(time, slat, slon) ;
float salt(time, sdepth, slat80_82, slon10_140) ;

where the dimension slat80_82 = 3 and slon10_140 = 131. Optionally, these axes may be de-
fined themselves with the attribute “child_axis”.

float slat80_82(slat80_82) ;
slat80_82: child_axis = “ ” ;

CONVERTING TO NETCDF 169

These “child axes” need not be initialized in data, nor do edges need to be defined for them;
Ferret will retrieve this information from the parent axis definitions. However, it is recom-
mended that they be initialized to accommodate other software that may not recognize parent
grids.

5. Use the “parent_grid” variable attribute to point to the parent grid.

wind: parent_grid = “wind_grid”
salt: parent_grid = “salt_grid”

6. Also, as a variable attribute, define the index range of interest within the parent grid.

wind: slab_min_index = 1s, 1s, 1s, 0s ;
wind: slab_max_index = 160s, 100s, 1s, 0s ;
salt: slab_min_index = 10s, 80s, 1s, 0s ;
salt: slab_max_index = 140s, 82s, 27s, 0s ;

The “s” after each integer indicates a “short” 16-bit integer rather than the default “long”
32-bit integer. If an axis dimension is designated as “unlimited” then the index bounds for this
axis must be designated as “0s”.

These attributes will effectively locate the wind and salt data within the parent grid.

3.5.3 Unevenly spaced coordinates

For coordinate axes with uneven spacing, the boundaries between each coordinate can be indi-
cated by pointing to an additional axis that contains the locations of the boundaries. The dimen-
sion of this “edge” axis is necessarily one larger than the coordinate axis concerned. If edges
are not explicitly defined for an unevenly spaced axis, the midpoint between coordinates is as-
sumed by default.

1. Define a dimension one larger than the coordinate axis. For the sdepth axis, with 27 coor-
dinates, define:

sdepth_edges = 28 ;

2. Define an axis called sdepth_edges.
3. Initialize this axis with the desired boundaries (in Data).
4. As an attribute of the main axis, point to edges list:

sdepth: edges = “sdepth_edges” ;

3.5.4 Evenly spaced coordinates (long axes)

If the coordinate axes are evenly spaced, the attribute “point spacing” should be used:

slat: point_spacing = “even” ;

170 CHAPTER 10

When used, this attribute will improve memory use efficiency in Ferret. This is especially im-
portant for very large axes—10,000 points or more.

3.5.5 “Modulo” axes

The “modulo” axis attribute indicates that the axis wraps around, the first point immediately
following the last. The most common uses of modulo axes are:

1. longitude axes for globe-encircling data
2. time axes for climatological data

time: modulo = “ ” ; // any arbitrary string is allowed

If the climatological data occurs in the years 0000 or 0001 then the year will be omitted from
Ferret’s output format.

3.5.6 Reversed-coordinate axes

NetCDF axes may contain monotonically decreasing axis coordinates instead of
monotonically increasing coordinates. Ferret will hide this aspect of the file data ordering.

3.5.7 Converting time word data to numerical data

To set up a time axis for data represented as dates (e.g., “1972 January 15 at 12:15”) it is neces-
sary to determine a numerical representation for each of the dates. Ferret can assist with this
process, as the following example shows.

Suppose the data are 6-hourly observations from 1-JAN-1991 at 12:00 to 15-MAR-1991 at
18:00. These commands will assist in creating the necessary time axis for a NetCDF file:

yes? DEFINE AXIS/T="1-JAN-1991:12:00":"15-MAR-1991:18:00":6/UNITS=hours\
my_time

yes? DEFINE GRID/T=my_time tgrid
yes? SET REGION/T="1-JAN-1991:12:00":"15-MAR-1991:18:00"
yes? LIST T[g=tgrid] !to see the time values
yes? SAVE/FILE=my_time.cdf T[g=tgrid]

The file my_time.cdf now contains a model of exactly the desired time axis. Use the Unix com-
mand

% ncdump my_time.cdf > my_time.cdl

to obtain the time axis definition as text that can be inserted into your CDL file.

CONVERTING TO NETCDF 171

3.6 Example CDL file

The following is an example CDL file utilizing many of the features described in the preceding
section.

netcdf converting_to_netcdf_supplement {
// CONVERTING DATA TO THE “NETWORK COMMON DATA FORM” (NetCDF):
// A SUPPLEMENT
//
// NOAA PMEL Thermal Modeling and Analysis Project (TMAP)
// Dan Trueman, Steve Hankin
// last revised: 1 Dec 1993: slat80_82 and slon10_140 coordinates included
//
// I. INTRODUCTION
//
// This supplement to “Converting Data to the Network Common Data Form:
// an Introduction” describes:
//
// 1. How to set up a cdl file capable of handling data
// on staggered grids.
// 2. How to define coordinate systems such that the data
// in the NetCDF file may be regarded as hyperslabs of
// larger coordinate spaces.
// 3. How to define variables of 1, 2, or 3 dimensions.
// 4. How to define boundaries between unevenly spaced axis
// coordinates (used in numerical integrations).
// 5. How to set up climatological “modulo” time axes.
// 6. How to convert time word data into numerical data
// appropriate for NetCDF.
//
// In this sample data set, we will consider wind, salt, and
// velocity calculated using a staggered-grid, finite-difference
// technique. The wind data is naturally limited to the surface
// layer of the ocean (i.e. normal to the depth axis). We will
// also consider the salt data to be limited to a narrow slab from
// 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for
// all depth and time values.
//
// II. STAGGERED GRIDS
//
// Dealing with staggered grids is fairly straightforward. Dimensions
// for each grid axis must be defined, the axes themselves must be
// defined (in Variables), and the coordinate values for each axis must
// be initialized (in Data). In this case, there are two grids, a
// wind grid, and a velocity grid, so tlon, tlat and tdepth are
// defined for the wind grid, and ulon, ulat, and udepth for the velocity
// grid. The variables are then given arguments to place them in their
// proper grids (i.e. wind(time, sdepth, slat, slon)).
//
// III. HYPERSLABS
//
// There are a number of steps required to set up a NetCDF data set that
// represents a hyperslab of data from a larger grid definition.
//
// 1. Define a dimension named “grid_definition”. This dimension
// should be set equal to 1.
// 2. Define parent grids in Variables with the argument
// “grid_definition”.
//
// char wind_grid(grid_definition) ;
// char salt_grid(grid_definition) ;
//
// 3. Define the 4 axes of the parent grids using the “axes” attribute.
//
// wind_grid: axes = “slon slat normal time” ;
// salt_grid: axes = “slon slat sdepth time” ;
//
// Note that the order of arguments is opposite that in the
// variable declaration. The argument “normal” indicates that

172 CHAPTER 10

// wind_grid is normal to the depth axis.
//
// 4. Define the variables which are hyperslabs of these grids with
// the proper dimensions.
//
// float wind(time, slat, slon) ;
// float salt(time, sdepth, slat80_82, slon10_140) ;
//
// where slat80_82 = 3 and slon10_140 = 131. The axis names are
/// arbitrary - chosen for readability. These axes (child axes)
// must be defined with the attribute “child_axis” as follows:
//
// float slat80_82(slat80_82) ;
// slat80_82: child_axis = “ ” ;
//
// These “child axes” need not be initialized in Data, nor do their

// edges need be defined; Ferret retrieves this information from
// the parent axes.
//
// 5. Use the “parent_grid” variable attribute to point to the
// parent grid.
//
// wind: parent_grid = “wind_grid”
//
// 6. Also as a variable attribute, define the index range of interest
// within the parent grid.
//
// wind: slab_min_index = 1s, 1s, 1s, 0s ;
// wind: slab_max_index = 160s, 100s, 1s, 0s ;
// salt: slab_min_index = 10s, 80s, 1s, 0s ;
// salt: slab_max_index = 140s, 82s, 27s, 0s ;
//
// The “s” after each integer indicates a “short” 16-bit integer
// rather than the default “long” 32-bit integer. If an axis
// dimension is designated as “unlimited” then the index bounds
// for this axis must be designated as “0s”.
//
// These commands will effectively locate the wind and salt data within
// the full grid.
//
// IV. VARIABLES OF 1, 2, or 3 DIMENSIONS
//
// One, two, or three dimensional variables may be set up in one of
// two ways - either using the parent_grid and child_axis attributes
// as illustrated in the 3-dimensional variable “wind” from the hyperslab
// example, above, or by selecting axis names and units that provide
// Ferret with adequate hints to map this variable onto 4-dimensional
// space and time. The following hints are recognized by Ferret:
//
// Units of days, hours, minutes, etc. or an axis name of “TIME”, “DATE”
// implies a time axis.
// Units of “degrees xxxx” where “xxxx” contains “lat” or “lon” implies
// a latitude or longitude axis, respectively.
// Units of “degrees” together with an axis name containing “LAT” or
// “Y” implies a latitude axis else longitude is assumed.
// Units of millibars, “layer” or “level” or an axis name containing
// “Z” or “ELEV” implies a vertical axis.
//
// V. UNEVENLY SPACED COORDINATE BOUNDARIES
//
// For coordinate axes with uneven spacing, the boundaries between each
// coordinate can be indicated by pointing to an additional axis that
// contains the locations of the boundaries. The dimension of this “edge”
// axis will necessarily be one larger than the coordinate axis concerned.
// If edges are not defined for an unevenly spaced axis, the midpoint
// between coordinates will be assumed by default.
//
// 1. Define a dimension one larger than the coordinate axis. For
// the sdepth axis, with 27 coordinates, define:
//

CONVERTING TO NETCDF 173

// sdepth_edges = 28 ;
//
// 2. Define an axis called sdepth_edges.
// 3. Initialize this axis appropriately (in Data).
// 4. As a sdepth axis attribute, point to sdepth_edges:
//
// sdepth: edges = “sdepth_edges” ;
//
// If the coordinate axes are evenly spaced, the attribute “point spacing”
// should be used:
//
// slat: point_spacing = “even” ;
//
// When used, this attribute will improve memory use efficiency in Ferret.
//
// VI. CLIMATOLOGICAL “MODULO” AXES
//
// The “modulo” axis attribute indicates that the axis wraps around,
// the first point immediately following the last. The most common
// uses of modulo axes are:
//
// 1. As longitude axes for globe-encircling data.
// 2. As time axes for climatological data.
//
// time: modulo = “ ” ; // any arbitrary string is allowed
//
// If the climatological data occurs in the years 0000 or 0001 then Ferret
// will omit the year from the output formatting.
//
// VII. CONVERTING TIME WORD DATA TO NUMERICAL DATA
//
// If the time data being converted to NetCDF format exists in string format
// (i.e. 1972 - JANUARY 15 2:15:00), rather than numerical format (i.e. 55123
// seconds) a number of TMAP routines are available to aid in the conversion
// process. The steps required for conversion are as follows:
//
// 1. Break the time string into its 6 pieces. If the data is of the
// form dd-mmm-yyyy:hh:mm:dd, the TMAP routine “tm_break_date.f” can
// be used.
// 2. Choose a time_origin before the beginning of the time data to
// assure that all time values are positive. i.e. if the data begins
// at 15-JAN-1982:05:30:00, choose a time origin of
// 15-JAN-1981:00:00:00. This time_origin should then be an attribute
// of the time axis variable in the CDL file.
// 3. Produce numerical time data by using “tm_sec_from_bc.f”, which
// calculates the number of seconds between 01-01-0000:00:00:00 and
// the date specified. Continuing the example from (2), the time value
// for the first time step with respect to the time_origin could be
// calculated as follows:
//
// time(1) = tm_sec_from_bc(1982, 1, 15, 5, 30, 0) -
// tm_sec_from_bc(1981, 1, 15, 0, 0, 0)
//
// or more generally
//
// time(n)=tm_sec_from_bc(nyear,nmonth,nday,nhour,nminute,nsecond) -
// tm-sec_from_bc(oyear,omonth,oday,ohour,ominute,osecond)
//
// where nyear is the year for the nth time step and oyear is the year
// of time_origin.
//
// VII. EXAMPLE CDL FILE dimensions:

// staggered grid dimension definitions:

slon = 160 ; // wind/salt longitude dimension
ulon = 160 ; // velocity longitude dimension
slat = 100 ; // wind/salt latitude dimension
ulat = 100 ; // velocity latitude dimension
sdepth = 27 ; // salt depth dimension
wdepth = 27 ; // velocity depth dimension

174 CHAPTER 10

slon10_140 = 131 ; // for salt hyperslab
slat80_82 = 3 ; // for salt hyperslab
time = unlimited ;

// grid_definition is the dimension name to be used for all grid definitions

grid_definition = 1 ;

// edge dimension definitions:

sdepth_edges = 28 ;
wdepth_edges = 28 ;

variables:

// variable definitions:

float wind(time, slat, slon) ; // 3-dimensional variable
wind: parent_grid = “wind_grid” ;
wind: slab_min_index = 1s, 1s, 1s, 0s ;
wind: slab_max_index = 160s, 100s, 1s, 0s ;
wind: long_name = “WIND” ;
wind: units = “deg. C” ;
wind: _FillValue = 1E34f ;

float salt(time, sdepth, slat80_82, slon10_140) ; // 4-dim.
Variable

salt: parent_grid = “salt_grid” ;
salt: slab_min_index = 10s, 80s, 1s, 0s ;
salt: slab_max_index = 140s, 82s, 27s, 0s ;
salt: long_name = “(SALINITY(ppt) - 35) /1000" ;
salt: units = ”frac. by wt. less .035" ;
salt: _FillValue = -999.f ;

float u(time, sdepth, ulat, ulon) ;
u: long_name = “ZONAL VELOCITY” ;
u: units = “cm/sec” ;
u: _FillValue = 1E34f ;

float v(time, sdepth, ulat, ulon) ;
v: long_name = “MERIDIONAL VELOCITY” ;
v: units = “cm/sec” ;
v: _FillValue = 1E34f ;

float w(time, wdepth, slat, slon) ;
w: long_name = “VERTICAL VELOCITY” ;
w: units = “cm/sec” ;
w: _FillValue = 1E34f ;

// axis definitions:

float slon(slon) ;
slon: units = “degrees” ;
slon: point_spacing = “even” ;

float ulon(ulon) ;
ulon: units = “degrees” ;
ulon: point_spacing = “even” ;

float slat(slat) ;
slat: units = “degrees” ;
slat: point_spacing = “even” ;

float ulat(ulat) ;
ulat: units = “degrees” ;

ulat: point_spacing = “even” ;
float sdepth(sdepth) ;

sdepth: units = “meters” ;
sdepth: positive = “down” ;
sdepth: edges = “sdepth_edges” ;

float wdepth(wdepth) ;
wdepth: units = “meters” ;
wdepth: positive = “down” ;
wdepth: edges = “wdepth_edges” ;

float time(time) ;
time: modulo = “ ” ;

time: time_origin = “15-JAN-1981:00:00:00" ;

CONVERTING TO NETCDF 175

time: units = ”seconds" ;

// child grid definitions:

float slon10_140(slon10_140) ;
slon10_140: child_axis = “ ” ;

slon10_140: units = “degrees” ;
float slat80_82(slat80_82) ;

slat80_82: child_axis = “ ” ;
slat80_82: units = “degrees” ;

// edge axis definitions:

float sdepth_edges(sdepth_edges) ;
float wdepth_edges(wdepth_edges) ;

// parent grid definition:

char wind_grid(grid_definition) ;
wind_grid: axes = “slon slat normal time” ;

char salt_grid(grid_definition) ;
salt_grid: axes = “slon slat sdepth time” ;

// global attributes:
:title = “NetCDF Title” ;

data:

// // ignore this block //
//This next data entry, for time, should be ignored. Time is initialized here
// only so that Ferret can read test.cdf (the file created by this cdl file)
// with no additional data inserted into it.
Time=1000;
// // end of ignored block //

slat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.1513576508,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.9874248505,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.1693935394,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
ulat=
-27.6721439362,-25.3877544403,-23.1883945465,-21.1119174957,-19.1907978058,
-17.4507274628,-15.9094810486,-14.5761461258,-13.4507236481,-12.5241250992,
-11.7785758972,-11.1883859634,-10.7210769653,-10.3387994766,-9.9999876022,
-9.6666545868,-9.3333206177,-8.9999866486,-8.6666526794,-8.3333196640,
-7.9999856949,-7.6666517258,-7.3333182335,-6.9999847412,-6.6666512489,
-6.3333182335,-5.9999847412,-5.6666517258,-5.3333182335,-4.9999847412,
-4.6666517258,-4.3333182335,-3.9999849796,-3.6666517258,-3.3333184719,
-2.9999852180,-2.6666519642,-2.3333184719,-1.9999853373,-1.6666518450,
-1.3333184719,-0.9999850392,-0.6666516662,-0.3333182633,0.0000151545,
0.3333485723,0.6666819453,1.0000153780,1.3333487511,1.6666821241,
2.0000154972,2.3333489895,2.6666827202,3.0000162125,3.3333497047,
3.6666829586,4.0000162125,4.3333497047,4.6666827202,5.0000162125,
5.3333492279,5.6666827202,6.0000162125,6.3333492279,6.6666827202,
7.0000157356,7.3333497047,7.6666831970,8.0000171661,8.3333511353,

176 CHAPTER 10

8.6666841507,9.0000181198,9.3333520889,9.6666860580,10.0000190735,
10.3358526230,10.6916217804,11.0869522095,11.5408391953,12.0713586807,
12.6953773499,13.4282865524,14.2837600708,15.2735414505,16.4072513580,
17.6922454834,19.1334934235,20.7334957123,22.4922523499,24.4072608948,
26.4735546112,28.6837768555,31.0283031464,33.4953994751,36.0713844299,
38.7408676147,41.4869842529,44.2916526794,47.1358833313,50.0000534058;
slon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,
142.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,
154.5,155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,
166.5,167.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,
178.5,179.5,180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,
190.5,191.5,192.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,
202.5,203.5,204.5,205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,
214.5,215.5,216.5,217.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,
226.5,227.5,228.5,229.5,230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,
238.5,239.5,240.5,241.5,242.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,
250.5,251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,260.5,261.5,
262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,273.5,
274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.5,
286.5,287.5,288.5,289.5;
ulon=
131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,
143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,
155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,
167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,
179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,
191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,
203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,
215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,
227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,
239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,
251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,
263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,
275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,
287.0,288.0,289.0,290.0;
sdepth=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174.0,
3824.0;
sdepth_edges=
0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,
145.0,165.0,190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,
2849.0,3499.0,4149.0;
wdepth=
10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,145.0,165.0,
190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,2849.0,3499.0,
4149.0;
wdepth_edges=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,94.375,105.625,119.375,135.625,
153.75,176.25,202.5,235.75,280.0,347.5,460.75,651.25,950.0,1372.75,1895.0,
2524.0,3174.0,3986.5,4311.0;
slon10_140=

139.5, 140.5, 141.5, 142.5, 143.5, 144.5, 145.5, 146.5, 147.5,
148.5, 149.5, 150.5, 151.5, 152.5, 153.5, 154.5, 155.5, 156.5, 157.5,
158.5, 159.5, 160.5, 161.5, 162.5, 163.5, 164.5, 165.5, 166.5, 167.5,
168.5, 169.5, 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5,
178.5, 179.5, 180.5, 181.5, 182.5, 183.5, 184.5, 185.5, 186.5, 187.5,
188.5, 189.5, 190.5, 191.5, 192.5, 193.5, 194.5, 195.5, 196.5, 197.5,
198.5, 199.5, 200.5, 201.5, 202.5, 203.5, 204.5, 205.5, 206.5, 207.5,
208.5, 209.5, 210.5, 211.5, 212.5, 213.5, 214.5, 215.5, 216.5, 217.5,
218.5, 219.5, 220.5, 221.5, 222.5, 223.5, 224.5, 225.5, 226.5, 227.5,
228.5, 229.5, 230.5, 231.5, 232.5, 233.5, 234.5, 235.5, 236.5, 237.5,
238.5, 239.5, 240.5, 241.5, 242.5, 243.5, 244.5, 245.5, 246.5, 247.5,
248.5, 249.5, 250.5, 251.5, 252.5, 253.5, 254.5, 255.5, 256.5, 257.5,
258.5, 259.5, 260.5, 261.5, 262.5, 263.5, 264.5, 265.5, 266.5, 267.5,
268.5, 269.5 ;

slat80_82=
11.8060989379883, 12.3833675384522, 13.0618314743042 ;

}

CONVERTING TO NETCDF 177

4 CREATING A MULTI-FILE NETCDF DATA SET

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set. Such
data sets are referred to as “MC” (multi CDF) data sets. A descriptor file, in the style of
TMAP-formatted data sets. These are FORTRAN NAMELIST-formatted files. Slight varia-
tions in syntax exist between systems. The requirements for an MC data set are described in
Chapter 2, Section 2.1 “Multi-file NetCDF data sets”.

A typical MC descriptor file is given below. This file ties into a single data set the 23 files
named mtaa063-nc.001 through mtaa063-nc.024. The time steps are encoded in the descriptor
file through the S_START and S_END values. Ferret performs sanity checking on the data set
by comparing these time coordinates with those found in the data files as the data are read.

* NOAA/PMEL Tropical Modeling and Analysis Program, Seattle, WA. *
* created by MAKE_DESCRIPT rev. 4.01 *

$FORMAT_RECORD

D_TYPE = ‘ MC’,
D_FORMAT = ‘ 1A’,
D_SOURCE_CLASS = ‘MODEL OUTPUT’,

$END
$BACKGROUND_RECORD

D_EXPNUM = ‘0063’,
D_MODNUM = ‘ AA’,
D_TITLE = ‘MOM model output forced by Sadler winds’,
D_T0TIME = ‘14-JAN-1980 14:00:00’,
D_TIME_UNIT = 3600.0,
D_TIME_MODULO = .FALSE.,
D_ADD_PARM = 15*’ ‘,

$END
$MESSAGE_RECORD

D_MESSAGE = ‘ ‘,
D_ALERT_ON_OPEN = F,
D_ALERT_ON_OUTPUT = F,

$END

$EXTRA_RECORD
$END

$STEPFILE_RECORD
s_filename = ‘mtaa063-nc.001’,
S_AUX_SET_NUM = 0,
S_START = 17592.0,
S_END = 34309.0,
S_DELTA = 73.0,
S_NUM_OF_FILES = 23,
S_REGVARFLAG = ‘ ‘,

$END
**
$STEPFILE_RECORD

s_filename = ‘**END OF STEPFILES**’

$END
**

178 CHAPTER 10

Chapter 11: EXTERNAL FUNCTIONS

1 OVERVIEW

External functions are user-written Fortran routines which are used on the Ferret command line
just as internal Ferret functions (e.g. SIN, COS) are used. For example, you might create a rou-
tine to compute the amplitudes of the Fourier transform of a time series (the periodogram) and
name your function “FFT_AMP”. In Ferret you would use it like this:

LET my_fft = FFT_AMP(my_time_series)

Once the variable my_fft is defined, it can be used in other expressions, plotted, etc. External
functions can be used in every way that Ferret internal functions are used and are distinguished
only by their appearance after internal functions when the user issues a SHOW FUNC com-
mand.

A Ferret external function uses input arguments defined in a Ferret session and computes a re-
sult with user-supplied Fortran code. The external function specifies how the grid for the result
will be generated. The axes can be inherited from the input arguments or specified in the exter-
nal function code.

Utility functions, linked in when the external function is compiled, obtain information from
Ferret about variables and grids. The utility functions are described in section 6 (p. 190).

Ferret external functions are compiled individually to create shared object (.so) files which are
dynamically linked with Ferret at run time. Ferret looks for shared object files in the directories
specified in the FER_EXTERNAL_FUNCTIONS environment variable.

2 GETTING STARTED

Ferret Version 5.0 and later contains everything you need to run the external functions which
are included with the distribution. The environment variable
FER_EXTERNAL_FUNCTIONS is defined, listing the directory where the shared object files
reside. To see a list of the included external functions and their arguments, type

> ferret
…
yes? SHOW FUNC/EXTERNAL
Externally defined functions available to Ferret:
ADD_9(A,B,C,D,E,F,G,H,I)

(demonstration function) adds 9 arguments
AVET(A)

(demonstration function) returns the time average
A: data to be time averaged

...

EXTERNAL FUNCTIONS 179

Several of the demo scripts such as ef_fft_demo.jnl and ef_sort_demo.jnl show the use of of
the included external functions.

2.1 Getting example/development code

To write your own external functions, you will need to get source code and set up a directory in
which to work. All of the source code you need to get started (Makefiles, utility functions,
common files, simple examples) can be obtained from the Ferret Home Page
(http://ferret.wrc.noaa.gov/Ferret/). Go to the External Functions subdirectory and follow the
instructions there.

You will need to download at least ef_utility.tar.Z and examples.tar.Z to get started.
When you untar these files you will find that the ef_utility/ directory contains object files
and the ferret_cmn subdirectory. The ef_utility/ directory must be in place before you can
compile any of the other external function code. The examples/ directory contains source code
and a Makefile. If you download any of the other external function directories, you will find
source code and Makefiles for specific types of external functions (e.g., sorting, regridding,
etc.).3

3 QUICK START EXAMPLE

It’s always easier to start coding from an example. Any of the external functions we provide
should be documented well enough to serve as a starting point for writing a new function. In
this section, we take the most trivial example function, pass_thru, and alter it to do something a
little more interesting, if no more useful.

3.1 The times2bad20 function

We’ll use the pass_thru(...) function as a template, modifying it into a times2bad20(...) func-
tion. This new function will multiply all values by 2.0 and will replace missing value flags with
the value 20.0.

Inside any of the example functions, the areas that you need to (are allowed to) modify are set
off with

c***
c* USER CONFIGURABLE PORTION |
c* |
c* V

—>Insert your code here<—

c* ^
c* |
c* USER CONFIGURABLE PORTION |
c***

180 CHAPTER 11

../../../Demos/ef_fft_demo/ef_fft_demo.html
../../../Demos/ef_sort_demo/ef_sort_demo.html
http://ferret.wrc.noaa.gov/Ferret/
http://ferret.wrc.noaa.gov/Ferret/External_Functions/

Here’s what you need to do to create the new function:

1. move to the examples/ directory
2. copy pass_thru.F to times2bad20.F

3. use your favorite editor to change each “pass_thru” to “times2bad20"
4. go down into the “times2bad20_init” section and change the description of the function
5. go to the “times2bad20_compute” subroutine and change the code to look like this

c* result(i,j,k,l) = bad_flag_result
result(i,j,k,l) = 20

ELSE

c* result(i,j,k,l) = arg1(i,j,k,l)
result(i,j,k,l) = 2 * arg1(i,j,k,l)

Assuming you have downloaded all of the ef_utility/ directory development code and you
are still in the examples/ directory, you should be able to:

> make times2bad20.so
> setenv FER_EXTERNAL_FUNCTIONS .
> ferret
…

yes? use coads_climatology
yes? let a = times2bad20(sst)
yes? shade a[l=1]

Congratulations! You have just written your first external function.

EXTERNAL FUNCTIONS 181

4 ANATOMY OF AN EXTERNAL FUNCTION

Every Ferret external function contains an ~_init subroutine which describes the external
function’s arguments and result grid and a ~_compute subroutine which actually performs the
calculation. Three other optional subroutines are available for requesting memory allocation;
creating axis limits for the result variable which are extended with respect to the defined region
(useful for derivative calculations, etc.); and creating custom axes for the result.

For the following discussion we will assume that our external function is called efname (with
source code in a file named efname.F). Examples are also taken from the external functions ex-
amples/ directory which you installed when you downloaded the external functions code. This
section will briefly describe the work done by the ~_init and ~_compute subroutines. The indi-
vidual utility functions called by these subroutines are described in the section on Utility Func-
tions below.

4.1 The ~_init subroutine (required)

subroutine efname_init (id)

This subroutine specifies basic information about the external function. This information is
used when Ferret parses the command line and checks the number of arguments; when it gener-
ates the output of SHOW FUNCTION/EXTERNAL; and in determining the result grid.

The following code from examples/subtract.F shows a typical example of an ~_init subrou-
tine. For an example with more arguments please look at examples/add_9.F. For an example
where a result axis is reduced with respect to the equivalent input axis take a look at exam-
ples/percent_good_t.F.

SUBROUTINE subtract_init(id)

INCLUDE ‘ferret_cmn/EF_Util.cmn’

INTEGER id, arg

CALL ef_version_test(ef_version)

* **
* USER CONFIGURABLE PORTION |
* |
* V

CALL ef_set_desc(id,’(demonstration function) returns: A - B’)

CALL ef_set_num_args(id, 2)
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)

arg = 1
CALL ef_set_arg_name(id, arg, ‘A’)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

182 CHAPTER 11

arg = 2
CALL ef_set_arg_name(id, arg, ‘B’)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

* ^
* |
* USER CONFIGURABLE PORTION |
* **

RETURN
END

4.2 The ~_compute subroutine (required)

subroutine efname_compute (id, arg_1, arg_2, ..., result, wkr_1,
wrk_2, ...)

This subroutine does the actual calculation. Arguments to the external function and any re-
quested working storage arrays are passed in. Dimension information for the subroutine argu-
ments is obtained from Ferret common blocks in ferret_cmn/EF_mem_subsc.cmn. The
mem1lox:mem1hix, etc. values are determined by Ferret and correspond to the region requested
for the calculation.@Body Text = In the ~_compute subroutine you may call other subroutines
which are not part of the efname_compute.F source file.

SUBROUTINE subtract_compute(id, arg_1, arg_2, result)

INCLUDE ‘ferret_cmn/EF_Util.cmn’
INCLUDE ‘ferret_cmn/EF_mem_subsc.cmn’

INTEGER id

REAL bad_flag(EF_MAX_ARGS), bad_flag_result
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
. mem1loz:mem1hiz, mem1lot:mem1hit)
REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
. mem2loz:mem2hiz, mem2lot:mem2hit)
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit)

* After initialization, the ‘res_’ arrays contain indexing information
* for the result axes. The ‘arg_’ arrays will contain the indexing
* information for each variable’s axes.

INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)

* **
* USER CONFIGURABLE PORTION |
* |
* V

INTEGER i,j,k,l
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

EXTERNAL FUNCTIONS 183

…

* ^
* |
* USER CONFIGURABLE PORTION |
* **

RETURN
END

Please see the “Loop Indices” section for the example calculation.4.3

4.3 The ~_work_size subroutine (optional)

This routine allows the external function author to request that Ferret allocate memory (work-
ing storage) for use by the external function. The memory allocated is passed to the external
function when the ~compute subroutine is called. The working storage is deallocated after the
~compute subroutine returns.

When working storage is to be requested, a call to ef_set_num_work_arrays must be in the
~init subroutine:

SUBROUTINE efname_init (id)
…
CALL ef_set_num_work_arrays (id,1)

At the time the ~work_size subroutine is called by Ferret, any of the utility functions that re-
trieve information from Ferret may be used in the determination of the appropriate working
storage size.

Here is an example of a ~work_size subroutine:

SUBROUTINE my_work_size(id)
INCLUDE ‘ferret_cmn/EF_Util.cmn’
INCLUDE ‘ferret_cmn/EF_mem_subsc.cmn’
INTEGER id

* **
* USER CONFIGURABLE PORTION |
* |
* V
*
* ef_set_work_array_lens(id, array #, X len, Y len, Z len, T len)
*

INTEGER nx, ny, id
INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
. arg_incr(4,1:EF_MAX_ARGS)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

NX = 1 + (arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1))
NY = 1 + (arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1))

CALL ef_set_work_array_lens(id,1,NX,NY,1,1)
* ^
* |
* USER CONFIGURABLE PORTION |
* **

RETURN

184 CHAPTER 11

In the argument list of the ~compute subroutine, the work array(s) come after the result vari-
able:

SUBOUTINE efname_compute (arg_1, result, workspace)

4.4 The ~_result_limits subroutine (optional)

The result limits routine sets the limits on ABSTRACT and CUSTOM axes created by the external
function.

An example ~result_limits routine might look like this:

SUBROUTINE my_result_limits(id)
INCLUDE ‘ferret_cmn/EF_Util.cmn’
INTEGER id, arg, NF

* **
* USER CONFIGURABLE PORTION |
* |
* V
*

INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
INTEGER lo, hi

CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

arg = 1
lo = 1
hi = (arg_hi_ss(T_AXIS,arg) - arg_lo_ss(T_AXIS,arg) + 1)/ 2
call ef_set_axis_limits(id, T_AXIS, lo, hi)

* ^
* |
* USER CONFIGURABLE PORTION |
* **

RETURN
END

4.5 The ~_custom_axes subroutine (optional)

The ~custom_axes subroutine allows the external function author to create new axes that will
be attached the the result of the ~compute subroutine. An example of such a function might take
time series data with a time axis and create, as a result, a Fourier transform with a frequency
axis.

The difficulty with the ~custom_axes subroutine is that not all the Ferret internal information is
available to the external function at the time Ferret calls this routine.5

EXTERNAL FUNCTIONS 185

5 NOTES AND SUGGESTIONS

5.1 Inheriting axes

When creating an external function, you can get Ferret to do a lot of conformability checking
for you if you “inherit axes” properly. This means that Ferret can be responsible for making
sure that the arguments you pass to the function are of the proper dimensionality to be com-
bined together in basic operations such as addition, multiplication etc. For any given axis ori-
entation, X, Y, Z, or, T, two arguments are said to be conformable on that axis if 1) they are
either of the same length, or 2) at least one of the arguments has a size of 1 on the axis. (The ter-
minology “size of 1" may equivalently be thought of as a size of 0. In other words, the data is
normal to this axis.) When Ferret encounters a problem it will send an error message rather
than passing the data to your external function which might result in a crash.

To get Ferret to do this kind of checking you should inherit axes from as many appropriate ar-
guments as possible. For instance, in subtract.F we have the following sections of code:

subtract_init(...)

…
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,

. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)

...

This means that the axes of the result, and the index range of the result on those axes, will be de-
termined by arguments.

…
arg = 1
CALL ef_set_arg_name(id, arg, ‘A’)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

arg = 2
CALL ef_set_arg_name(id, arg, ‘B’)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
...

Here we specify that each result axis is dependent upon the axes from both arguments. When
Ferret sees this, it knows the arguments must be conformable before it passes them to the exter-
nal function.

The advantages of this approach are best understood by thinking about this example function
“MY_ADD_FUNCTION,” which performs a simple addition:

LET arg1 = X[x=0:1:.1]
LET arg2 = Y[Y=101:102:.05]
LET my_result = MY_ADD_FUNCTION(arg1, arg2)

The desired outcome is that “my_result” is a 2-dimensional field which inherits its X axis from
arg1 and its Y axis from arg2.

186 CHAPTER 11

If arguments and result are on the same grid, you should inherit all axes from all arguments. In
general, you should inherit axes from as many arguments as possible.

5.2 Loop indices

Note: Array indices need not start at 1.

Because the data passed to an external function is often a subset of the full data set, array indi-
ces need not start at 1.

Note: Indices on separate arguments are not necessarily the same.

This might occur, for instance, with variables from different data sets.

Because of this, we need to ask Ferret what the appropriate index values are for the result axes
and for each axis of each argument. We also need to know whether the increment for each axis
of each argument is 0 or 1. An increment of 0 would be returned, for example, as the Y axis in-
crement of an argument which which was only defined on the X axis. The data for this argu-
ment would be replicated along the Y axis when needed in a calculation.

The following section of code from subtract.F retrieves the index and increment information:

…
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
...

Once we have this information we must make sure that we don’t mix and match indices. It’s
possible that you can write code which will work in the very simplest cases but will fail when
you try something like:

yes? let a = my_func(sst[d=1],airt[d=2])
yes? plot a[l=@ave]

The solution is straightforward if not very pretty: Assign a separate index to each axis of each
argument and index them all separately. The code in subtract.F shows how to do it with two
arguments:

…
i1 = arg_lo_ss(X_AXIS,ARG1)
i2 = arg_lo_ss(X_AXIS,ARG2)
DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

j1 = arg_lo_ss(Y_AXIS,ARG1)
j2 = arg_lo_ss(Y_AXIS,ARG2)
DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

k1 = arg_lo_ss(Z_AXIS,ARG1)
k2 = arg_lo_ss(Z_AXIS,ARG2)
DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

EXTERNAL FUNCTIONS 187

l1 = arg_lo_ss(T_AXIS,ARG1)
l2 = arg_lo_ss(T_AXIS,ARG2)
DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) .OR.
. arg_2(i2,j2,k2,l2) .EQ. bad_flag(2)) THEN

result(i,j,k,l) = bad_flag_result

ELSE

result(i,j,k,l) = arg_1(i1,j1,k1,l1) -
. arg_2(i2,j2,k2,l2)

END IF

l1 = l1 + arg_incr(T_AXIS,ARG1)
l2 = l2 + arg_incr(T_AXIS,ARG2)

100 CONTINUE

k1 = k1 + arg_incr(Z_AXIS,ARG1)
k2 = k2 + arg_incr(Z_AXIS,ARG2)

200 CONTINUE

j1 = j1 + arg_incr(Y_AXIS,ARG1)
j2 = j2 + arg_incr(Y_AXIS,ARG2)

300 CONTINUE

i1 = i1 + arg_incr(X_AXIS,ARG1)
i2 = i2 + arg_incr(X_AXIS,ARG2)

400 CONTINUE
...

5.3 Reduced axes

For external functions we introduce the concept of “axis reduction.” The result of an external
function will have axes which are either RETAINED or REDUCED with respect to the argu-
ment axes from which they are inherited. By default, all result axes have their axis reduction
flag set to RETAINED. Every result axis which has it axis inheritance flag set to
IMPLIED_BY_ARGS will have the same extent (context) as the argument axis from which it
inherits. Setting the axis reduction flag to REDUCED means that the result axis is reduced to a
point by the external function.

The axis reduction flag only needs to be applied when the result is reduced to a point but SET
REGION information should still be applied to the external function arguments. (e.g. a func-
tion returning a status flag) In such a case the result axes should be IMPLIED_BY_ARGS and
REDUCED. (as opposed to NORMAL and RETAINED)

The percent_good_t.F function is a good example of where the axis reduction flag needs to be
set. This function takes a 4D region of data and returns a time series of values representing the
percentage of good data at each time point. Inside the percent_good_t_init subroutine we see
that the X, Y and Z axes are reduced with respect to the incoming argument:

188 CHAPTER 11

* **
* USER CONFIGURABLE PORTION |
* |
* V

CALL ef_set_desc(id,
. ‘(demonstration function) returns % good data at each time’)
CALL ef_set_num_args(id, 1)
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
CALL ef_set_axis_reduction(id, REDUCED, REDUCED, REDUCED,
. RETAINED)
CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
arg = 1
CALL ef_set_arg_name(id, arg, ‘A’)
CALL ef_set_arg_desc(id, arg, ‘data to be checked’)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

* ^
* |
* USER CONFIGURABLE PORTION |
* **

This arrangement allows the user to specify an X/Y/Z region of interest and have this region in-
formation used when the argument is passed to the function. If we had specified X/Y/Z as
NORMAL axes, Ferret would have understood this to mean that all region information for
these three axes can be ignored when the percent_good_t function is called. This is not what we
want.

5.4 String Arguments

Ferret can pass strings to external functions. This may be useful if you are writing external
functions to write a new output format, for example, and wish to pass the output filename as an
argument.

By default, all arguments are assumed to be of type FLOAT_ARG. In the ~init subroutine, the ex-
ternal function must tell Ferret which arguments are to be handled as strings:

arg = 1
CALL ef_set_arg_type(id, arg, STRING_ARG)
CALL ef_set_arg_name(id, arg, ‘message’)
CALL ef_set_arg_desc(id, arg, ‘String to be written when executing.’)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

In the ~compute subroutine, a pointer to the string argument is passed in and dimensioned as
any other argument. A text variable must be declared and a utility function is used to get the ac-
tual text string. As an example:

SUBROUTINE string_args_compute(id, arg_1, arg_2, result)

INCLUDE ‘ferret_cmn/EF_Util.cmn’
INCLUDE ‘ferret_cmn/EF_mem_subsc.cmn’

INTEGER id

REAL bad_flag(1:EF_MAX_ARGS), bad_flag_result
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
. mem1loz:mem1hiz, mem1lot:mem1hit)

EXTERNAL FUNCTIONS 189

REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
. mem2loz:mem2hiz, mem2lot:mem2hit)
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit)

INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
. arg_incr(4,1:EF_MAX_ARGS)

CHARACTER arg1_text*160

* **
* USER CONFIGURABLE PORTION |
* |
* V

INTEGER i,j,k,l
INTEGER i1, j1, k1, l1

CALL ef_get_arg_string(id, 1, arg1_text)

WRITE(6,49) arg1_text
49 FORMAT (‘The text for arg1 is : ‘’’,a,’’’’)

…

6 UTILITY FUNCTIONS

The lists below describe the utility functions built into Ferret which are available to the external
function writer. These are used to set parameters associated with the external function and to
retrieve information provided by Ferret. (Input variables, sending information to Ferret, are in
plain type and output variables, getting information from Ferret, are in italic.)

6.1 EF_Util.cmn

External functions need to include the EF_Util.cmn file in each subroutine in order to use vari-
ous pre-defined parameters. These parameters are defined in the table below:

Parameters defined in EF_Util.cmn

190 CHAPTER 11

To make the code more readable:

X_AXIS (=1) ARG1 (=1) ARG5 (=5) ARG9 (=9)

Y_AXIS (=2) ARG2 (=3) ARG6 (=6) YES (=2)

Z_AXIS (=3) ARG3 (=3) ARG7 (=7) NO (=0)

T_AXIS (=4) ARG4 (=4) ARG8 (=8)

Internal parameters for Ferret:

CUSTOM result axis is defined by the external function
IMPLIED_BY_ARGS result axis is inherited from one (or more) of the arguments
NORMAL this axis does not exist in the result
ABSTRACT result axis is an indexed axis [1:N]
RETAINED result axis has same extent as argument axis
REDUCED result axis is reduced to a point

6.2 Available utility functions

Setting Parameters

General Information

• ef_set_desc(id, desc) (p. 192)
• ef_set_num_args(id, num) (p. 192)
• ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn) (p. 193)
• ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc) (p. 192)
• ef_set_arg_name(id, arg, name) (p. 193)
• ef_set_arg_desc(id, arg, desc) (p. 193)
• ef_set_arg_unit(id, arg, unit) (p. 193)
• ef_set_arg_type(id, arg, type) (p. 194)
• ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn) (p. 194)
• ef_set_axis_reduction(id, Xred, Yred, Zred, Tred) (p. 195)
• ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt) (p. 194)
• ef_set_axis_limits(id, axis, lo, hi) (p. 195)
• ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo) (p. 195)
• ef_set_num_work_arrays(id, num) (p. 195)
• ef_set_work_array_dims(id, array, Xlo, Ylo, Zlo, Tlo, Xhi, Yhi, Zhi, Thi) (p. 196)

Getting Information

For all calculations

• ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) (p. 196)
• ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) (p. 198)
• ef_get_bad_flags(id, bad_flag, bad_flag_result) (p. 199)

EXTERNAL FUNCTIONS 191

Text

• ef_get_arg_info(id, arg, name, title, units) (p. 196)
• ef_get_arg_string(id, arg, text) (p. 197)
• ef_get_axis_info(id, arg, name, units, bkwd, modulo, regular) (p. 197)
• ef_get_axis_dates(id, arg, tax, numtimes, datebuf) (p. 198)

Values

• ef_get_arg_ss_extremes(id, ss_min, ss_max) (p. 199)
• ef_get_coordinates(id, arg, axis, lo, hi, coords) (p. 199)
• ef_get_box_size(id, arg, axis, lo, hi, size) (p. 200)
• ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims) (p. 201)
• ef_get_one_val(id, arg, value) (p. 201)

Other

• ef_version_test(version) (p. 201)
• ef_bail_out(id, text) (p. 202)

ef_set_desc(id, desc)

Assign a text string description to the external function.

Input arguments:
1. INTEGER id: external function’s ID number
2. CHARACTER*(*) desc: description of this function

ef_set_num_args(id, num)

Specify the number of arguments this function will accept.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER num: number of arguments for this function

ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc)

Specify where the result axes will come from. The acceptable values for each axis will be on of:

192 CHAPTER 11

CUSTOM result axis is defined by the external function
IMPLIED_BY_ARGS result axis is inherited from one (or more) of the arguments
NORMAL this axis does not exist in the result
ABSTRACT result axis is an indexed axis [1:N]

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER Xsrc: inheritance flag for the X axis
3. INTEGER Ysrc: inheritance flag for the Y axis
4. INTEGER Zsrc: inheritance flag for the Z axis
5. INTEGER Tsrc: inheritance flag for the T axis

ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn)

Tell Ferret whether it is ok to break up calculations along a particular axis.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER Xyn: yes/no flag for the X axis
3. INTEGER Yyn: yes/no flag for the Y axis
4. INTEGER Zyn: yes/no flag for the Z axis
5. INTEGER Tyn: yes/no flag for the T axis

ef_set_arg_name(id, arg, name)

Assign a text string name to an argument.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. CHARACTER*(*) name: argument name

ef_set_arg_desc(id, arg, desc)

Assign a text string description to an argument.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. CHARACTER*(*) desc: argument description

ef_set_arg_unit(id, arg, unit)

Assign a text string to an argument’s units.

EXTERNAL FUNCTIONS 193

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. CHARACTER*(*) unit: unit description

ef_set_arg_type(id, arg, type)

Specify the type of an argument as either FLOAT_ARG or STRING_ARG. In the ~_compute sub-
routine, the ef_get_arg_string() function is used to obtain the desired text string.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. INTEGER type: either FLOAT_ARG or STRING_ARG

ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt)

Tell Ferret to extend the range of data passed for an argument. This is useful for cases like
smoothers where the result at a particular point depends upon a range of input values around
that point.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. INTEGER axis: axis number
4. INTEGER lo_amt: extension to the lo range (–1 means get one more point than in the

result)
5. INTEGER hi_amt: extension to the hi range (+1 means get one more point than in the

result)

ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn)

Specify whether this argument’s axes “influence” the result axes. A value of YES for a
particular axis means that the result should have the same axis as this argument. If the result
should have the same axis as several input arguments, then each argument should specify
YES for the axis in question. Note that ef_set_axis_inheritance must have specified
IMPLIED_BY_ARGS for this axis.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. INTEGER Xyn: influence flag for the X axis
4. INTEGER Yyn: influence flag for the Y axis
5. INTEGER Zyn: influence flag for the Z axis
6. INTEGER Tyn: influence flag for the T axis

194 CHAPTER 11

ef_set_axis_reduction(id, arg, Xred, Yred, Zred, Tred)

Specify whether the result axes are RETAINED or REDUCED with respect to the argument
axes from which they are inherited. Setting the axis reduction flag to REDUCED means that
the result axis is reduced to a point by the external function. The axis reduction flag need only
be set when the result is reduced to a point but SET REGION information should still be ap-
plied to the external function arguments.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. INTEGER Xred: reduction flag for the X axis
4. INTEGER Yred: reduction flag for the Y axis
5. INTEGER Zred: reduction flag for the Z axis
6. INTEGER Tred: reduction flag for the T axis

ef_set_axis_limits(id, axis, lo, hi)

Specify the lo and hi limits of an axis. (This is not needed for most functions and must ap-
pear in a separate subroutine named ~func_name~_result_limits(id)).

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER axis: axis number
3. INTEGER lo: index value of the lo range of this axis
4. INTEGER hi: index value of the hi range of this axis

ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo)

Create a custom axis. This is only used by functions which create a custom axis and must ap-
pear in a separate subroutine named ~func_name~_custom_axes(id).

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER axis: axis number
3. INTEGER lo: index value of the lo range of this axis
4. INTEGER hi: index value of the hi range of this axis
5. INTEGER delta: increment for this axis
6. CHARACTER*(*) unit: unit for this axis
7. INTEGER modulo: flag for modulo axes (1 = modulo)

ef_set_num_work_arrays(id, nwork)

Set the number of work arrays to be allocated.

EXTERNAL FUNCTIONS 195

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER nwork: number of storage arrays

ef_set_work_array_dims(id, iarray, xlo, ylo, zlo, tlo, xhi,
yhi, zhi, thi)

Set the working array axis lengths.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER iarray: array number
3. INTEGER xlo: index value of the lo range of x axis
4. INTEGER ylo: index value of the lo range of y axis
5. INTEGER zlo: index value of the lo range of z axis
6. INTEGER tlo: index value of the lo range of t axis
7. INTEGER xhi: index value of the hi range of x axis
8. INTEGER yhi: index value of the hi range of y axis
9. INTEGER zhi: index value of the hi range of z axis
10. INTEGER thi: index value of the hi range of t axis

ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)

Return lo and hi indices and increments to be used in looping through the calculation of the
result.

Input arguments:
1. INTEGER id: external function’s ID number

Output arguments:
1. INTEGER res_lo_ss(4): the lo end indices for the X, Y, Z, T axes of the result
2. INTEGER res_hi_ss(4): the hi end indices for the X, Y, Z, T axes of the result
3. INTEGER res_incr(4): the increment to be applied to the X, Y, Z, T axes of the re-

sult

Sample code:

CALL ef_get_res_subscripts(id,
res_lo_ss, res_hi_ss, res_incr) ... DO 400 i=res_lo_ss(X_AXIS),
res_hi_ss(X_AXIS) DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
... 300 CONTINUE 400 CONTINUE

ef_get_arg_info(id, iarg, arg_name, arg_title, arg_units)

Return strings describing argument: name, title, units.

196 CHAPTER 11

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER iarg: argument number

Output arguments:
1. CHARACTER*24 arg_name: the name of the argument
2. CHARACTER*128 arg_title: title associated with the argument
3. CHARACTER*32 arg_units: the argument’s units.

ef_get_arg_string(id, iarg, text)

Return the string associated with an argument of type STRING_ARG.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER iarg: argument number

Output arguments:
1. CHARACTER*24 text: the actual text string for the argument

Sample code:

…

CHARACTER arg_text*160

* **
* USER CONFIGURABLE PORTION |
* |
* V

INTEGER i,j,k,l
INTEGER i1, j1, k1, l1

CALL ef_get_arg_string(id, 1, arg_text)
WRITE(6,49) arg_text

49 FORMAT (‘The text is : ‘’’,a,’’’’)

…
ef_get_axis_info(id, iarg, axname, ax_units, backward, modulo, regular)

Return strings describing argument: name, title, units.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER iarg: argument number

Output arguments:
1. CHARACTER*16 ax_name(4): the name of the four axes
2. CHARACTER*16 ax_units(4): units of the four axes
3. LOGICAL backward(4): true if axis is backward axis
4. LOGICAL modulo(4): true if axis is modulo axis

EXTERNAL FUNCTIONS 197

5. LOGICAL regular(4): true if axis is regular axis

ef_get_axis_dates(id, iarg, taxis, numtimes, datebuf)

Returns the string date buffer associated with the time axis of an argument.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER iarg: argument number
3. REAL*8 taxis(numtimes): time axis coordinate values
4. INTEGER numtimes: number of time

Output arguments:
1. CHARACTER*20 datebuf(numtimes): the string-date buffer for each time.

ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

Return lo and hi indices and increments to be used in looping through the calculation of the
result.

Input arguments:
1. INTEGER id: external function’s ID number

Output arguments:
1. INTEGER arg_lo_ss(4,EF_MAX_ARGS): the lo end indices for the X, Y, Z, T

axes of each argument
2. INTEGER arg_hi_ss(4,EF_MAX_ARGS): the hi end indices for the X, Y, Z, T

axes of each argument
3. INTEGER arg_incr(4,EF_MAX_ARGS): the increment to be applied to the X, Y,

Z, T axes of each argument

Sample code:

INTEGER i,j,k,l
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

i1 = arg_lo_ss(X_AXIS,ARG1)
i2 = arg_lo_ss(X_AXIS,ARG2)

DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
…
i1 = i1 + arg_incr(X_AXIS,ARG1)
i2 = i2 + arg_incr(X_AXIS,ARG2)

400 CONTINUE

198 CHAPTER 11

ef_get_arg_ss_extremes(id, ss_min, ss_max)

Return the maximum and minim index values for all the arguments. These define the do-
main of the data.

Input arguments:
1. INTEGER id: external function’s ID number

Output arguments:
1. INTEGER ss_min(4,EF_MAX_ARGS): the minimum indices for the X, Y, Z, T

axes of each argum
2. INTEGER ss_max(4,EF_MAX_ARGS): the maximum indices for the X, Y, Z, T

axes of each argum

Sample code:

CALL ef_get_arg_ss_extremes(id, ss_min, ss_max)

ef_get_bad_flags(id, bad_flag, bad_flag_result)

Return the missing value flags for each argument and for the result.

Input arguments:
1. INTEGER id: external function’s ID number

Output arguments:
1. REAL bad_flag(EF_MAX_ARGS): missing value flags for each argument
2. REAL bad_flag_result: missing value flag for the result

Sample code:

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

…

IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(ARG1)) THEN
result(i,j,k,l) = bad_flag_result

ELSE
...

ef_get_coordinates(id, arg, axis, lo, hi, coords)

Return the “world coordinates” associated with a particular arg, axis and lo:hi range.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number

EXTERNAL FUNCTIONS 199

3. INTEGER axis: axis number
4. INTEGER lo: lo index of desired range
5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL coords(*): array of “world coordinate” values (NB_ these values are associ-
ated with index values lo:hi but are returned as coords(1:hi-lo).)

Sample code:

REAL tk_y(1024), tk_dx(1024), tk_dy(1024), uk_dy(1024)
INTEGER dummy

…

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
CALL ef_get_coordinates(id, ARG1, Y_AXIS, arg_lo_ss(Y_AXIS, ARG1),

arg_hi_ss(Y_AXIS, ARG1), tk_y)

…

dummy = 1
DO 30 i = arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1)
cstr(i) = 1.0 / cos(tk_y(dummy) * (1.0/radian))
dummy = dummy + 1

30 CONTINUE

ef_get_box_size(id, arg, axis, lo, hi, size)

Return the box sizes (in “world coordinates”) associated with a particular arg, axis and lo:hi
range.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. INTEGER axis: axis number
4. INTEGER lo: lo index of desired range
5. INTEGER hi: hi index of desired range

Output arguments:
1. REAL size(*): array of box size values (NB_ these values are associated with index

values lo:hi but are returned as coords(1:hi-lo).)

Sample code:

REAL tk_y(1024), tk_dx(1024), tk_dy(1024), uk_dy(1024)
INTEGER dummy

…

200 CHAPTER 11

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
CALL ef_get_coordinates(id, ARG1, Y_AXIS, arg_lo_ss(Y_AXIS, ARG1),
. arg_hi_ss(Y_AXIS, ARG1), tk_y)
CALL ef_get_box_size(id, ARG1, X_AXIS, arg_lo_ss(X_AXIS, ARG1),
. arg_hi_ss(X_AXIS, ARG1), tk_dx)

…

dummy = 1
DO 20 i = arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1)
dxt4r(i) = 1.0 / (4.0 * tk_dx(dummy) * radius/radian)
dummy = dummy + 1

20 CONTINUE

ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims)

Return the box limits (in “world coordinates”) associated with a particular arg, axis and
lo:hi range.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number
3. INTEGER axis: axis number
4. INTEGER lo: lo index of desired range
5. INTEGER hi: hi index of desired range

Output arguments:
1. REAL lo_lims(*): array of box lower limit values (NB_ these values are associated

with index values lo:hi but are returned as coords(1:hi-lo).)
2. REAL hi_lims(*): array of box upper limit values (NB_ these values are associated

with index values lo:hi but are returned as coords(1:hi-lo).)

ef_get_one_val(id, arg, value)

Return the value of 1×1×1×1 variable.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER arg: argument number

Output arguments:
1. REAL value : The value of the variable

ef_version_test (version)

Return the version number of the external functions code that is in place.

Output argument:

EXTERNAL FUNCTIONS 201

1. REAL version : The version number

ef_bail_out(id, text)

Bail out of an external function, returning to Ferret and issuing a message to the user.

Input arguments:
1. INTEGER id: external function’s ID number
2. INTEGER text: text string to output.

202 CHAPTER 11

Part II: COMMANDS REFERENCE

1 ALIAS

An alias for DEFINE ALIAS.

2 CANCEL

Cancels a program state or definition—generally paired with a SET or DEFINE command. See
commands SET (p. 241) and DEFINE (p. 211) for further information.

Arguments:

The arguments, which are names of variables, data sets, or other definitions can be specified
using wildcards. The * wildcard matches any number of characters in the name; the ? wildcard
matches exactly one character.

2.1 CANCEL ALIAS

Cancels a user-defined command alias.

yes? CANCEL ALIAS ALIAS_NAME

The command UNALIAS is an alias for CANCEL ALIAS.

2.2 CANCEL AXIS
/MODULO

Cancels the modulo nature of a user-defined axis (only valid with /MODULO qualifier).

yes? CANCEL AXIS/MODULO my_x_axis

or

yes? CANCEL AXIS/MODULO my_t*

Command qualifiers for CANCEL AXIS:

CANCEL AXIS/MODULO

COMMANDS REFERENCE 203

2.3 CANCEL DATA_SET
/ALL /NOERROR

Removes the specified data set from the list of available sets.

yes? CANCEL DATA_SET dset1, dset2, ..., dsetn

where each dset may be the name or number of a data set; or
yes? CANCEL DATA/ALL

(See also SET DATA_SET, p. 242, and SHOW DATA SET, p. 269.)

Command qualifiers for CANCEL DATA_SET:

CANCEL DATA/ALL
Eliminates all data sets from the list of accessible data sets.

CANCEL DATA/NOERROR
Suppresses the error message otherwise generated when a data set that was never set is can-
celed. Useful in GO scripts for closing data sets that may have been opened in previous usage
of the script.

2.4 CANCEL EXPRESSION

Un-specifies the current context expression. Ferret’s “action” commands can be issued without
an argument (e.g., yes? PLOT), in which case Ferret uses the current context expression. This
expression is either the argument of the most recent action command, or an expression set ex-
plicitly with SET EXPRESSION.

yes? CANCEL EXPRESSION

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

2.5 CANCEL LIST
/ALL /APPEND /FILE /FORMAT /HEADING /PRECISION

Toggles the effects of the SET LIST command. See command SET LIST (p. 248).

yes? CANCEL LIST[/qualifiers]

Command qualifiers for: CANCEL LIST

CANCEL LIST/ALL
Restores all aspects of the LIST command to their default behavior.

204 COMMANDS REFERENCE

CANCEL LIST/APPEND
Resets the listed output to NOT append to existing file.

CANCEL LIST/FILE
Resets the listed output to automatic file naming.

CANCEL LIST/FORMAT
Resets the listed output to its default formatting.

CANCEL LIST/HEAD
Instructs listed output to omit the descriptive data header.

CANCEL LIST/PRECISION
Resets the precision of listed data to 4 significant digits.

2.6 CANCEL MEMORY
/ALL /PERMANENT /TEMPORARY

Clears data currently cached in memory.

yes? CANCEL MEMORY[/qualifier]

Use this command to save memory space—by clearing data as soon as it is no longer needed
virtual memory requirements can be reduced. This is especially useful for efficient batch pro-
cessing. Default is CANCEL MEMORY/TEMPORARY.

Example:

To produce an animation using minimal virtual memory try:
yes? REPEAT/T=lo:hi:delta GO min_mem_movie

Where the file min_mem_movie.jnl contains
CONTOUR/FRAME temp[Z=0] ! contour plot
CANCEL MEMORY/ALL ! clear memory for next time step

Command qualifiers for CANCEL MEMORY:

CANCEL MEMORY/ALL
Clears all variables stored in memory.

CANCEL MEMORY/PERMANENT
Clears all “permanent” variables stored in memory (i.e., variables loaded into memory with
LOAD/PERMANENT).

COMMANDS REFERENCE 205

CANCEL MEMORY/TEMPORARY (default)
Clears all non-permanent variables stored in memory.

2.7 CANCEL MODE

Sets the state of a mode to “canceled.”

yes? CANCEL MODE mode_name

(See command SET MODE, p. 251, for descriptions of modes.)

2.8 CANCEL MOVIE

This command is unnecessary in Ferret version 3.1 and later; it is provided for compatibility
with older versions of Ferret. It restores the default movie file name (ferret.mgm) but is not
needed to conclude capturing graphics to a movie file.

yes? CANCEL MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

2.9 CANCEL SYMBOL
/ALL

Deletes a user-defined symbol (string variable) definition.

yes? CANCEL STRING[/qualifier] [symbol_name]

Command qualifiers for CANCEL SYMBOL:

CANCEL SYMBOL/ALL
Deletes all user-defined symbol definitions.

Examples:

yes? CANCEL SYMBOL my_x_label !eliminate my_x_label from the definitions
yes? CANCEL SYMBOL *x_label !remove all strings ending in x_label
yes? CANCEL SYMBOL/ALL !remove all user-defined symbols.

206 COMMANDS REFERENCE

2.10 CANCEL REGION
/I/J/K/L /X/Y/Z/T /ALL

Cancels part or all of the current or named region.

yes? CANCEL REGION[/qualifier] [region_name]

Examples:

yes? CANCEL REGION !clear the current region
yes? CANCEL REGION/T !eliminate T from the current context
yes? CANCEL REGION reg1 !clear the region named “reg1"

Command qualifiers for CANCEL REGION:

CANCEL REGION/I /J /K /L /X /Y /Z /T
Eliminates I, J, K, L, X, Y, Z, or T axis information from current context or named region.

CANCEL REGION/ALL
Eliminates ALL stored region information (rarely used).

2.11 CANCEL VARIABLE
/ALL

Deletes a user-defined variable definition.

yes? CANCEL VARIABLE[/qualifier] [var_name]

Command qualifiers for CANCEL VARIABLE:

CANCEL VARIABLE/ALL
Deletes all user-defined variable definitions.

Examples:

yes? CANCEL VARIABLE my_sst !eliminate my_sst from the definitions
yes? CANCEL VARIABLE *wind !delete all variables ending in wind
yes? CANCEL VARIABLE tau? !delete variables named tau plus one character
yes? CANCEL VARIABLE/ALL !delete all user-defined defined variables

2.12 CANCEL VIEWPORT

Cancels a defined viewport or cancels use of viewports.

yes? CANCEL VIEWPORT view_name !un-define view_name
yes? CANCEL VIEWPORT !return to full window output

COMMANDS REFERENCE 207

2.13 CANCEL WINDOW
/ALL

Removes graphics window(s) from the screen.

yes? CANCEL WINDOW n !or
yes? CANCEL WINDOW/ALL

Command qualifiers for CANCEL WINDOW:

CANCEL WINDOW/ALL
Removes all graphics windows.

3 CONTOUR
/I/J/K/L /X/Y/Z/T /D /FILL /FRAME /KEY /LEVELS /LINE /NOAXIS /NOKEY
/NOLABEL /OVERLAY /PALETTE /PATTERN/PEN /SET_UP /TITLE /TRANSPOSE
/XLIMITS /YLIMITS

Produces a contour plot.

yes? CONTOUR[/qualifiers] [expression]

Example:

yes? CONTOUR var1 !produce a contour plot of the variable var1

Parameters

Expressions may be any valid expression. See Chapter 3, section “Expressions” (p. 49), for a
definition of valid expressions. The expression will be inferred from the current context if
omitted from the command line.

Command qualifiers for CONTOUR:

CONTOUR/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

CONTOUR/D=
Specifies the default data set to use when evaluating the expression being contoured.

CONTOUR/FILL (alias FILL)
Creates a color filled contour image.

208 COMMANDS REFERENCE

CONTOUR/FRAME
Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexible
and we recommend its use rather than this qualifier.

CONTOUR/KEY
Displays a color key for the palette used in a color-filled contour plot. Only valid in conjunction
with /FILL (default with CONTOUR/FILL or alias FILL).

CONTOUR/LEVELS
Specifies the contour levels or how the levels will be determined. If the /LEVELS qualifier is
omitted Ferret automatically selects reasonable contour levels.

See Chapter 6, section “Contouring” (p. 124) for examples and more documentation on
/LEVELS and color_thickness indices. See also the demonstration “custom_con-
tour_demo.jnl”.

CONTOUR/LINE
Overlays contour lines on a color-filled plot. Valid only with /FILL (or as a qualifier to alias
FILL). When /LINE is specified the color key, by default, is omitted. Use FILL/LINE/KEY to
obtain both contour lines and a color key.

CONTOUR/NOKEY
Turns off display of a color key for the palette used in a color-filled contour plot. Only valid in
conjunction with /FILL (or with alias FILL).

CONTOUR/NOAXIS
Suppresses all axis lines, tics and labeling so that no box appears surrounding the contour plot.
This is especially useful for map projection plots.

CONTOUR/NOLABELS
Suppresses all plot labels except axis labels.

CONTOUR/OVERLAY
Causes the indicated expression to be overlaid on the existing plot.

Note (CONTOUR/OVERLAY with time axes):
A restriction in PPLUS requires that if time is an axis of the contour plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid contour fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis.

COMMANDS REFERENCE 209

CONTOUR/PALETTE=
Specifies a color palette (otherwise, the current default palette is used). Valid only with
CONTOUR/FILL (or as a qualifier to the alias FILL). The file suffix *.spk is not necessary
when specifying a palette. Try the Unix command % Fpalette ‘*’ to see available palettes.
See command PALETTE (p. 232) for more information.

Example:

yes? CONTOUR/FILL/PALETTE=land_sea world_relief

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE (p. 232) command for further discussion.

CONTOUR/PATTERN=
Specifies a pattern file (otherwise, the current default pattern specification is used). Valid only
with CONTOUR/FILL (or as a qualifier to the alias FILL). The file suffix *.pat is not necessary
when specifying a pattern. Try the Unix command % Fpattern ‘*’ to see available patterns. See
command PATTERN (p. 233) for more information.

CONTOUR/PEN=
Sets line style for contour lines (same arguments as PLOT/LINE=). Argument can be an inte-
ger between 1 and 18; run GO line_samples to see the styles for color devices.

Example:

yes? CONTOUR/PEN=2 sst

CONTOUR/SET_UP
Performs all the internal preparations required by program Ferret for contouring but does not
actually render output. The command PPL can then be used to make changes to the plot prior to
producing output with the PPL CONTOUR command. This permits plot customizations that
are not possible with Ferret command qualifiers. See Chapter 6, section “Contouring” (p. 124).

CONTOUR/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character.

CONTOUR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X and T axes of the
data are drawn horizontally on the plot and the Y and Z axes of the data are drawn vertically.
For Y-Z plots the Z data axis is vertical by default.

210 COMMANDS REFERENCE

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /XLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

CONTOUR/XLIMITS=
Specifies axis range and tic interval for the X axis. Without this qualifier, Ferret selects reason-
able values.

yes? CONTOUR/XLIMITS=lo_val:hi_val[:increment] [expression]

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. This can lead to confusion, especially on plots in the YT or ZT plane. Plots in these
planes are automatically transposed to place the Y or Z axis, respectively, on the vertical axis of
the plot. Plots may also be transposed manually with the /TRANSPOSE qualifier. On trans-
posed plots /XLIMITS will refer to the vertical axis of the plot.

CONTOUR/YLIMITS=
Specifies the axis range and tic interval for the Y axis. See /XLIMITS (above).

4 DEFINE

Defines a new alias, region, grid, axis, variable, or viewport.

4.1 DEFINE ALIAS

Defines an alias for a command. “ALIAS” is an alias for DEFINE ALIAS.

yes? DEFINE ALIAS NAME COMMAND

Example:

yes? DEFINE ALIAS SDF SHOW DATA/FULL

4.2 DEFINE AXIS
/X/Y/Z/T /DEPTH /FILE /FROMDATA /MODULO
/NAME /NPOINTS /T0 /UNIT

Defines an axis (axis name up to 16 characters).

yes? DEFINE AXIS[/qualifiers] axis_name_or_expr

COMMANDS REFERENCE 211

Example:

yes? DEFINE AXIS/X=140E:140W:.2 AX140

Command qualifiers for DEFINE AXIS:

DEFINE AXIS/X=/Y=/Z=/T=
Specifies the limits and point spacing of an axis.

yes? DEFINE AXIS/X=lo:hi:delta axis_name

The limits may be in longitude, latitude, or date format (for X, Y, or T axis, respectively) or
may be simple numbers. No units are assumed unless units are given explicitly with the
/UNITS qualifier.

Use /UNITS=degrees to obtain latitude or longitude axes. The X or Y qualifier determines
which orientation “degrees” refers to.

For T axis, the limits may be dates (dd-mmm-yyyy:hh:mm:ss) or may be time steps. The delta
increment is regarded as hours unless the /UNITS qualifier specifies otherwise.

If the time limits are given as dates then this axis produces date-formatted output (unless
CANCEL MODE CALENDAR is issued). If the time limits are given as time steps then all in-
stances of this axis are labeled with time step values in the units specified with the /UNITS
qualifier.

Examples (evenly-spaced axes):

yes? DEFINE AXIS/X=140E:140W:.2 ax140
yes? DEFINE AXIS/Y=15S:25N:.5 axynew
yes? DEFINE AXIS/Z=0:5000:20/UNITS=CM/DEPTH axzcm
yes? DEFINE AXIS/T="7-NOV-1953":"23-AUG-1988:11:00":24 axtlife
yes? DEFINE AXIS/T=25:125:5/UNITS=minutes axt5min

DEFINE AXIS/DEPTH
Specifies the Z axis to be a depth, positive downward, axis. A depth axis is indicated by a “(-)”
following its title in a SHOW GRID or SHOW AXIS command. Depth axes are notated by
“UD” (up-down) in the grid definition file, while normal vertical axes (such as an elevation
axis in meteorology) are notated by “DU” (down-up).

Example:

yes? DEFINE AXIS/Z=0:5000:20/DEPTH/UNITS=CM AXZDCM

DEFINE AXIS/EDGES
The /EDGES qualifier indicates that the coordinates provided refer to the edges or boundaries
between grid cells. When /EDGES is used, the coordinates of the grid points will be computed
at the midpoints between the indicated edges. When /EDGES is used in conjunction with

212 COMMANDS REFERENCE

/FROM_DATA the number of grid points created will be equal to the number of coordinates
minus one, since the list of edges includes both the upper and lower edge of the axis. An exam-
ple of defining an axis by its edges is

yes? DEFINE AXIS/Z=0:5010:20//EDGES/DEPTH/UNITS=CM AXZDCM

A class of especially important uses for the /EDGES qualifier is to create custom calendar axes.
This example creates a true monthly axis, with axis cells beginning on the first of each month:

yes? let month = MOD(l-1,12)+1
yes? let add_year = INT((l-1)/12)
yes? let tstep = DAYS1900(1980+add_year,month,1)
yes? define axis/from_data/T/units=days/name=tax/t0=1-jan-1900/edges
tstep[l=1:`20*12+1`]

The following example shows the computation of a custom climatological average. Given, for
example, a multi-year time series of a daily measured variable, the climatological average of
the variable between April 3 and and June 5 could be computed with

yes? define axis/t=1-jan-0001:1-jan-0002:1/unit=days/t0=1-jan-0000
tencoding
yes? let tstep = t[gt=tencoding]
yes? let start_date = tstep[t=15-mar-0001]
yes? let end_date = tstep[t=27-may-0001]
yes? define axis/from_data/T/units=days/name=tax/t0=1-jan-0000/edges/modulo
{`start_date,p=7`,`end_date,p=7`,`start_date+365.2425,p=7`}

DEFINE AXIS/FILE=
Reads a gridfile for grid and axis definitions. The gridfile specified should be in the standard
TMAP gridfile format. There are several documents in $FER_DIR/doc regarding gridfiles and
TMAP format (e.g., “about_grid_files.txt”).

yes? DEFINE AXIS/FILE=grid_file.grd

DEFINE AXIS/FROM_DATA
Used only in conjunction with /NAME to define an axis from any expression that Ferret can
evaluate.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name expr

(This is a mechanism to convert dependent variables into independent axis data.)

Note that the values from which the axis is to be created must be in strictly increasing order. If
the coordinates are repeated, Ferret will “micro-adjust” the values by adding multiples of 1
millionth of the axis range to the repeated values. Ferret will issue an informative message if it
is micro-adjusting an axis.

Example (unevenly-spaced axis):

yes? DEFINE AXIS/FROM_DATA/X/NAME=my_xaxis pos[D=2]^0.5

COMMANDS REFERENCE 213

defines each coordinate of the axis “my_xaxis” as the square root of variable “pos” from data
set 2.

DEFINE AXIS/MODULO
Specifies that the axis being defined be treated as modulo; that is, the first point will wrap
around and follow the last point (e.g., a longitude axis).

DEFINE AXIS/NAME=
Used only in conjunction with /FROM_DATA to specify the name of the axis to be defined.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name expr

DEFINE AXIS/NPOINTS=
Specifies the number of coordinate points on the axis being defined.

yes? DEFINE AXIS/Z=lo:hi/NPOINTS=n ax_name

This qualifier can be used instead of specifying Z=lo:hi:delta.

DEFINE AXIS/T0=
Specifies the date and time associated with the time step value 0.0

Example:

DEFINE AXIS/T="1-NOV-1980":"15-AUG-1988":72/T0="1-JAN-1800" TNEW

Note: The /T0 qualifier is optional; the underlying time step values are transparent to Ferret us-
ers for most purposes. The default value is 15-JAN-1901.

DEFINE AXIS/UNITS=
Specifies the units of the axis being defined.

Example:

yes? DEFINE AXIS/Z=0:2000:100/UNITS=CM ZCM

Any string (up to 10 characters) is acceptable as a units string, but only the following units are
recognized and used when computing axis transformations:

cm (or centimeter) mm (or millimeter) day
km (or kilometer) mb (or millibar) mon
m (or meter) level yr (or year) (365 days)
deg (or lat or lon) layer gregorian_year (365.2425 days)
ft (or feet or foot) sec year360 (360 days)
in min year366 (366 days)
mile hour M2 cycles

214 COMMANDS REFERENCE

TIP:

Ferret will convert recognized units of length to meters and recognized units of time to seconds
during transformations such as integration (@IIN and @DIN) and differentiation (@DDB,
@DDC, @DDF) (see “General Information about transformations,” p. 56). Using this charac-
teristic it is always possible to query Ferret about the conversion factors from meters or sec-
onds by integrating a grid cell of width one on an axis of the units in question. For example:

yes? ! query conversion factor to meters
yes? define axis/x=0:1:1/edges/units=feet xtest ! 1 point, cell width=1
unit
yes? let vx = 0*X[gx=xtest]+1 ! vx = 1
yes? list/prec=7 vx[x=@din]

0*X[GX=XTEST]+1
X (FEET): 0 to 1 (integrated)

0.3048000

yes? ! query conversion factor to seconds
yes? define axis/t=0:1:1/edges/units=month ttest ! 1 point, cell width=1
unit
*** NOTE: /UNIT=MONTHS is ambiguous ... using 1/12 of 365 days.

yes? let vt = 0*T[gt=ttest]+1 ! vt = 1
yes? list/prec=7 vt[t=@din]

0*T[GT=TTEST]+1
T (MONTH): 0 to 1 (integrated)

2628000.

4.3 DEFINE GRID
/X/Y/Z/T /FILE /LIKE

Defines a grid (name may be up to 16 characters).

yes? DEFINE GRID[/qualifiers] grid_name

Example:

yes? DEFINE GRID/LIKE=temp/T=my_t_axis my_grid

Command qualifiers for DEFINE GRID:

DEFINE GRID/X=/Y=/Z=/T=
Specifies what particular axis is to be the X, Y, Z, or T axis for this grid.

yes? DEFINE GRID/X=axname grid_name

The name axname may be the name of an axis, the name of a grid that uses the axis desired, or
the name of a variable for which the defining grid uses the axis desired.

For example,

yes? DEFINE GRID/X=U gx

COMMANDS REFERENCE 215

will create a grid named gx which is one-dimensional—normal to Y, Z, and T.

Note: Many axes possess an orientation implicit in their units, especially latitude, longitude,
and time axes. The effects of using an axis in an inappropriate orientation, such as
/X=time_axis, are unpredictable.

DEFINE GRID/FILE=
Reads a gridfile for GRID and AXIS definitions. The gridfile specified should be in the stan-
dard TMAP gridfile format. There are several documents in $FER_DIR/doc regarding
gridfiles and TMAP format (e.g., about_grid_files.txt).

Example:

yes? DEFINE GRID/FILE=new_grids.grd

DEFINE GRID/LIKE=
Specifies a particular grid (by name or by reference to a variable defined on that grid) to use as
a template to create a new grid.

yes? DEFINE GRID/LIKE=grid_or_variable_name grid_name

All axes of the grid being created will be identical to the axes of the “LIKE=” grid except those
explicitly changed with the /X, /Y, /Z, or /T qualifiers.

Example:

yes? DEFINE GRID/LIKE=temp[D=2]/Z=ZAX gnew !temp from data set 2

Examples: DEFINE GRID

1) yes? DEFINE AXIS/T="1-JAN-1980":"31-DEC-1983":24 axday

yes? DEFINE GRID/LIKE=temp/T=axday gday

Define grid gday to be like the defining grid for temp but with a 4-year, daily-interval time
axis.

2) yes? DEFINE GRID/LIKE=temp[D=ba022]/T=sst[D=nmc] gnmc3d

Define grid gnmc3d like temp from data set ba022 but with the same time axis as sst from
data set nmc.

3) yes? DEFINE AXIS/X=140E:140W:.2 xnew

yes? DEFINE AXIS/Y=5S:5N:.2 ynew

yes? DEFINE AXIS/T="15-FEB-1982":"15-FEB-1984":48 tnew

yes? DEFINE GRID/X=xnew/Y=ynew/T=tnew gnew

Define grid gnew from new axes. The grid, gnew, will be normal (perpendicular) to Z.

216 COMMANDS REFERENCE

4.4 DEFINE REGION
/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT /DEFAULT

Defines or redefines a named region_name (first 4 characters are recognized).

yes? DEFINE REGION[/qualifiers] region_name

If the qualifier /DEFAULT is not given only those axes explicitly named will be stored. If the
qualifier /DEFAULT is given all axes will be stored.

Command qualifiers for DEFINE REGION:

DEFINE REGION/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies region limits (=lo:hi or =val).

DEFINE REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Specifies a change in region relative to the current settings (=lo:hi or =val). See examples be-
low.

DEFINE REGION/DEFAULT
Saves all axes and transformations, not just those explicitly given. Commonly, a GO script be-
gins with “DEFINE REGION/DEFAULT save” and ends with “SET REGION save”.

Examples: DEFINE REGION

1) yes? DEFINE REGION/DEFAULT save

Stores the current default region under the name “save”. The region may be restored at a
later time by the command yes? SET REGION save.

2) yes? DEFINE REGION/X xonly

Stores the current default X axis limits, only, as region xonly.

3) yes? DEFINE REGION/DX=-5 xonly

Stores the current default X axis limits minus 5 as region xonly.

4) yes? DEFINE REGION/Y=20S:20N/Z yanz

Stores the given limits from the Y axis and the default Z axis limits.

5) yes? DEFINE REGION/DEFAULT/L=5 l5

Stores the current default region with the modification that L, the time step, is stored as 5.

6) yes? DEFINE REGION/DL=-1:+1 lp2

Stores an L region beginning 1 time step earlier and ending 1 time step later than the current
default region as region lp2.

COMMANDS REFERENCE 217

4.5 DEFINE SYMBOL

Allows the user to define a string variable. Symbol names must begin with a letter and contain
only letters, digits, underscores, and dollar signs.

yes? DEFINE symbol symbol_name=string

Example:

yes? DEFINE symbol my_x_label = sample number

4.6 DEFINE VARIABLE
/D/QUIET /TITLE /UNITS

Allows the user to define a variable from a valid algebraic expression. Note: LET is an alias for
DEFINE VARIABLE.

yes? DEFINE VARIABLE[/qualifiers] name=expression

Example:

yes? LET SPEED = U^2 + V^2

Parameters

The expression may be any valid expression. See Chapter 3, section “Expressions” (p. 49) for a
definition of valid expressions.

The name specified with DEFINE VARIABLE can be 1 to 24 characters in length—letters,
digits, $ and _, beginning with a letter. Pseudo-variable, operator, and function names are re-
served and cannot be used (I, J, EQ, SIN,...). See Chapter 3 (p. 43) for recognized pseudo-vari-
ables, operators, and functions.

If the name defined is the same as a variable name in a data set, the user-defined variable is used
instead of the file variable. (Look for LET/D=d_set to control this behavior in future Ferret ver-
sions.)

To enter expressions in Reverse Polish ordering see SET MODE POLISH (p. 257).

Examples:

1) yes? DEFINE VARIABLE sum = a+b

or equivalently
yes? LET sum = a+b

218 COMMANDS REFERENCE

2) yes? DEFINE VARIABLE/TITLE="velocity"/UNIT="m/sec" pos[T=@DDC]*0.01

Defines velocity in m/sec from position, pos, in cm.

Command qualifiers for DEFINE VARIABLE:

DEFINE VARIABLE/D=dataset
Restricts the scope of the variable name to the named data set. See detailed discussion in
Chapter3, section “Defining New Variables” (p. 75).

DEFINE VARIABLE/QUIET
Suppresses message that, by default, tells you when you are redefining an existing variable.
This qualifier is useful in command files.

DEFINE VARIABLE/TITLE=
Specifies a title (in quotation marks) for the user-defined variable. This title will be used to la-
bel plots and listings. If no title is specified the text of the expression will be used as the title.
(See also SET VARIABLE/TITLE, p. 262.)

DEFINE VARIABLE/UNITS=
Specifies the units (in quotation marks) of the variable being defined. (See command SET
VARIABLE/UNITS, p. 262.)

4.7 DEFINE VIEWPORT
/CLIP /ORIGIN /SIZE /TEXT /XLIMITS /YLIMITS

Defines a new viewport (a sub-rectangle of the graphics window).

yes? DEFINE VIEWPORT[/qualifiers] view_name

Issuing the command SET VIEWPORT is best thought of as entering “viewport mode.” While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots are drawn in a
single viewport without the use of /OVERLAY the current plot will erase and replace the previ-
ous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of “viewport mode” is canceled.

Example:

yes? DEFINE VIEWPORT/XLIMITS=0,.5/YLIMITS=0,.5 LL

Defines a viewport that will place graphical output into the lower left quarter of the screen, and
names the viewport “LL”.

COMMANDS REFERENCE 219

Command qualifiers for DEFINE VIEWPORT.

DEFINE VIEWPORT/CLIP=
This qualifier is obsolete; see XLIMITS= and /YLIMITS= (below). Specifies the location of
the upper right corner of the viewport.

DEFINE VIEWPORT/ORIGIN=
This qualifier is obsolete; see /XLIMITS= and /YLIMITS= (below). Specifies the location of
the lower left corner of the viewport.

DEFINE VIEWPORT/SIZE=
This qualifier is obsolete; see /XLIMITS and /YLIMITS (below). Specifies the scaling factor
to use relative to the size of the full window.

DEFINE VIEWPORT/TEXT=
Controls shrinkage (or expansion) of text.

yes? DEFINE VIEWPORT/TEXT=n view_name

In some cases text appearance may become unacceptable due to viewport size and aspect spec-
ifications. A value of 1 produces text of the same size as in the full window; 0 < n < 1 shrinks
the text; n > 1 enlarges text. Sensible values go up to about 2. When the qualifier /TEXT is
omitted, Ferret computes a text size that is appropriate to the size of the viewport.

Note that /TEXT modifies the prominence of the text through manipulation of axis lengths
rather than through direct manipulation of the many text size specifications. A low value of text
prominence produces axes that are “long” (as seen with SHOW SYMBOLS, p. 135, or PPL
LIST XAXIS, p. 108), making the (fixed size) text appear less prominent.

DEFINE VIEWPORT/XLIMITS=/YLIMITS=
Specifies the portion of the full window to be used.

yes? DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=y1,y2 view_name

The values of the limits must be in the range [0,1]; they refer to the portion of the window (of
height and length 1) which defines the viewport. Together, /XLIMITS and /YLIMITS replace
the CLIP, ORIGIN, and SIZE qualifiers in older Ferret versions.

5 ELIF

The ELIF command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description
under the IF command (p. 223) in this Commands Reference section.

220 COMMANDS REFERENCE

6 ELSE

The ELSE command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description
under the IF command (p. 223) in this Commands Reference section.

7 ENDIF

The ENDIF command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description
under the IF command (p. 223) in this Commands Reference section.

8 EXIT
/COMMAND_FILE

When issued interactively this command terminates program Ferret.

When executed within a command file this command terminates the execution of the command
file and returns control to the level in Ferret that executed the file (the user or another command
file).

Command qualifiers for EXIT:

EXIT/COMMAND_FILE
When executed from within a command file EXIT/COMMAND_FILE forces an immediate
exit from Ferret rather than returning control to the user or another command file.

9 FILE

The FILE command is an alias for SET DATA/EZ. All qualifiers and restrictions are identical
to SET DATA/EZ

Example:

yes? FILE/VARIABLES="u,v" velocities.dat

is equivalent to
yes? SET DATA/EZ/VARIABLES="u,v" velocities.dat

COMMANDS REFERENCE 221

10 FILL

Alias for CONTOUR/FILL (color-filled contour plot). All qualifiers and restrictions are identi-
cal to CONTOUR/FILL.

Example:

yes? FILL/PAL=land_sea etopo60

is equivalent to
yes? CONTOUR/FILL/PAL=land_sea etopo60

11 FRAME
/FORMAT/FILE

Saves the current graphics display image as a frame in the movie file initialized with the com-
mand SET MOVIE. FRAME is also a qualifier for the “action” commands PLOT, CONTOUR,
POLYGON, SHADE, VECTOR and WIRE.

yes? CONTOUR my_var
yes? FRAME

FRAME/FORMAT=format controls the format of the file produced.
FRAME/FORMAT=HDF appends an HDF raster 8 drawn to the specified or implied input
file. FRAME/FORMAT=GIF creates a new GIF file, any existing GIF file with the specified
or implied name using relative version number or less. The default format is HDF.
FRAME/FILE=filename specifies the name of the output file. If /FORMAT is not specified
the output format is inferred from filename extensions of .hdf, .HDF, .gif, or .GIF.

The maximum filename length, including path, that is allowable is 255 characters.

12 GO
/HELP

Executes a list of commands stored in a file.

yes? GO file_name

If no filename extension is specified a default of .jnl will be assumed. If the full path is speci-
fied then the filename must be enclosed in double quotation marks.

The GO command can pass arguments to the script (tool) it executes. See Chapter 1, section
“Writing GO Tools” (p. 17) for more information. Arguments to the GO command may be sep-
arated by blanks or commas. To specify multiple words as a single argument, enclose them in

222 COMMANDS REFERENCE

quotation marks. To specify an argument that is deliberately omitted, use “ ” or two consecutive
commas.

The response of Ferret to errors encountered during execution of the command file is deter-
mined by mode IGNORE_ERRORS. (See command SET MODE, p. 251.)

The echoing of command file lines is controlled by mode VERIFY.

The GO command understands a special syntax called “relative version numbers.” If a file-
name is specified for the GO command which has a version value of zero or less its value is in-
terpreted as relative to the current highest version number. See Chapter 9, section “Relative
version numbers” (p. 158) for a discussion of relative version numbers of files.

Note: The command SET MODE IGNORE_ERRORS is useful when rerunning past sessions
which may have errors.

/HELP
The command GO/HELP filename opens the named script with the Unix “more” command
and displays the first 20 lines of the named file. Use this command to quickly see the documen-
tation in a GO script.

13 HELP

On Unix systems interactive Ferret help is available from the command line with the com-
mands Fapropos, Fhelp, and Ftoc. If multiple windows are not available on your system the ^Z
key can be used to suspend the current Ferret session and access the help; the Unix command
“fg” will then restore the suspended session.

See Chapter 1, section “Unix on-line help” (p. 24) for more information.

14 IF

Ferret provides an IF-THEN-ELSE syntax to allow conditional execution of commands. It
may be used in two styles—single line and multi-line. In both the single and multi-line styles
the true or false of the IF condition is determined by case-insensitive recognition of one of
these options:

TRUE condition:

• a valid, non-zero numerical value
• TRUE
• T
• YES

COMMANDS REFERENCE 223

• Y

FALSE condition:

• a zero value
• an invalid embedded expression (see next paragraph)
• FALSE
• F
• NO
• N
• BAD
• MISSING

Examples:

• IF `i GT 5` THEN SAY “I is too big” ENDIF

writes message if the value of I is greater than 5
• IF ($yes_or_no) THEN GO yes_script ELSE GO no_script

executes yes_script or no_script according to the value of the symbol yes_or_no
• IF ($dset%|coads>TRUE|%) THEN GO my_plot

executes the script my_plot.jnl only if the symbol dset contains “coads”
• IF `i LT 3` THEN

GO option_1

ELIF `i LT 6` THEN

GO option_2

ELSE

GO option_3

ENDIF

uses the multi-line IF syntax to select among GO scripts.

Embedded (grave accent) expressions can be used in conjunction with the IF syntax. For exam-
ple, `3 GT 2` (Is three greater than 2?) evaluates to “1" (TRUE) and `3 LT 2` (Is three less than
2?) evaluates to “0” (FALSE). If the result of a grave accent expression is invalid, for example
division by zero as in `1/0`, the string “bad” is, by default, generated. Thus invalid expressions
are regarded as FALSE.

Symbol substitution permits IF decisions to be based on text-based conditions. Suppose, for
example, the symbol ($DATASET) contains either coads or levitus. Then an IF condition could
test for coads using ($DATASET%|coads>TRUE|%).

The single line style allows IF-THEN-ELSE logic to be applied on a single line. For example,
to make a plot only when the surface (Z=0) temperature exceeds 22 degrees we might use

IF `TEMP[X=160W,Y=2N,Z=0] GT 22` THEN PLOT TEMP[X=160W,Y=2N]

The single line syntax may be any of the following:

224 COMMANDS REFERENCE

IF condition THEN clause_1
IF condition THEN clause_1 ENDIF
IF condition THEN clause_1 ELSE clause_2
IF condition THEN clause_1 ELSE clause_2 ENDIF

Note that both ELSE and ENDIF are optional in the single line syntax. Groups of commands
enclosed in parentheses and separated by semicolons can be used as clause_1 or as clause_2.
There is no ELIF (pronounced “else if”) statement in the single line syntax. However, IF condi-
tions can be nested as in

IF `i1 GT 5` THEN (IF `j1 LT 4` THEN go option_1 ELSE go option_2)

The multi-line style expands the IF capabilities by adding the ELIF statement. Multi-line IF
statement follows the pattern

IF condition_1 THEN
clause_1_line_1
clause_1_line_2
.
.
.

ELIF condition_2 THEN
clause_2_line_1
.
.
.

ELIF condition_3 THEN
.
.
.

ELSE
.
.
.

ENDIF

Note that THEN is optional at the end of IF and ELIF statements but the ENDIF statement is re-
quired to close the entire IF block. Single line IF statements may be included inside of
multi-line IF blocks.

15 LABEL
/NOUSER

Places a label on the current plot; alias for PPL %LABEL. %LABEL is one of PPLUS’s primi-
tive plot commands. It places a label on the plot immediately after being issued (rather than de-
ferring placement). PPLUS does not assign numbers to labels created with LABEL, so they
cannot be manipulated as movable labels. The label can also be placed on the plot using the
mouse to point and click (see Chapter 6, section “Positioning labels using the mouse pointer,”
p. 112).

yes? LABEL xpos, ypos, center, angle, size text

COMMANDS REFERENCE 225

xpos, ypos position in user units (world coordinates)
center -1 left justification

0 centered
1 right justification

angle angle in degrees, 0 degrees at 3 o’clock
size size of text in inches

See Chapter 6, section “Labels” (p. 108) for examples.

Command qualifiers for LABEL:

LABEL/NOUSER
Locates labels in inches instead of user units (xpos and ypos are specified in inches rather than
in world coordinates).

16 LET

The LET command is an alias for DEFINE VARIABLE. All qualifiers and restrictions are
identical to DEFINE VARIABLE.

Example:

yes? LET A = B

is equivalent to
yes? DEFINE VARIABLE A = B

17 LIST
/I/J/K/L /ILIMITS /JLIMITS /KLIMITS /LLIMITS /XLIMITS /YLIMITS
/ZLIMITS /TLIMITS /X/Y/Z/T /D /APPEND /FILE /FORMAT /HEADING /NOHEAD
/ORDER /RIGID /SINGLE/QUIET

Produces a listing of the indicated data.

LIST[/qualifiers] [expression_1 , expression_2 , ...]

Example:

yes? LIST/Z=10 u , v , u^2 + v^2

Lists the 3 quantities specified using the current default data set and region (at depth 10).

226 COMMANDS REFERENCE

Parameters

Expressions may be any valid expression. See Chapter 3, section “Expressions” (p. 49) for a
definition of valid expressions. If multiple variables or expressions are specified they may be
listed together in columns or in sequence depending on the /SINGLY qualifier. The expres-
sion(s) will be inferred from the current context if omitted from the command line.

If multiple expressions are given on the command line and /SINGLY is not specified, then the
expressions must be conformable. See Chapter 3, section “Multi-dimensional expressions” (p.
50) for a definition of conformable expressions. Degenerate or single point axis limits will be
promoted up (values repeated) as needed.

Example:

yes? LIST/I=1:3/J=1:2 i+j, i

Command qualifiers for LIST:

LIST/I= /J= /K= /L=/X= /Y= /Z= /T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression(s) being listed.

LIST/ILIMITS=/JLIMITS=/KLIMITS=/LLIMITS=
Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression’s limits it is possible to
/APPEND data later. (See Chapter 10, section “Simple Conversions Using Ferret,” p. 159, ex.
4).

LIST/XLIMITS=/YLIMITS=/ZLIMITS=/TLIMITS=
Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression’s limits it is possible to
/APPEND data later. (See Chapter 8, section “Simple Conversions Using Ferret,” p. 159, ex.
4).

LIST/D=
Specifies the default data set to be used when evaluating the expression(s) being listed.

LIST/APPEND
Use this qualifier together with the /FILE qualifier to indicate that the listed data should be ap-
pended to a pre-existing file. If no file exists by the name indicated a new file is created. This
qualifier is not applicable to /FORMAT=GT. When used with /FORMAT=CDF it permits any
data in the file to be overwritten, new variables to be added to the file, and appending of new in-
dices along the T axis of the variables in the file. This qualifier overrides the command
CANCEL LIST/APPEND.

COMMANDS REFERENCE 227

LIST/FILE [=file_name]
Names a file to receive the listed data. If /FILE is specified with no name then the default name
is used from the SET LIST/FILE command.

Example:

yes? LIST/FILE=my_file.dat sst[D=coads_climatology]

See command SET LIST (p. 248) for further information on automatic filename generation.

LIST/FORMAT=
Specifies an output format (=format_choice) for the data to be listed.

yes? SET LIST/FORMAT=format_choice

or
yes? SET LIST/FORMAT (use format set by SET LIST/FORMAT)

Format choices:

FORTRAN format produces ASCII output
“UNFORMATTED” produces unformatted (binary) output using FORTRAN record

structure
“CDF” produces NetCDF format output
“GT” produces TMAP GT format
“STREAM” produces unstructured binary floating point (C-style)
“tab” produces tab-delimited output
“comma” produces comma-delimited output

This command has the same function as SET LIST/FORMAT except that it does not affect fu-
ture LIST commands. See command SET LIST/FORMAT (p. 249) for detailed documentation.

Notes for LIST/FORMAT:

1) All output values, regardless of the /FORMAT designation, will be of type single precision
floating point. For FORTRAN output formats this means all numerical field specifiers must
be “F”, “E”, or “G”.

2) For FORTRAN-formatted and UNFORMATTED (binary) output, the contents of a single
output “record” are determined by the /ORDER qualifier. For example, each record will be a
line of Y values for LIST/ORDER=YX. If /ORDER is omitted, the records will be the first
output axis of greater than unity length taken in the order X, Y, Z, then T. FORTRAN-for-
matted output records may be further split by the usual rules of FORTRAN output format-
ting.

228 COMMANDS REFERENCE

3) FORTRAN formats must be enclosed in parentheses. If blanks are included in the format it
must be enclosed in quotation marks. Output strings are permitted in the format.

Example:

yes? LIST/FORMAT=(“The temperature is:”, F6.3) sst[X=180, Y=0]

4) The default listing style includes labels for the rows and columns of the output. When a
FORTRAN format is specified, these labels are omitted.

5) On Unix systems the /FORMAT=UNFORMATTED specifier produces FORTRAN-style
variable-length records. On most implementations this means that a 4-byte field containing
the record length begins and ends each record of data.

6) The command alias SAVE is provided for the commonly used LIST/FORMAT=CDF.
NetCDF outputs are self-documenting, including grid definitions. The output files can be
used as input with the command USE—alias for SET DATA/FORMAT=CDF. See com-
mand SAVE (p. 240) for further notes about NetCDF files.

LIST/HEAD
For ASCII data listings this command determines whether to precede the listing with a heading
describing data set, variable and region. This qualifier overrides the CANCEL LIST/HEAD
command.

LIST/HEADING[=ENHANCED]
For ASCII data listings this qualifier determines whether to precede the listing with a heading
that describes the data set, variable, and region. This qualifier overrides the CANCEL
LIST/HEAD command. When the argument /HEADING=ENHANCED is used a self-docu-
menting heading is provided that includes the axis coordinates.

For NetCDF output files (alias SAVE) the /HEADING=ENHANCED option causes the
NetCDF file structure to include extra coordinate information that describes how the particular
data subset being written fits within the broader coordinate system of the grid from which it is
extracted. When a NetCDF file with an enhanced heading is accessed by Ferret (using SET
DATA or USE) the index values will appear to be consistent with the parent data set.

LIST/NOHEAD
Does not precede listing with a heading describing data set, variable and region. This qualifier
overrides the SET LIST/HEAD command.

LIST/ORDER=
Specifies the order (ORDER=permutation) in which axes are to be laid out in the listing.

Examples:

yes? LIST/ORDER=XY sst !X varies fastest

COMMANDS REFERENCE 229

yes? LIST/ORDER=YX sst !Y varies fastest

The “permutation” string may be any permutation of the letters X, Y, Z, and T. /ORDER is ap-
plicable only to /FORMAT=unf and FORTRAN formats.

Note that a 1-dimensional list will, by default, place only one value per record. The /ORDER
qualifier can cause the 1-dimensional list to occur in a single record. For example,

LIST/I=1:5 I

will list as 5 records whereas

LIST/I=1:5 /ORDER=X I

will list 5 values on a single record.

LIST/PRECISION=#
Controls the digit precision of LIST output

Using the qualifier /PRECISION=#digits the output precision of the LIST command may be
easily controlled. This qualifier functions exactly as does the SET LIST/PRECISION= com-
mand but it applies only to the current command.

LIST?QUIET
Using the qualifier /QUIET will prevent the message “LISTing to file XXXX.XXXX” from
being displayed.

LIST/RIGID
Valid only with /FORMAT=CDF. Indicates that Ferret should not create a NetCDF “record”
axis as the time axis for any of the variables listed with this command. Time axes are, instead,
of fixed length and the /APPEND qualifier is not usable to extend the listing.

LIST/SINGLY
This qualifier is relevant only when multiple expressions are specified in the LIST command.
When the /SINGLY qualifier is specified the entire listing of each expression including (op-
tional) heading and all data is completed before proceeding to the next expression.

By default the expressions are not listed singly—each line contains one value of each expres-
sion. The qualifier has no effect if only a single expression is specified. If the /FILE qualifier is
specified to use automatic filename generation and /APPEND is not specified, then each ex-
pression is listed to a separate file.

LIST/TITLE=“title string”
Valid only with /FORMAT=CDF. Causes the global attribute “title” to be defined in a NetCDF
file, thereby setting its title.

230 COMMANDS REFERENCE

18 LOAD
/I/J/K/L /X/Y/Z/T /D /NAME /PERMANENT /TEMPORARY

Loads a variable or expression into memory.

yes? LOAD[/qualifiers] [expression_1 , expression_2 , ...]

Loading may speed execution of later commands that will require the loaded data. Often it is
helpful to LOAD a large region of data encompassing several small regions in which the analy-
sis will be pursued.

Load interacts with the current context exactly as other “action” commands CONTOUR,
PLOT, SHADE, VECTOR, LIST, etc. do.

Parameters

Expressions may be any valid expression. See Chapter 3, section “Expressions” (p. 49) for a
definition of valid expressions. If multiple variables or expressions are specified they are
treated in sequence. The expression(s) will be inferred from the current context if omitted from
the command line.

Command qualifiers for LOAD:

LOAD/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression(s) being loaded.

LOAD/D=
Specifies the default data set to be used when evaluating the expression(s) being loaded.

LOAD/NAME
Obsolete. Provided for compatibility with much older Ferret versions.

LOAD/PERMANENT
Data loaded with LOAD/PERMANENT are kept in memory until a LOAD/TEMPORARY
command is given that refers to the same data. See command LOAD/TEMPORARY (p. 231).
Note that this command may cause memory fragmentation. It should generally be given imme-
diately following CANCEL MEMORY and preferably is used only to load file variables (as
opposed to expressions).

LOAD/TEMPORARY (default)
Data loaded with LOAD or LOAD/TEMPORARY is brought into memory but may be un-
loaded based on a priority scheme of least recent use when memory space is required.

COMMANDS REFERENCE 231

19 MESSAGE
/CONTINUE /QUIET

Displays a message at the terminal.

yes? MESSAGE text

By default a carriage return is required from the keyboard for program execution to continue
(used to halt the execution of a command file).

Command qualifiers for MESSAGE:

MESSAGE/CONTINUE
Continues program execution following the display of the message text without waiting for a
carriage return from the operator.

MESSAGE/QUIET
Waits for a carriage return from the operator but does not supply a prompt for it.

20 PALETTE

Alias for PPL SHASET SPECTRUM=. Specifies or restores the default color.

yes? PALETTE pal_name

The argument is the name of a palette file. Many palettes are included in the Ferret distribution.
Try the Unix command “Fpalette ‘*’” to see a list of available palette files.

Some of the palettes are designed for particular needs. “centered.spk”, for example, empha-
sizes the contrast between positive and negative shade levels. “land_sea.spk” uses blue tones
for negative values and browns and greens for positive values, making it suitable for topogra-
phy displays.

Palette files end in the file suffix .spk, but the suffix is not necessary when specifying a palette.
Use GO try_palette pal_name to display a palette. The GO files “exact_color.jnl” and
“squeeze_colors.jnl” can be used to modify palettes. You can also create new palette files with
a text editor. See Chapter 6, section “Shade and fill colors” (p. 116) for the format of a palette
file.

PALETTE with no argument restores the default palette. When you use the qualifier
/PALETTE= in conjunction with /SET_UP, PPLUS makes the specified color spectrum the
new default palette, and all subsequent shaded or color-filled plots will use that palette as the
default. To restore the previous palette to the default, use PALETTE with no argument after
your customization.

232 COMMANDS REFERENCE

21 PATTERN

Alias for PPL PATSET PATTERN=. Specifies or restores the default pattern.

yes? PATTERN patt_name

The argument is the name of a pattern file. Many patterns are included in the Ferret distribu-
tion. Try the Unix command “Fpattern ‘*’” to see a list of available pattern files.

Ferret has the capability to make color fill plots using solid color only, and also with colors laid
on in patterns.

The PATTERN command sets the patterns to be used in a plot generated with the SHADE,
FILL and POLYGON commands. It is similar to the PALETTE command, which sets colors,
but the PALETTE and PATTERN commands act independently.

When Ferret is started up, only one pattern is set, SOLID. The SOLID pattern is equivalent to
not using any pattern, and SHADE, FILL and POLYGON fill their cells with solid color.

Pattern files end in the file suffix .pat, but use of the suffix is not necessary when specifying a
pattern. Use GO try_pattern patt_name to display the patterns specified in a pattern file. GO
show_all_patterns draws a plot showing all the available pattern files and their names. No-
tice that patterns can be used with a single color, or multiple colors, depending entirely on the
PALETTE specification.

A pattern file may specify one or more patterns. If there are fewer patterns specified in a pattern
file than there are levels in a particular plot, the patterns will be repeated.

22 PAUSE

Alias for MESSAGE

23 PLOT
/I/J/K/L /X/Y/Z/T /D /FRAME /LINE /NOLABEL /OVERLAY
/SET_UP /SYMBOL /TITLE /TRANSPOSE /VS
/XLIMITS /YLIMITS

Produces a line plot.

yes? PLOT[/qualifiers] [expression_1 , expression_2 , ...]

The indicated expression(s) must represent a line (not a plane) of data (PLOT/VS is an excep-
tion). Unless the /VS qualifier is used, the independent variable is the underlying coordinate
axis for this line of data.

COMMANDS REFERENCE 233

http://shark.pmel.noaa.gov/~kobrien/v50_ug/squares_color.gif
http://http://shark.pmel.noaa.gov/~kobrien/v50_ug/squares_patterns.gif
http://http://shark.pmel.noaa.gov/~kobrien/v50_ug/squares_patterns.gif
http://shark.pmel.noaa.gov/~kobrien/v50_ug/show_patterns.gif

Example:

yes? PLOT/l=1:100 sst

produces a time series plot of the first 100 points of sst.

Parameters

The argument(s) for PLOT specify the variable or expression to be plotted.

When the /VS qualifier is used the indicated expressions may have any geometry in 4D space
but they must match in the total number of points in each expression. The points are associated
in the order of their underlying axes. When the /VS qualifier is not used the indicated expres-
sion(s) must describe a line (not a plane) of data.

The expression(s) are inferred from the current context if omitted from the command
line—i.e., if no expression is given then the argument most recently given is used, or the de-
fault expression may be explicitly set with SET EXPRESSION.

When Ferret plots multiple data lines simultaneously, PPLUS automatically cycles through
pen colors and symbols, creating up to 26 distinct line types. Try GO line_samples to see
samples of these styles.

Command qualifiers for PLOT:

PLOT/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression(s) being plotted.

PLOT/D=
Specifies the default data set to be used when evaluating the expression(s) being plotted.

PLOT/FRAME
Causes the graphic image produced to be captured as an animation frame and written to the
movie file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexi-
ble and we recommend its use rather than this qualifier.

PLOT/LINE[=]
The /LINE qualifier without =n causes the PLOT command to connect the plotted points with a
line regardless of the state of the /SYMBOLS qualifier.

/LINE=n specifies the line style. “n” is an integer between 1 and 18. GO line_thickness draws
samples of the available line styles. Line style “1” is always a solid line in the foreground color
(black or white). Other line styles are device dependent (colors or dash patterns). For color de-
vices, n=1–6 draws single-thickness lines each a different color. n=7–12 draws double-thick

234 COMMANDS REFERENCE

http://shark.pmel.noaa.gov/~kobrien/v50_ug/line_samples.gif
http://shark.pmel.noaa.gov/~kobrien/v50_ug/line_thickness.gif

lines in the same color order, and n=13–18 draws triple-thick lines. See Chapter 6, section
“Text and line colors” (p. 114) for a chart of the default colors.

PLOT/NOLABELS
Suppresses all plot labels except axis labels.

PLOT/OVERLAY
Causes the indicated field(s) to be overlaid on the existing plot. This qualifier can also be used
to overlay lines or symbols on 2D plots (SHADE, CONTOUR, or VECTOR) provided the axis
scalings are appropriate.

PLOT/SET_UP
Performs all the internal preparations required by program Ferret for plotting but does not actu-
ally render the plot. The command PPL can then be used to make changes to the plot prior to
producing output with the PPL PLOT command. This makes possible certain customizations
that are not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

PLOT/SYMBOL[=]
The /SYMBOL qualifier causes the PLOT command to mark each plotted point with a symbol.
If the /LINE qualifier is given too the symbols are also connected with a line; if /LINE is omit-
ted no connecting line is drawn.

Optionally, the symbol number may be explicitly specified as an integer value between 1 and
88. The integer refers to the PPLUS plot marker numbers (e.g., 1 for x, 3 for +, etc.). Type “GO
show_symbols” and “GO show_88_syms” at the Ferret prompt to see available symbols and
their reference numbers. The symbols are also documented on page 1 of the document
$FER_DIR/doc/pplus_fonts.ps.

PLOT/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character.

PLOT/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn hori-
zontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data axis is
vertical by default.

PLOT/VS
Specifies that the first expression given in the command line is to be used as the independent
axis.

Example:

yes? PLOT/Y=20S:20N/X=180/T=27740:27741/Z=100/VS temp , salt

COMMANDS REFERENCE 235

http://shark.pmel.noaa.gov/~kobrien/v50_ug/show_88_syms.gif
http://shark.pmel.noaa.gov/~kobrien/v50_ug/show_88_syms.gif

Produces a plot of salinity (vertical axis) against temperature (horizontal axis) along the indi-
cated range of latitudes and times. The plot will be labeled “salt”; the vertical (dependent) vari-
able is the one that determines the key. The qualifier /TRANSPOSE can be used in conjunction
with /VS to further manipulate the labeling and axis orientation.

PLOT/VS implies /SYMBOL by default to produce scatter plots. Use PLOT/VS/LINE to pro-
duce a line plot.

PLOT/XLIMITS=
Specifies axis range and tic interval for the X axis. Without this qualifier Ferret selects a rea-
sonable range.

yes? PLOT/XLIMITS=lo:hi:[increment] [expression(s)]

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis is reversed.

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. Plots may be transposed manually with the /TRANSPOSE qualifier. On transposed
plots /XLIMITS will refer to the vertical axis of the plot.

PLOT/YLIMITS=
Specifies the axis range and tic interval for the Y axis. See /XLIMITS (above).

24 POLYGON
/I/J/K/L/X/Y/Z/T/OVERLAY/SET_UP/FRAME/D /TRANSPOSE /COORD_AX/
SYMBOL /NOLABELS /LEVELS /LINE /PALETTE /XLIMITS /YLIMITS /TITLE/
NOAXES /PATTERN /FILL /KEY /NOKEY

Produces a color-filled or line plot of polygons. By default a color key is drawn and lines are
not drawn.

POLYGON[/qualifiers] x-vertices, y-vertices [, values]

Parameters

The two x- and y- vertices parameters separately specify the x and y coordinates of the vertices
of the polygons to be plotted.

The values may be any valid expression. If a color-filled plot is specified, the numerical value
of the expression associated with each polygon determines the color of that polygon, as in
SHADE and FILL plots. See Chapter 3, section “Expressions” (p. 49) for a definition of valid
expressions. If values are omitted the /FILL option is not valid—only /LINE plots may be
made.

236 COMMANDS REFERENCE

Example:

yes? LET XTRIANGLE = YSEQUENCE({-1,0,1})
yes? LET YTRIANGLE = YSEQUENCE({-1,1,-1})
yes? LET XPTS = 180+30*RANDU(I[i=1:10])
yes? LET YPTS = 30*RANDU(1+I[i=1:10])
yes? POLYGON XTRIANGLE+XPTS, YTRIANGLE+YPTS, I[I=1:10]

Command qualifiers for POLYGON:

POLYGON /I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

POLYGON/D=
Specifies the default data set to be used when evaluating the expression being plotted.

POLYGON/FRAME
Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexible
and we recommend its use rather than this qualifier.

POLYGON/KEY
Displays a color key for the palette used in the color-filled plot. By default a key is drawn un-
less the /LINE or /NOKEY qualifier is specified.

POLYGON/LEVELS
Specifies the POLYGON levels or how the levels will be determined. If the /LEVELS qualifier
is omitted Ferret automatically selects reasonable POLYGON levels.

See Chapter 6, section “Contouring” (p. 124) for examples and more documentation on
/LEVELS.

POLYGON/LINE
Outlines polygons specified by x and y vertices on a POLYGON plot. When /LINE is specified
the color key is omitted unless specifically requested via /KEY.

POLYGON/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

POLYGON/NOLABELS
Suppresses all plot labels except axis labels.

POLYGON/OVERLAY
Causes the indicated POLYGON plot to be overlaid on the existing plot.

COMMANDS REFERENCE 237

POLYGON/PALETTE=
Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix command
% Fpalette ‘*’ to see available palettes. The file suffix *.spk is not necessary when specifying
a palette. See command PALETTE (p. 232) for more information.

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE command (p. 232) for further discussion.

POLYGON/PATTERN=
Specifies a pattern file (otherwise, a default SOLID pattern is used). Try the Unix command %

Fpattern ‘*’ to see available pattern files. The file suffix *.pat is not necessary when specify-
ing a pattern file. See command PATTERN (p. 233) for more information.

POLYGON/SET_UP
Performs all the internal preparations required by program Ferret for a POLYGON plot but
does not actually render output. The command PPL can then be used to make changes to the
plot prior to producing output with the PPL FILLPOL command. This permits plot
customizations that are not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

POLYGON/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See Chapter 6, section
“Fonts” (p. 120).

yes? POLYGON/TITLE="title string" x-vertices, y-vertices, values

POLYGON/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn hori-
zontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data axis is
vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /XLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

POLYGON/XLIMITS=
Specifies the X axis range and tic interval (otherwise, Ferret selects reasonable values).

yes? POLYGON/XLIMITS=lo:hi:increment

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

238 COMMANDS REFERENCE

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. This can lead to confusion, especially on plots in the YT or ZT plane. Plots in these
planes are automatically transposed to place the Y or Z axis, respectively, on the vertical axis of
the plot. Plots may also be transposed manually with the /TRANSPOSE qualifier. On trans-
posed plots /XLIMITS will refer to the vertical axis of the plot.

POLYGON/YLIMITS=
Specifies the Y axis range and tic interval. See /XLIMITS (above).

25 PPLUS
/RESET

Invokes PPLUS (“PLOT PLUS” written by Don Denbo) to execute a command or commands.

yes? PPLUS !(also PPL); invokes PPLUS interactively

or
yes? PPL pplus_command !executes a single PPLUS command

or
yes? PPL/RESET !restores PPLUS to start-up defaults

Example:

yes? PPL CROSS 1 !reference line through zero

Executes the PPLUS command “CROSS” and immediately returns control to Ferret.

When PPLUS is invoked interactively the prompt is “PPL>” instead of the usual “yes?”. The
EXIT command given at the “PPL>” prompt returns control to Ferret.

See Chapter 6 (p. 103) for more information on Ferret/PPLUS interactions. A complete list of
PPLUS commands is in PLOT PLUS for Ferret User’s Guide.

Command Qualifiers for PPLUS:

PPLUS/RESET
Restores PPLUS to start-up settings.

26 QUIT

Alias for EXIT; also just Q.

COMMANDS REFERENCE 239

27 REPEAT
/I/J/K/L /X/Y/Z/T

Repeats a command or group of commands over a range of values along an axis.

yes? REPEAT/q=lo:hi[:increment] COMMAND

The units of lo, hi, and increment are the units of the underlying grid axis if the qualifier is X, Y,
Z, or T. The qualifiers I, J, K, or L advance the repeat loop by incrementing the indicated index
(the default index increment is 1). Use SHOW GRID to examine the axis units (if the units are
not displayed try CANCEL MODE LATITUDE, LONGITUDE, or CALENDAR as appropri-
ate). To run the loop from the highest value decreasing towards the lowest value, specify incre-
ment to be less than zero. Any command or group of commands that can be specified at the
command line can also be given as an argument to REPEAT. If MODE VERIFY is SET, the
current loop index is displayed at the console as REPEAT executes.

Examples:

1) yes? REPEAT/L=1:240 CONTOUR/Y=30S:50N/X=130E:70W/LEV/FRAME sst

Produces a 240-frame movie of sea surface temperature.

2) yes? REPEAT/Z=300:0:-30 GO compz

Executes the command file compz.jnl at Z=300, Z=270, ..., Z=0.

3) yes? REPEAT/L=1:250:5 (GO set_up; CONTOUR sst; FRAME)

Repeats three commands—execution of a GO script, CONTOUR, and FRAME—for each
timestep specified.

Command qualifiers for REPEAT:

REPEAT/I=/J=/K=/L=/X=/Y=/Z=/T=
Repeats the requested command(s) for the specified range of axis subscripts (I, J, K, or L) or
axis coordinates (X, Y, Z, or T). Note that when T axis limits are specified as dates, the units of
increment are hours.

28 SAVE

The SAVE command is an alias for LIST/FORMAT=CDF. All qualifiers and restrictions are
identical to LIST/FORMAT=CDF.

Example:

yes? SAVE temp, salt

is identical to
yes? LIST/FORMAT=CDF temp, salt

240 COMMANDS REFERENCE

Notes:

1) Gaps in NetCDF outputs are filled with the missing value flag of the variable being written.
(See Chapter 3, section “Missing value flags,” p. 47.) In the example below, if “temp” and
“salt” share the same time axis then the L=2:4 values of salt will be so filled.

yes? SAVE/FILE=test.cdf temp[L=1:5], salt[L=1], salt[L=5]

2) Transformations that compress an axis to a point produce results that Ferret regards as
time-independent. Thus, this 12-month average:

yes? SAVE/FILE=annual.cdf sst[L=1:12@AVE]

creates a NetCDF file with no time axis. It would not be possible to append the average of
the next 12 months as the next time step of this file. However, a time location can be inher-
ited from another variable. In this example, we inherit the time axis of “timestamp” in order
to create a time axis in the NetCDF file.

yes? DEFINE AXIS/T="1-JUL-1980":"1-JUL-1985"/UNIT=year tannual
yes? DEFINE GRID/T=tannual gannual
yes? LET timestamp = T[G=gannual] * 0 !always 0
yes? LET sst_ave = sst[L=1:12@AVE] + timestamp
yes? SAVE/FILE=annual.cdf sst_ave[L=1]
yes? LET sst_ave = sst[L=13:24@AVE] + timestamp
yes? SAVE/FILE=annual.cdf/APPEND sst_ave[L=2]
.
.
. etc.

3) Background documentation about the definition and data set of origin for a variable are
saved in the “history” attribute of a variable when it is first saved in the NetCDF file. If the
definition of the variable is then changed, and more values are inserted into the file using
SAVE/APPEND, the modified definition will NOT be documented in the output file. If the
new definition changes the defining grid for the variable the results will be unpredictable.

29 SET

Sets features of the operating environment for program Ferret.

Generally, features may be toggled on and off with SET and CANCEL. Features affected by
SET may be examined with SHOW (see also CANCEL, p. 203, and SHOW, p. 268).

29.1 SET AXIS
/MODULO

Indicates that an axis is to be treated as a modulo axis (the first point “wraps” and follows the
last point, as in a longitude axis).

COMMANDS REFERENCE 241

yes? SET AXIS/MODULO x_ax

/DEPTH

Indicates that an axis is to be treated as a depth axis (graphics made with positive down).

yes? SET AXIS/DEPTH z_ax

29.2 SET DATA_SET
/FORMAT /RESTORE /SAVE /EZ /ORDER
SET DATA/EZ /COLUMNS /FORMAT /GRID /SKIP /TITLE /VARIABLE

Specifies ASCII, binary, NetCDF, GT, or TS-formatted data set(s) to be analyzed.

1) ASCII or binary:

yes? SET DATA/EZ[/qualifiers] data_set1, data_set2, …

or equivalently, with alias FILE:
yes? FILE[/qualifiers] data_set1, data_set2, ...

2) NetCDF:

yes? SET DATA/FORMAT=cdf NetCDF_file

or equivalently, with alias USE
yes? USE NetCDF_file

3) GT or TS-formatted:

yes? SET DATA data_set1, data_set2, ...

In the case of GT or TS-formatted files, an extension of .des is assumed. A previously SET data
set can be SET by its reference number, as shown by SHOW DATA, rather than by name.

If a Unix filename includes a path (with slashes) then the full path plus name must be enclosed
in double quotation marks.

Note: Maximum simultaneous data sets: 60 (as of Ferret ver. 3.1). Use CANCEL DATA if the
limit is reached.

Command qualifiers for SET DATA_SET:

SET DATA/FORMAT=
Specifies the format of the data set(s) being SET. Allowable values for “file_format” are “cdf”,
“free”, “unformatted”, “stream” or a FORTRAN format in quotation marks and parentheses.

yes? SET DATA/FORMAT=file_format [data_set_name_or_number]

242 COMMANDS REFERENCE

Valid arguments for /FORMAT=

1) free (default for SET DATA/EZ)
To use the format “free” a file must consist entirely of numerical data separated by commas,
blanks or tabs.

2) cdf
If SET DATA/FORMAT=cdf (alias USE) is used, the data file must be in CDF format. The
default filename extension is “.cdf”.

Example:

yes? SET DATA/FORMAT=CDF my_netcdf

or equivalently,
yes? USE my_netcdf

See Chapter 2, section “NetCDF data, p. 28.”

3) unformatted
To use the format “unformatted” the data must be floating point, binary, FORTRAN-style
records with all of the desired data beginning on 4-byte boundaries. This option expects 4
bytes of record length information at the beginning and again at the end of each record. The
“-” designator (/VARIABLES) can be used to skip over unwanted 4-byte quantities (vari-
ables) in each record. See Chapter 2, section “Binary data” (p. 31).

4) FORTRAN format string
FORTRAN format specifications should be surrounded by parentheses and enclosed in
quotation marks.

Example:

yes? SET DATA/EZ/FORMAT="(5X,F12.0)" my_data_set

or equivalently,
yes? FILE/FORMAT="(5X,F12.0)" my_data_set

5) stream (Ferret version 3.1)
/FORMAT=stream is used to indicate that a file contains either unstructured binary output
(typical of C program output) or fixed-length records suitable for direct access (all records
of equal length, no record length information embedded in the file). With caution it is also
possible to read FORTRAN variable-length record output. This sort of file is typically cre-
ated by “quick and dirty” FORTRAN code which uses the simplest FORTRAN OPEN state-
ment and outputs entire variables with a single WRITE statement.

This format specifier allows you to access any contiguous stretch of 4-byte values from the
file. The /SKIP=n qualifier specifies how many values should be skipped at the file start.
The /GRID=name qualifier specifies the grid onto which the data should be read and there-

COMMANDS REFERENCE 243

fore the number of values to be read from the file (the number of points in the grid). Note
that an attempt to read more data than the file contains, or to read record length informa-
tion, will result in a fatal FORTRAN error on UNIX systems and will crash the Ferret pro-
gram.

For multiple variables, use the /COLUMNS=n specifier to specify how many 4-byte values
separate each variable in the file. Each variable is assumed to represent a contiguous stream
of values within the file and all variables are assumed to possess the same number of points.
(A “poor man’s” method is to create multiple Unix soft links pointing to the same file and
multiple SET DATA/EZ commands to specify one variable from each link name.)

See Chapter 2, section “Binary data” (p. 31) for further discussion and examples of binary
types.

SET DATA/RESTORE
Restores the current default data set number that was saved with SET DATA/SAVE.

This is useful in creating GO files that perform their function and then restore Ferret to its pre-
vious state.

SET DATA/SAVE
Saves the current default data set number so it can be restored with SET DATA/RESTORE.

This is useful in creating GO files that perform their function and then restore Ferret to its pre-
vious state.

SET DATA/FORMAT=cdf/ORDER=<permutation>
The DATA/FORMAT=cdf/ (or its alias USE) accepts the qualifier /ORDER=<permutation>.
The permutation argument contains information both about the order of the axes in the file and
the direction.

The order indicated through the /ORDER qualifier should always be exactly the reverse of the
order in which the dimensions of variables as revealed by the netCDF ncdump -h command are
declared. (This ambiguity reflects the linguistic difference between “C ordering” and
“FORTRAN ordering.” The default X-Y-Z-T ordering used in the COARDS standard and in
Ferret documentation would be referred to as T-Z-Y-X ordering if we used C terminology.)

Thus, to USE a file in Ferret in which the data on disk transposes the X and Y axes we would
specify

yes? USE/ORDER=YX my_file.nc

To use a file in which the data were laid down in XZ “slabs,” such as might occur in model out-
put we would specify

yes? USE/ORDER=XZYT my_model.nc

244 COMMANDS REFERENCE

To indicate that the coordinates along a particular axis are reversed from the “right hand rule”
ordering, for example a Y axis which runs north to south (not uncommon in image data), we
would precede that axis by a minus sign. For example

yes?USE/ORDER=-XY my_flipped_images.nc

The minus sign should be applied to the axis position after transposition. Thus if a file both
transposed the XY axis ordering and used north-to-south ordering in latitude one would access
the file with

yes?USE/ORDER=Y-X my_transposed_flipped_images.nc

NetCDF files, while in principle self-documenting, may be contain axis ambiguities. For ex-
ample, a file which is supposed to contain a time series, but lacks units on the coordinate vari-
able in the file may appear to be a line of data on the X axis. The /ORDER qualifier can be used
to resolve these ambiguities. For this example, one would initialize the file with the command

yes?USE/ORDER=T my_ambiguous_time_series.nc

Note that specifying USE/ORDER=XYZT is not always equivalent to specifying default or-
dering. For example, if a netCDF file contained variables on an XYT grid, the
/ORDER=XYZT specification would tell Ferret to interpret it as an XYZ grid.

SET DATA/EZ
Accesses data from an ASCII or unformatted file that is not in a standardized format (TMAP or
NetCDF). The command FILE is an alias for SET DATA/EZ.

yes? SET DATA/EZ[/qualifiers] ASCII_or_binary_file

or, equivalently,
yes? FILE[/qualifiers] ASCII_or_binary_file

Example:

yes? FILE/VARIABLE=my_var my_data.dat

See Chapter 2, section “ASCII data” (p. 34) for more information and examples.

Command qualifiers for SET DATA_SET/EZ:

SET DATA/EZ/COLUMNS=n
Specifies the number of columns in the EZ data file.

By default the number of columns is assumed to be equal to the number of variables (including
“-”’s) specified by the /VARIABLES qualifier.

COMMANDS REFERENCE 245

SET DATA/EZ/GRID=
Specifies the defining grid for the data in the EZ data set. The argument can be the name of a
grid or the name of a variable that is already defined on the desired grid.

Example:

yes? SET DATA/EZ/GRID=sst[D=coads] snoopy

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) is specified. By default Ferret uses grid EZ, a line of up to 20480 points oriented along the
X axis.

SET DATA/EZ/ORDER= (Ferret version 3.11)
Specifies the order (ORDER=permutation) in which axes are to be read.

Examples:

yes? FILE/ORDER=XY sst !X varies fastest
yes? LIST/ORDER=YX sst !Y varies fastest

The “permutation” string may be any permutation of the letters X, Y, Z, and T. If the /for-
mat=stream qualifier is used, the string may also contain V (for variable). This allows variables
to be “interleaved.”

SET DATA/EZ/SKIP=n
Specifies the number of records to skip at the start of an EZ data set before beginning to read
the data. By default, no records are skipped.

For ASCII files a “record” refers to a single line in the file (i.e., a newline character). If the
FORMAT statement contains slash characters the “data record” may be multiple lines; the
/SKIP qualifier is independent of this fact.

For FORTRAN-structured binary files the /SKIP argument refers to the number of binary re-
cords to be skipped.

For unstructured (stream) binary files (e.g., output of a C program) the /SKIP argument refers
to the number of words (4-byte quantities) to skip before reading begins.

SET DATA/EZ/SWAP
Stream files only. Change the byte ordering of numbers read from the file; big-endian numbers
are converted to little-endian numbers and vice versa.

SET DATA/EZ/TITLE=
Associates a title with the data set.

yes? SET DATA/EZ/TITLE="title string" file_name

246 COMMANDS REFERENCE

This title appears on plotted outputs at the top of the plot.

SET DATA/EZ/TYPE=
Stream files only. Specify the data type of a set of variables in a stream file. Available values
and their corresponding types are:

Value FORTRAN C size in bytes

i1 INTEGER*1 char 1
i2 INTEGER*2 short 2
i4 INTEGER*4 int 4
r4 REAL*4 float 4
r8 REAL*8 double 8

yes? SET DATA/EZ/FORMAT=STREAM/TYPE=14,R4/VAR=V1,V2 foobar.dat

will read a file containing INTEGER*4 and REAL*4 numbers into the variables v1 and v2.

SET DATA/EZ/VARIABLES=
Names the variables of interest in the file. Default is v1.

yes? FILE/VARIABLES="var1,var2,..." file_name

Except in the case of /FORMAT=stream, Ferret assumes that successive values in the data file
represent successive variables. For example, if there are three variables in a file, the first value
represents the first variable, the second represents the second variable, the third the third vari-
able, and the fourth returns to representing the first variable. The maximum number of vari-
ables allowed in a single data set is 20.

Variable names may be 1 to 24 characters (letters, digits, $, and _) beginning with a letter. To in-
dicate a column is not of interest use “-” for its name.

Example: (the third column of data will be ignored)

yes? SET DATA/EZ/VARIABLES="temp,salt,-,u,v" ocean_file.dat

29.3 SET EXPRESSION

Specifies the default context expression. When Ferret’s “action” commands (PLOT,
CONTOUR, SHADE, VECTOR, WIRE, etc.) are issued with no argument, the default context
expression is used. This is the expression last used as argument to an action command, or it
may be set explicitly with SET EXPRESSION. See Chapter 3, section “Expressions” (p. 49)
for a full list of action commands.

yes? SET EXPRESSION expr1 , expr2 , ...

COMMANDS REFERENCE 247

Examples:

1) yes? SET EXPRESSION temp

Sets the current expression to “temp”.

2) yes? SET EXPRESSION u , v , u^2 + v^2

Set the current expressions to “u , v , u^2 + v^2”

29.4 SET GRID
/RESTORE /SAVE

Specifies the default grid for abstract expressions. Type GO wire_frame_demo at the Ferret
prompt for an example of usage.

yes? SET GRID[/qualifier] [grid_or_variable_name]

Examples:

yes? SET GRID sst[D=coads]

yes? SET GRID ! use grid from last data accessed

See Chapter 4, “Grids and Regions” (p. 77).

Command qualifiers for SET GRID:

SET GRID/RESTORE
Restores the current default grid last saved by SET GRID/SAVE. Useful together with SET
GRID/SAVE to create GO files that restore the state of Ferret when they conclude.

SET GRID/SAVE
Saves the current default grid to be restored later. Useful together with SET GRID/RESTORE
to create GO files that restore the state of Ferret when they conclude.

29.5 SET LIST
/APPEND /FILE /FORMAT /HEADING /PRECISION

Uses SET LIST to specify the default characteristics of listed output.

yes? SET LIST/qualifiers

The state of the list command may be examined with SHOW LIST. See command CANCEL
LIST (p. 204) and LIST (p. 226).

248 COMMANDS REFERENCE

Command qualifiers for SET LIST:

SET LIST/APPEND
Specifies that by default the listed output is to be appended to a pre-existing file. Cancel this
state with CANCEL LIST/APPEND.

SET LIST/FILE=
Specifies a default file for the output of the LIST command.

yes? SET LIST/FILE=filename

The filename specified in this way is a default only. It will be used by the command

yes? LIST/FILE variable

but will be ignored in
yes? LIST/FILE=snoopy.dat variable

Ferret generates a filename based on the data set, variable, and region if the filename specified
is “AUTO”. The resulting name is often quite long but may be shortened by following
“AUTO” with a minus sign and the name(s) of the axes to exclude from the filename.

Note: the region information is not used in automatic NetCDF output filenames.

Examples:

yes? SET LIST/FILE=AUTO
yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.X140W110WY2S2NL500.

yes? SET LIST/FILE=AUTO-XY
yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.L500.

SET LIST/FORMAT=
Specifies an output format for the LIST command. (When a FORTRAN format is specified the
row and column headings are omitted from the output.)

yes? SET LIST/FORMAT=option
yes? SET LIST/FORMAT !reactivate previous format

Options

FORTRAN format produces ASCII output
“UNFORMATTED” produces unformatted (binary) output
“CDF” produces NetCDF output
“GT” produces TMAP GT format

COMMANDS REFERENCE 249

Examples:

1) yes? SET LIST/FORMAT=(1X,12F6.1)

Specifies a FORTRAN format (without row or column headings).

2) yes? SET LIST/FORMAT=UNFORMATTED

Specifies binary output. (FORTRAN variable record length record structure.)

Notes:

• When using GT format all variables named in a single LIST command will be put into a
single GT-formatted timestep.

• Very limited error checking will be done on FORTRAN formats.
• FORTRAN formats are reused as necessary to output full record.
• Latitude axes are listed south to north when /FORMAT is specified.

SET LIST/HEAD
Specifies that ASCII output is to be preceded by a heading that documents data set, variable,
and region. Cancel the heading with CANCEL LIST/HEAD.

SET LIST/PRECISION
Specifies the data precision (number of significant digits) of the output listings. This qualifier
has no effect when /FORMAT= is specified.

yes? SET LIST/PRECISION=#_of_digits

29.6 SET MEMORY
/SIZE

yes? SET MEMORY/SIZE=megawords

The command SET MEMORY provides control over how much “physical” memory Ferret can
use. (In reality the distinction between physical and virtual memory is invisible to Ferret. The
SET MEMORY command merely dictates how much memory Ferret can attempt to allocate
from the operating system.)

SET MEMORY controls only the size of Ferret’s cache memory—memory used to hold inter-
mediate results from computations that are in progress and used to hold the results of past file
IO and computations for re-use. The default size of the memory cache is 3.2 megawords
(equivalently, 3.2×4=12.8 megabytes). Cache memory size can be set larger or smaller than
this figure.

250 COMMANDS REFERENCE

Example:

yes? SET MEMORY/SIZE=4.2

Sets the size of Ferret’s memory cache to 4.2 million (4-byte) words.

Notes:

• As a practical matter memory size should not normally be set larger than the physical
memory available on the system.

• The effect of SET MEMORY/SIZE= is identical to the “-memsize” qualifier on the
Ferret command line.

• See SET MODE DESPERATE (p. 253) and MEMORY USAGE (p. 153) in this users
guide for further instructions on setting the memory cache size appropriately.

• Using the SET MEMORY command automatically resets the value of SET MODE
DESPERATE to a default that is consistent with the memory size.

• The effects of SET MEMORY/SIZE last only for the current Ferret session. Exiting
Ferret and restarting will reset the memory cache to its default size.

• If memory is severely limited on a system Ferret’s default memory cache size may be too
large to permit execution. In this case use the “-memsize” qualifier on the command line
to specify a smaller cache.

29.7 SET MODE
/LAST

Specifies special operating modes or states for program Ferret.

yes? SET MODE[/LAST] mode_name[:argument]

Mode Description
Default
State

ASCII_FONT imposes PPLUS ASCII font types on plot labels set
CALENDAR uses date strings for T axis (vs. time step values) set
DEPTH_LABEL uses “DEPTH” as Z axis label set
DESPERATE attempts calculations too large for memory canceled
DIAGNOSTIC turns on internal program diagnostic output canceled
GUI unsupported; used in GUI development
IGNORE_ERROR continues command file after errors canceled
INTERPOLATE automatically interpolates data between planes canceled
JOURNAL records keyboard commands in a journal file set
LATIT_LABEL uses “N” “S” notation for labeling latitudes set
LONG_LABEL uses “E” “W” notation for labeling longitudes set
METAFILE captures graphics in GKS metafiles canceled

COMMANDS REFERENCE 251

Mode Description
Default
State

POLISH interprets expressions in Reverse Polish order canceled
PPLLIST listed output from PPLUS is directed to the named file canceled
REFRESH refreshes graphics on systems lacking “backing store” canceled
SEGMENT utilizes GKS segment storage set
STUPID controls cache hits in memory (diagnostic) canceled
VERIFY displays each command file line as it is executed set
WAIT waits for carriage return after each plot canceled

Command qualifiers for SET MODE:

SET MODE/LAST
Resets mode to its last state.

yes? SET MODE/LAST mode_name

Example: (a command file that will not alter Ferret modes)

yes? SET MODE IGNORE_ERRORS ! 1st line of command file

.

. ... code which may encounter errors

.
yes? SET MODE/LAST IGNORE_ERRORS ! last line of command file

29.7.1 SET MODE ASCII_FONT

The SET MODE ASCII_FONT command causes program Ferret to precede plot labels with
the PPLUS font descriptor “@AS” (ASCII SIMPLEX font). This assures that special charac-
ters (e.g., underscores) are faithfully reproduced. For special plots it may be desirable to use
other fonts (e.g., to obtain subscripts). CANCEL MODE ASCII_FONT is for these cases.

default state: set

29.7.2 SET MODE CALENDAR

SET MODE CALENDAR causes program Ferret to output times in date/time format (instead
of time axis time step values). This affects both plotted and listed output.

This mode accepts an optional argument specifying the degree of precision for the output date.
If the argument is omitted the precision is unchanged from its last value.

default state: set (argument: minutes)

252 COMMANDS REFERENCE

Arguments

SET MODE CALENDAR accepts the following arguments:

Argument Equivalent precision

SECONDS -6
MINUTES -5 (default)
HOURS -4
DAYS -3
MONTHS -2
YEARS -1

The argument is uniquely identified by the first two characters.

Example:

yes? SET MODE CALENDAR:DAYS

Causes times to be displayed in the format dd-mmm-yyyy.

When CALENDAR mode is canceled the “equivalent” in the table above determines the preci-
sion of the time steps displayed exactly as in SET MODE LONGITUDE.

29.7.3 SET MODE DEPTH_LABEL

SET MODE DEPTH_LABEL causes Ferret to label Z coordinate information in the units of
the Z axis. This affects both plotted and listed output. This mode accepts an optional argument
specifying the degree of precision for the output. If the argument is omitted the precision is un-
changed from its last value.

yes? SET MODE DEPTH:argument

default state: set (argument: -4)

Arguments

See SET MODE LONG (p. 256) for a detailed description of precision control.

29.7.4 SET MODE DESPERATE

Ferret checks the size of the component data required for a calculation in advance of perform-
ing the calculation. If the size of the component data exceeds the value of the MODE
DESPERATE argument Ferret attempts to perform the calculation in pieces.

COMMANDS REFERENCE 253

For example, the calculation “LIST/I=1/J=1 U[K=1:100,L=1:1000@AVE]” requires
100*1000=100,000 points of component data although the result is only a line of 100 points on
the K axis. If 100,000 exceeds the current value of the MODE DESPERATE argument Ferret
splits this calculation into smaller sized chunks along the K axis, say, K=1:50 in the first chunk
and K=51:100 in the second.

Ferret is also sensitive to the performance penalties associated with reading data from the disk.
Splitting the calculation along axis of the stored data records can require the data to be read
many times in order to complete the calculation. Ferret attempts to split calculations along effi-
cient axes, and will split along the axis of stored data only in desperation, if MODE
DESPERATE is SET.

Example:

yes? SET MODE DESPERATE:5000

default state: canceled (default argument: 80000)

Note: Use MODE DIAGNOSTIC to see when splitting is occurring.

Arguments

Use SHOW MEMORY/FREE to see the total memory available (as set with SET
MEMORY/SIZE).

Whenever the size of memory is set using SET MEMORY the MODE DESPERATE argument
is reset at one tenth of memory size. For most purposes this will be an appropriate value. The
user may at his discretion raise or lower the MODE DESPERATE value based on the nature of
a calculation. A complex calculation, with many intermediate variables, may require a smaller
value of MODE DESPERATE to avoid an “insufficient memory” error. A simple calculation,
such as the averaging operation described above, will typically run faster with a larger MODE
DESPERATE value. The upper bound for the argument is the size of memory. The lower
bound is “memory block size.”

29.7.5 SET MODE DIAGNOSTIC

SET MODE DIAGNOSTIC causes Ferret to display diagnostic information in real time about
its internal functioning. It is intended to help Ferret developers diagnose performance prob-
lems by displaying what the Ferret memory management subsystem is doing. The message
“strip gathering on xxx axis” indicates that Ferret has broken up a calculation into smaller
pieces. Subsequent “strip” and “gathering” messages indicate that sub-regions of the calcula-
tions are being processed and brought together.

default state: canceled

254 COMMANDS REFERENCE

29.7.6 SET MODE IGNORE_ERROR

SET MODE IGNORE_ERROR causes Ferret to continue execution of a command file despite
errors encountered. (See command GO, p. 222.)

default state: canceled

29.7.7 SET MODE INTERPOLATE

Note: The transformation @ITP provides the same functionality as MODE INTERPOLATE
with a greater level of control.

SET MODE INTERPOLATE affects the interpretation of world coordinate specifiers (/X, /Y,
/Z, and /T) in cases where the position is normal to the plane in which the data is being exam-
ined. When this mode is SET and a world coordinate is specified which does not lie exactly on
a grid point, Ferret automatically interpolates from the surrounding grid point values. When
this mode is canceled, the same world coordinate specification is shifted to the grid point of the
grid box that contained it before computations were made (see examples).

default state: canceled

Example:

If the grid underlying the variable temp has points defined at Z=5 and at Z=15 (with the grid
box boundary at Z=10) and data is requested at Z=12 then

yes? SET MODE INTERPOLATE
yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists temperature data in the X-Y plane obtained by interpolating between the Z=5 and Z=15
planes. Whereas,

yes? CANCEL MODE INTERPOLATE
yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists the data at Z=15. The output documentation always reflects the true location used.

29.7.8 SET MODE JOURNAL

SET MODE JOURNAL causes Ferret to record all commands issued in a journal file. Output
echoed to this file may be turned on and off via mode JOURNAL at any time.

default state: set

COMMANDS REFERENCE 255

Example:

yes? SET MODE JOURNAL:my_journal_file.jnl

The optional argument to MODE JOURNAL specifies the name of the output journal
file—with no argument, the default name “ferret.jnl” is used. Journal files for successive Ferret
sessions are handled by version number. See Chapter 9, section “Output file naming” (p. 157).

29.7.9 SET MODE LATIT_LABEL

SET MODE LATIT_LABEL causes Ferret to output latitude coordinate information in degrees
N/S format (instead of the internal latitude coordinate). This affects both plotted and listed out-
put.

This mode accepts an optional argument specifying the degree of precision for the output. If the
argument is omitted the precision is unchanged from its last value.

Example:

yes? SET MODE LAT:2

default state: set (argument: 1)

Arguments

See command SET MODE LONG (p. 256) for a detailed description of precision control.

29.7.10 SET MODE LONG_LABEL

SET MODE LONG_LABEL causes Ferret to output longitude coordinate information in de-
grees E/W format (instead of the internal longitude coordinate). This will affect both plotted
and listed output.

This mode accepts an optional argument specifying the degree of precision for the output. If the
argument is omitted the precision will be unchanged from its last value.

Example:

yes? SET MODE LONG:2

default state: set (argument: 1)

256 COMMANDS REFERENCE

Arguments

The argument of SET MODE LONG is an integer specifying the precision. If the argument is
positive or zero it specifies the maximum number of decimal places to display. If the argument
is negative it specifies the maximum number of significant digits to display.

Examples:

Suppose the longitude to be displayed is 165.23W. Then

yes? SET MODE LONG:1 will produce 165.2W
yes? SET MODE LONG:-3 will produce 165W

When LONG mode is canceled the argument still determines the output precision.

29.7.11 SET MODE METAFILE

SET MODE METAFILE causes Ferret to capture all graphics in metafiles. These metafiles can
later be routed to various devices to obtain hard copy output.

The optional argument to MODE METAFILE specifies the name of the output metafile—with
no argument, the default name “metafile.plt” is used. Multiple output files (i.e., successive
plots) are handled by version number. See Chapter 9, section “Output file naming” (p. 157).

See Chapter 9, section “Hard copy” (p. 154) for details on generating hard copy.

Example:

yes? SET MODE METAFILE:june_sst.plt

default state: canceled (default argument when set: “metafile.plt”)

29.7.12 SET MODE POLISH

The SET MODE POLISH command causes program Ferret to expect algebraic expressions to
be entered in Reverse Polish order.

This mode exists only to assist with compatibility with earlier versions of Ferret. It has no effi-
ciency advantages.

default state: canceled

COMMANDS REFERENCE 257

29.7.13 SET MODE PPLLIST

Directs listed output from PPLUS commands (e.g., PPL LIST LABS) to the specified file. This
mode is useful for creating scripts that customize plots. The user can specify the name of the
output file by giving it as an argument, otherwise file name “ppllist.out” is assigned.

Example:

yes? SET MODE PPLLIST:plot_symbols.txt
yes? PPL LISTSYM
yes? SPAWN grep “WIDTH” plot_symbols.txt

default state: canceled

29.7.14 SET MODE REFRESH

The SET MODE REFRESH command causes Ferret to update windows following “occlusion”
events on X-servers that lack a backing store (SGI workstations have been a case in point).

default state: canceled (except on SGI systems)

29.7.15 SET MODE SEGMENTS

SET MODE SEGMENTS causes Ferret to utilize GKS segments (“GKS” is the Graphical Ker-
nel System—an international graphics standard). On some systems MODE SEGMENTS may
be necessary to update windows following “occlusion” events or to resize window with the
mouse.

Segments, however, make heavy demands on the system’s virtual memory. If Ferret crashes
during graphics output due to insufficient virtual memory try CANCEL MODE SEGMENTS.

default state: set

29.7.16 SET MODE STUPID

Note: MODE STUPID is included for diagnostic purposes only.

SET MODE STUPID controls the ability of Ferret to reuse results left in memory from previ-
ous commands. It also effects its ability to reuse intermediate variables that are referenced mul-
tiple times during complex calculations. Given with no argument

yes? SET MODE STUPID

258 COMMANDS REFERENCE

causes Ferret to forget data cached in memory. The result is that all requests for variables are
read from disk and no intermediate calculations are reused. The program will be significantly
slower as a result.

A lesser degree of cache limitation occurs with the command

yes? SET MODE STUPID: weak_cache

which causes Ferret to revert to the cache access strategy that it used previous to Ferret version
5.0. In this mode cache hits are unreliable unless the region of interest is fully specified. (Un-
specified limits will typically default to the full range of the relevant axis.)

default state: canceled

29.7.17 SET MODE VERIFY

SET MODE VERIFY causes commands from a command file (“GO file”) to be displayed on
the screen as they are executed. Note that if MODE VERIFY is canceled, loop counting in the
REPEAT command is turned off.

default state: SET, argument “default”

Note: Many GO files begin with CANCEL MODE VERIFY to inhibit output and end with
SET MODE/LAST VERIFY to restore the previous state. Only if an error or interrupt occurs
during the execution of such a command file will the state of MODE VERIFY be affected.

SET MODE VERIFY can accept arguments to further refine control over command echoing.

yes? SET MODE VERIFY: DEFAULT

• This will be the default state if no argument is given
• Ferret echos commands taken from GO scripts
• Ferret echos commands in which symbol substitutions occur or in which embedded

expressions are evaluated

yes? SET MODE VERIFY: ALL

• In addition to the cases above Ferret also displays the individual commands that are
generated by repeat loops and semicolon-separated command groups

• Ferret displays a REPEAT loop counter (“!-> REPEAT: ...”)

yes? SET MODE VERIFY: ALWAYS

• Echoing behavior is the same as argument ALL but ALWAYS, in addition, causes
CANCEL MODE VERIFY to be ignored when it is encountered in a GO file. This
functionality is useful when debugging GO scripts. Entering CANCEL MODE VERIFY
or SET MODE VERIFY:DEFAULT from the command line will cancel this state.

COMMANDS REFERENCE 259

29.7.18 SET MODE WAIT

SET MODE WAIT causes Ferret to wait for a keyboard keystroke from the user after each plot-
ted output is completed. This is useful on graphics terminals that do not have a separate graph-
ics plane; on these terminals SET MODE WAIT prevents the graphical output from being
wiped off the screen until the user is ready to proceed.

default state: canceled

29.8 SET MOVIE
/COMPRESS /FILE /LASER /START

Designates a file (specified or default) for storing graphical images as movie frames (in HDF
Raster-8 format). Note that the FRAME/FILE=filename qualifier is generally preferable to the
SET MOVIE command, as it is simpler and more flexible. See Chapter 5 (p. 97) for further ex-
planation.

yes? SET MOVIE[/qualifiers]

Command qualifiers for SET MOVIE:

SET MOVIE/COMPRESS=
Turns on or off compression of HDF frames using run length compression.

yes? SET MOVIE/COMPRESS=OFF

The allowed arguments are “on” and “off” —CANCEL MOVIE does not affect this qualifier.

default state: on

SET MOVIE/FILE
Specify an output file to receive movie frames.

yes? SET MOVIE/FILE=filename !specify a new filename

or
yes? SET MOVIE/FILE !reactivate a previously specified filename\

after CANCEL MOVIE

The default movie filename extension is “.mgm”

The default movie filename is “ferret.mgm”

SET MOVIE/LASER
Output to Panasonic OMDR. Valid only on older VAX/VMS systems.

260 COMMANDS REFERENCE

SET MOVIE/START
Only valid for use on older VAX/VMS systems with the Panasonic Optical Memory Disk Re-
corder (OMDR). Only valid with /LASER qualifier.

29.9 SET REGION
/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT

Specifies the default space-time region for the evaluation of expressions.

yes? SET REGION[/qualifiers] [reg_name]

See Chapter 4, section “Regions” (p. 90) for further information.

Examples:

1) yes? SET REGION/X=140E

Sets X axis position in the default context.

2) yes? SET REGION/@N !N specifies X and Y but not Z or T

Sets only X and Y in the default context (since X and Y are defined in region N but Z and T
are not).

3) yes? SET REGION N

Sets ALL AXES in the default region to be exactly the same as region N. Since Z and T are
undefined in region N they will be set undefined in the default context.

4) yes? SET REGION/@N/Z=50:250

Sets X and Y in the default region to be exactly the same as region N and then sets Z to the
range 50 to 250.

5) yes? SET REGION/DZ=-5

Set the region along the Z axis to be 5 units less than its current value.

6) yes? SET REGION/DJ=-10:10

Increases the current vertical axis range by 10 units on either end of the axis.

Command qualifiers for SET REGION:

SET REGION/I=/J=/K=/L=/X=/Y=/Z=/T=
Sets region bounds for specified axis subscript (I, J, K, or L) or axis coordinates (X, Y, Z, or T).
See examples above.

SET REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Modifies current region information by the specified increment of an axis subscript (I, J, K, or
L) or axis coordinate (X, Y, Z, or T). See examples above. Syntax: /D*=val, or /D*=lo:hi.

COMMANDS REFERENCE 261

29.10 SET VARIABLE
/BAD /GRID /TITLE /UNIT

Modifies attributes of a variable defined by DEFINE VARIABLE or SET DATA/EZ. This
command permits variables within a single EZ data set to be defined on different grids and it al-
lows the titles and units to be superseded for the duration of a session, only, on NetCDF and GT
data sets.

yes? SET VARIABLE/qualifiers variable_name

Parameters

The variable name can be a simple name or a name qualified by a data set.

Example:

yes? SET VAR/UNITS="CM" WIDTH[D=snoopy]

Command qualifiers for SET VARIABLE:

SET VARIABLE/BAD=
Designates a value to be used as the missing data flag. The qualifier is applicable to EZ data set
variables and to NetCDF data sets. It applies only for the duration of the current Ferret session.
It does not alter the data files. It is not applicable to variables defined with DEFINE
VARIABLE.

SET VARIABLE/GRID=
Sets the defining grid for a variable in an EZ data set.

Example:

yes? SET VARIABLE/GRID=my_grid width[D=snoopy]

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) is specified. By default Ferret will use grid EZ, a line of up to 20480 points oriented along
the X axis. The qualifier is not applicable to variables defined with DEFINE VARIABLE.

SET VARIABLE/TITLE=
Associates a title with the variable. This title appears on plotted outputs and listings. The quali-
fier is applicable to all variables.

yes? SET VARIABLE/TITLE="title string" var_name

SET VARIABLE/UNITS=
Associates units with the variable. The units appear on plotted outputs and listings. The quali-
fier is applicable to all variables.

262 COMMANDS REFERENCE

yes? SET VARIABLE/UNITS="units string" var_name

29.11 SET VIEWPORT

Sets the rectangular region within the output window where output will be drawn.

yes? SET VIEWPORT view_name

Issuing the command SET VIEWPORT is best thought of as entering “viewport mode.” While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots are drawn in a
single viewport without the use of /OVERLAY the current plot will erase and replace the previ-
ous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of “viewport mode” is canceled.

Pre-defined viewports exist for dividing the window into four quadrants and for dividing the
window in half horizontally and vertically. See Chapter 6, section “Pre-defined viewports” (p.
122) for a list.

29.12 SET WINDOW
/ASPECT /CLEAR /LOCATION /NEW /SIZE

Creates, resizes, reshapes or moves graphics output windows.

yes? SET WINDOW[/qualifiers] [window_number]

Note: Multiple windows may be simultaneously viewable but only a single window receives
output at any time.

See commands SHOW WINDOWS (p. 276) and CANCEL WINDOW (p. 208) for additional
information.

Examples:

1) yes? SET WINDOW/NEW

Creates a new output window and sends subsequent graphics to it.

2) yes? SET WINDOW 3

Sends subsequent graphics to window 3.

3) yes? SET WINDOW/SIZE=.5

Resizes current window to 1/2 of full.

COMMANDS REFERENCE 263

4) yes? SET WINDOW/ASPECT=.5

Reshapes current window with Y/X equal to 1:2.

5) yes? SET WINDOW/LOCATION=0,.5

Puts the lower left corner of the current window at the left border of the display and half way
up it.

Command qualifiers for SET WINDOW:

SET WINDOW/ASPECT
Sets the aspect ratio of the output window and hard copy.

Examples:

1) yes? SET WINDOW/ASPECT=y_over_x n

Sets the overall aspect ratio of window n.

2) yes? SET WINDOW/ASPECT=y_over_x

Sets the overall aspect ratio of the current window.

3) yes? SET WINDOW/ASPECT=y_over_x:AXIS

Sets the axis length aspect ratio of the current window.

The total size (area) of the output window is not changed.
The default value for the overall window ratio is y/x = 8.8/10.2 ~ 0.86.
The default value for the axis length ratio is y/x = 6/8 = 0.75.
Use PPLUS/RESET or SET WINDOW/ASPECT=.75:AXIS to restore defaults.
The aspect ratio specified is a default for future SET WINDOW commands
The origin (lower left) is restored to its default values: 1.2, 1.4

When using “SET WINDOW n” to return to a previous window that differs from the current
window in aspect ratio, it is necessary to re-specify its aspect ratio with /ASPECT, otherwise
PPLUS will not be properly reset.

SET WINDOW/CLEAR
Clears the image(s) in the current or specified window. Useful with viewports.

SET WINDOW/LOCATION
Sets the location for the lower left corner of named (or current) window. The coordinates x and
y must be values between 0 and 1 and refer to distances from the lower left corner of the display
screen (total length and width of which are each 1).

yes? SET WINDOW/LOCATION=x,y [window_number]

264 COMMANDS REFERENCE

SET WINDOW/NEW
Causes future graphical output to be directed to a new window. The window will be created at
the next graphics output.

yes? SET WINDOW/NEW

SET WINDOW/SIZE
Resizes a window to r times the size of the standard window. If the window number is omitted
the command will resize the currently active window. (The default window size is 0.7.)

yes? SET WINDOW/SIZE=r [window_number]

30 SHADE
/I/J/K/L /X/Y/Z/T /D /FRAME /KEY /LEVELS /LINE /NOAXIS /NOKEY /NOLABELS
/OVERLAY /PALETTE /PATTERN/SET_UP /TITLE /TRANSPOSE /XLIMITS
/YLIMITS

Produces a shaded (rectangular raster) plot of a 2-D field. By default a color key is drawn and
contour lines are not drawn.

SHADE[/qualifiers] expression

Parameters

The expression may be any valid expression. See Chapter 3, section “Expressions” (p. 49) for a
definition of valid expressions. The expression will be inferred from the current context if
omitted from the command line. Multiple expressions are not permitted in a single SHADE
command.

Command qualifiers for SHADE:

SHADE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

SHADE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

SHADE/FRAME
Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexible
and we recommend its use rather than this qualifier.

COMMANDS REFERENCE 265

SHADE/KEY
Displays a color key for the palette used in the shaded plot. By default a key is drawn unless the
/LINE or /NOKEY qualifier is specified.

SHADE/LEVELS
Specifies the SHADE levels or how the levels will be determined. If the /LEVELS qualifier is
omitted Ferret automatically selects reasonable SHADE levels.

See Chapter 6, section “Contouring” (p. 124) for examples and more documentation on
/LEVELS and color_thickness indices, and also the demonstration “custom_con-
tour_demo.jnl”.

SHADE/LINE
Overlays contour lines on a shaded plot. When /LINE is specified the color key is omitted un-
less specifically requested via /KEY.

SHADE/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

SHADE/NOAXIS
Suppresses all axis lines, tics and labeling so that no box appears surrounding the contour plot.
This is especially useful for map projection plots.

SHADE/NOLABELS
Suppresses all plot labels except axis labels.

SHADE/OVERLAY
Causes the indicated shaded plot to be overlaid on the existing plot.

Note (SHADE/OVERLAY with time axes):
A restriction in PPLUS requires that if time is an axis of the shaded plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid shaded plot fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis.

SHADE/PALLETTE=
Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix command
% Fpalette ‘*’ to see available palettes. The file suffix *.spk is not necessary when specifying
a palette. See command PALETTE (p. 232) for more information.

Yes? SHADE/PALETTE=land_sea rose

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE (p. 232) command for further discussion.

266 COMMANDS REFERENCE

SHADE/PATTERN=
Specifies a pattern file (otherwise, the current default pattern specification is used). The file
suffix *.pat is not necessary when specifying a pattern. Try the Unix command % Fpattern ‘*’

to see available patterns. See command PATTERN (p. 233) for more information.

SHADE/SET_UP
Performs all the internal preparations required by program Ferret for a shaded plot but does not
actually render output. The command PPL can then be used to make changes to the plot prior to
producing output with the PPL SHADE command. This permits plot customizations that are
not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

SHADE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See Chapter 6, sec-
tion “Fonts” (p. 120).

yes? SHADE/TITLE="title string" expression

SHADE/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn hori-
zontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data axis is
vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /XLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

SHADE/XLIMITS=
Specifies the X axis range and tic interval (otherwise, Ferret selects reasonable values).

yes? SHADE/XLIMITS=lo:hi:increment

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. This can lead to confusion, especially on plots in the YT or ZT plane. Plots in these
planes are automatically transposed to place the Y or Z axis, respectively, on the vertical axis of
the plot. Plots may also be transposed manually with the /TRANSPOSE qualifier. On trans-
posed plots /XLIMITS will refer to the vertical axis of the plot.

SHADE/YLIMITS=
Specifies the Y axis range and tic interval. See /XLIMITS (above).

COMMANDS REFERENCE 267

31 SHOW
/ALL

Displays program states and stored values.

Command qualifiers for SHOW:

SHOW/ALL
Executes all SHOW options. This command gives a complete description of the current state,
including information about region, grids, axes, variables, and the state of various modes (de-
fault or set with SET MODE).

yes? SHOW/ALL

Arguments:

The names of variables, data sets, or other definitions can be specified using wildcards. The *
wildcard matches any number of characters in the name; the question wildcard matches exactly
one character.

31.1 SHOW ALIAS

Lists all command aliases and the full command names for which they stand, or, with an argu-
ment, shows a specified command alias.

yes? SHOW ALIAS [alias_name]

31.2 SHOW AXIS

Shows a basic description of the named axis.

SHOW AXIS[/qualifiers] axis_name

A typical output appears below. The columns are:

name name of axis (used also in DEFINE AXIS and DEFINE GRID)
axis the orientation of the axis; “(-)” on a depth axis indicates increasing downward
pts number of points on axis; “r” or “i” for regular or irregular spacing, “m” if the

axis is “modulo” (repeating)
start position of first point on the axis
end position of last point on the axis

yes? SHOW AXIS PSXT
name axis # pts start end
PSXT LONGITUDE 160 r 130.5E 70.5W

268 COMMANDS REFERENCE

Command qualifiers for SHOW AXIS:

SHOW AXIS/I=/J=/K=/L=/X=/Y=/Z=/T=
Displays the coordinates and grid box sizes for the specified axis. Optionally, low and high lim-
its and a delta value may be specified to restrict the range of values displayed.

yes? SHOW AXIS/X[=lo:hi:delta] axis-name

Example:

yes? SHOW AXIS/L=1:12:3 my_custom_time_axis

SHOW/ALL
Show a brief summary of all axes defined.

yes? SHOW AXIS/ALL

31.3 SHOW COMMANDS

Displays commands, subcommands, and qualifiers recognized by program Ferret. This com-
mand does not display aliases; use SHOW ALIAS.

SHOW COMMAND [command_name or partial_command]

Note: This is the most reliable way to view command qualifiers. The output of this command
will be current even when this manual is out of date.

Examples:

yes? SHOW COMMAND S ! show all commands beginning with “S”
yes? SHOW COMMAND ! show all commands
yes? SHOW COMMAND PLOT ! shows command PLOT and all its qualifiers

31.4 SHOW DATA_SET
/ALL /BRIEF /FILES /FULL /VARIABLE

Shows information about the data sets which have been SET and indicates the current default
data set. By default the variables and their subscript ranges are also listed.

yes? SHOW DATA[/qualifiers] [set_name_or_number1,set2,...]

If no data set name or number is specified then all SET data sets are shown.

COMMANDS REFERENCE 269

Command qualifiers for SHOW DATA_SET:

SHOW DATA/ALL
This qualifier has no effect on this command; it exists for compatibility reasons.

SHOW DATA/BRIEF
Shows only the names of the data sets; does not describe the data contained in them.

SHOW DATA/FILES
Displays the names of the data files for this data set and the ranges of time steps contained in
each. Output is formatted as date strings or as time step values depending on the state of MODE
CALENDAR.

SHOW DATA/FULL
Equivalent to /VARIABLES and /FILES used together.

SHOW DATA/VARIABLES
In addition to the information given by the SHOW DATA command with no qualifiers, this
query also provides the grid name and world coordinate limits for each variable in the data set.

Example: SHOW DATA

SHOW DATA produces a listing similar to the one below. The output begins with the
descriptor file name (for TMAP-formatted data) and data set title. The columns I, J, K, and L
give the subscript limits for each variable with respect to its defining grid (use SHOW
DATA/FULL and SHOW GRID variable_name for more information).

yes? SET DATA levitus_climatology
yes? SHOW DATA

currently SET data sets:
1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des (default)
name title I J K L
TEMP TEMPERATURE 1:360 1:180 1:20 1:1
SALT SALINITY 1:360 1:180 1:20 1:1

31.5 SHOW EXPRESSION

Shows the current expression(s) implied or set with SET EXPRESSION. If not explicitly set
with this command, the default current context expression is the argument of the most recent
“action” command (PLOT, SHADE, CONTOUR, VECTOR, WIRE, etc.) See Chapter 3, sec-
tion “Expressions” (p. 49) for an explanation and list of action commands.

yes? SHOW EXPRESSION

270 COMMANDS REFERENCE

31.6 SHOW FUNCTION
/EXTERNAL /INTERNAL

Shows a complete list of the functions defined in Ferret including descriptions of the function
arguments.

yes? SHOW FUNCTION[/qualifiers] [function_name]

If no qualifier or function name is given then all functions are listed. SHOW FUNCTION will
accept name templates such as

yes? SHOW FUNCTION *day*
DAYS1900 (day, month, year)
days elapsed since Jan. 1, 1900

Parameters

The parameter(s) may be the name of a function, with * replacing part of the string as above.

Command qualifiers for SHOW FUNCTION:

SHOW FUNCTION/EXTERNAL
List only the available Ferret external functions (p. 159).

SHOW FUNCTION/INTERNAL
List only the internally defined Ferret functions.

31.7 SHOW GRID
/I/J/K/L /X/Y/Z/T /ALL

Shows the name and axis limits of a grid.

yes? SHOW GRID[/qualifiers] [var_or_grid1 var_or_grid2 ...]

Example:

(See command SHOW AXIS, p. 268, for an explanation of the columns.)

yes? SET DATA levitus_climatology
yes? SHOW GRID salt

GRID GLEVITR1
name axis # pts start end
XAXLEVITR LONGITUDE 360mr 20.5E 19.5E(379.5)
YAXLEVITR LATITUDE 180 r 89.5S 89.5N
ZAXLEVITR DEPTH(-) 20 i 0m 5000m

COMMANDS REFERENCE 271

Parameters

The parameter(s) may be the name of one or more grid(s) or variable(s). If no parameter is
given SHOW GRID displays the grid of the last variable accessed. This is the only mechanism
to display the grid of an algebraic expression.

Note: To apply SHOW GRID to an algebraic expression it is necessary for Ferret to have eval-
uated the expression in a previous command. The command LOAD is useful for this purpose in
some circumstances.

Command qualifiers for SHOW GRID:

SHOW GRID/I=/J=/K=/L=/X=/Y=/Z=/T=
Displays the coordinates and grid box sizes for the specified axis. Optionally, low and high lim-
its and a delta value may be specified to restrict the range of values displayed.

yes? SHOW GRID/X[=lo:hi:delta] [variable_or_grid]

Example:

yes? SHOW GRID/L=1:12:3 sst[coads_climatology]

SHOW GRID/ALL
Shows the names only of all grids defined.

yes? SHOW GRID/ALL

31.8 SHOW LIST

Shows the current states of the LIST command.

yes? SHOW LIST

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

31.9 SHOW MEMORY
/ALL/FREE/PERMANENT/TEMPORARY

Shows the state of the memory cache.

yes? SHOW MEMORY

Shows the current size of the cache.

272 COMMANDS REFERENCE

yes? SHOW MEMORY[/qualifiers]

Command qualifiers for SHOW MEMORY:

SHOW MEMORY/ALL
Shows all variables currently cached in memory—permanent and temporary.

SHOW MEMORY/FREE
Shows cache memory and memory table space that remains unused.

Cache memory is organized into “blocks.” One block is the smallest unit that any variable
stored in memory may allocate. The total number of variables that may be stored in memory
cannot exceed the size of the memory table. The “largest free region” gives an indication of
memory fragmentation. A typical SHOW MEMORY/FREE output looks as below:

total memory table slots: 150
total memory blocks: 500
memory block size:1600

number of free memory blocks: 439
largest free region: 439
number of free regions: 1
free memory table slots: 149

SHOW MEMORY/PERMANENT
Lists the variables cached in memory and cataloged as permanent. These variables will not be
deleted even when memory space is needed. They become cataloged in memory as permanent
when the LOAD/PERMANENT command is used.

SHOW MEMORY/TEMPORARY
Lists the variables cached in memory and cataloged as temporary (they may be deleted when
memory capacity is needed).

31.10 SHOW MODE

Shows the names, states and arguments of the Ferret SET MODE command.

SHOW MODE [partial_mode_name1,name2,...]

Example:

yes? SHOW MODE VERIFY,META

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

COMMANDS REFERENCE 273

31.11 SHOW MOVIE

Shows the current state of SET MOVIE. This state affects FRAME and graphics commands
specified with the /FRAME qualifier.

yes? SHOW MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

31.12 SHOW QUERIES

Queries are a vehicle for communication between Ferret and a stand-alone interface program.
They are not supported for general use.

31.13 SHOW REGION

Shows the current default region or the named region.

yes? SHOW REGION[/ALL] [region_name]

The region displayed is formatted appropriately for the axes of the last data accessed. For ex-
ample, suppose the region along the Y axis was specified as Y=5S:5N. Then if the Y axis of the
last data accessed is in units of degrees-latitude the Y location is shown as Y=5S:5N but if the Y
axis of the last data accessed is “ABSTRACT” then the Y location is shown as Y=-5:5.

31.14 SHOW SYMBOL
/ALL

Shows the value of one or more symbols (string variables).

yes? SHOW SYMBOL[/qualifier] [symbol_name]

If no qualifier or symbol name is given then all defined symbols are listed. SHOW SYMBOL
will accept partial names such as

yes? SHOW SYMBOL *lab*
MY_X_LABEL = "Sample Number"
LABEL_2 = "Station at 23N"

Parameters

The parameter may be the name of a symbol, with * replacing part of the string as above.

274 COMMANDS REFERENCE

Command qualifiers for SHOW SYMBOL:

SHOW SYMBOL/ALL
Lists all symbols that are defined.

31.15 SHOW TRANSFORM

Shows the available transformations, including regridding transformations.

yes? SHOW TRANSFORM

Note: This is the most reliable way to view transformations. The output of this command will
be current even when this manual is out of date.

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

31.16 SHOW VARIABLES
/ALL /DIAGNOSTIC /USER

Lists diagnostic or user-defined variables.

SHOW VARIABLES[/qualifier] [partial_name]

Examples:

yes? SHOW VARIABLES !all user-defined variables
yes? SHOW VAR/DIAG Q !all diagnostic vars beginning with Q

Command qualifiers for SHOW VARIABLES:

SHOW VARIABLES/ALL
Lists both diagnostic variables (available for the COX/PHILANDER model) and user-defined
variables.

SHOW VARIABLES/DIAGNOSTIC
This is an unsupported (obsolete) qualifier. It lists “diagnostic” variables available for the
COX/PHILANDER model.

SHOW VARIABLES/USER
Lists expressions that have been defined by the user as new variables. This is the default behav-
ior of SHOW VARIABLES with no qualifier.

COMMANDS REFERENCE 275

31.17 SHOW VIEWPORT

Shows one or more of the currently defined viewports. Omitting an argument gives informa-
tion on all viewports.

yes? SHOW VIEWPORT [view_name1,view_name2,...]

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

31.18 SHOW WINDOWS

Lists open window numbers and indicates which is the active one.

yes? SHOW WINDOWS

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

32 SPAWN

Executes a command line (Unix shell) command from within Ferret.

yes? SPAWN unix_shell_command

Example:

yes? SPAWN rm -f file.dat

Also, “SPAWN shell_name” allows the user to fork into an interactive shell. For example:

yes? SPAWN csh

enters the user into a c-shell. Use EXIT to return to Ferret.

33 STATISTICS
/I/J/K/L X/Y/Z/T /D /BRIEF

Computes summary statistics about the data specified.

yes? STATISTICS[/qualifiers] expression_1 , expression_2 , ...

The statistics include:

276 COMMANDS REFERENCE

• the size and shape of the region
• total number of data values in the region specified
• number of data values flagged as bad data
• minimum value
• maximum value
• mean value (arithmetic mean—not weighted by grid spacing)
• standard deviation (also not weighted by grid spacing)

All values are reported to 5 significant digits.

STATISTICS interacts with the current context exactly as the commands CONTOUR, PLOT
and LIST do.

Parameters

Expressions may be anything described under Expressions. If multiple variables or expres-
sions are specified they are treated in sequence. The expression(s) are inferred from the current
context if omitted from the command line.

Command qualifiers for STATISTICS:

STATISTICS/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when computing statistics about the expression(s).

STATISTICS/D=
Specifies the default data set to be used when computing statistics about the expression(s).

STATISTICS/BRIEF
Produces a shorter listing involving less computation.

34 UNALIAS

Alias for CANCEL ALIAS.

35 USE

The USE command is an alias for SET DATA/FORMAT=cdf.

All qualifiers and restrictions are identical to SET DATA/FORMAT=cdf. If no filename exten-
sion is given, “.cdf” is assumed.

COMMANDS REFERENCE 277

Example:

yes? USE test

is equivalent to
yes? SET DATA/FORMAT=cdf test

36 USER

Executes a user-written extension to the Ferret program.

yes? USER[/COMMAND=] expression_1 , expression_2, ...

The USER command is a means of incorporating custom changes in Ferret. It is currently sup-
ported only by special request to the Ferret developers (ferret@pmel.noaa.gov). Two special
features are currently accessible through the USER command—objective analysis and scat-
tered sampling of grids. These commands will eventually be replaced by more thoroughly inte-
grated features with the same functionality.

We recommend the user access objective analysis via the script objective.jnl. The scattered
sampling feature is used in the polar plotting GO tools (try “GO polar_demo” at the Ferret
prompt).

36.1 Objective analysis

(Note: see the version 4.4 documentation for an older way of gridding (X,Y, value) triples onto
a grid)

To grids a set of (X, Y, value) triples onto a grid of specified resolution, use one of the family of
“scatter2grid” external functions.

yes? SHOW FUNCTION/EXTERNAL scatter*
SCATTER2GRIDGAUSS_XY(X,Y,Z,XAX,YAX,CUTOFF)

Use Gaussian weighting to grid scattered data to an XY grid.
X: X coordinates of scattered input triples
Y: Y coordinates of scattered input triples
Z: Z = F(X,Y) Z component of scattered input triples
XAX: X axis of output grid
YAX: Y axis of output grid
CUTOFF: Interpolation parameter: cutoff limit

SCATTER2GRIDGAUSS_XZ(X,Z,F,XAX,ZAX,CUTOFF)
...

The X, Y, and F(X,Y) are lists of locations and a value associated with each location. Define X
and Y axes of the desired the grid and call the function to interpolate these points to the grid.
Say you have a set of latitudes, longitudes, and samples of a quantity N03 at those points, and
that these are in the variables my_lat, my_lon, and n03.

278 COMMANDS REFERENCE

yes? DEFINE AXIS/X=170W:120W:5 xax5
yes? DEFINE AXIS/Y=0:40N:5 yax5
yes? LET n03_reg = scatter2gridgauss_xy(my_lat, my_lon, n03, xax5, yax5,
2.)
yes? SHADE n03_reg

See the example in the demo script GO objective_analysis_demo.

36.2 Scattered sampling

Note: again, there was an older way of doing scattered sampling; see section 33.2 in the version
4.4 documentation)

Ferret external functions are available for sampling a gridded data field. See

yes? SHOW FUNCTION/EXTERNAL sample*

Ferret external functions are available for sampling a gridded data field. See

yes? SHOW FUNCTION/EXTERNAL sample*

SAMPLEI(DAT_TO_SAMPLE,I_INDICES)
SAMPLEJ(DAT_TO_SAMPLE,J_INDICES) ! These sample a gridded field, returning
SAMPLEK(DAT_TO_SAMPLE,K_INDICES) ! data at a set of grid points along an
SAMPLEL(DAT_TO_SAMPLE,L_INDICES) ! axis

SAMPLEIJ(DAT_TO_SAMPLE,XPTS,YPTS) ! Returns data sampled at a 2-dimensional
! subset of its grid points

SAMPLET_DATE(DAT_TO_SAMPLE,YR,MO,DAY,HR,MIN,SEC) ! Returns data sampled by
! interpolating to one or more times

SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS) ! Returns data sampled at a set of (X,Y)
! points, i.e., a ship track or some
! other path, using linear interpolation

37 VECTOR
/I/J/K/L /X/Y/Z/T /D /ASPECT /FRAME /LENGTH /NOAXIS /NOLABELS
/OVERLAY /PEN /SET_UP /TITLE /TRANSPOSE /XLIMITS /XSKIP
/YLIMITS /YSKIP

Produces a vector arrow plot.

VECTOR[/qualifiers] x_expr,y_expr

Parameters

x_expr, y_expr
Algebraic expressions (or simple variables) specifying the x components and y components of
the vector arrows. The expression pair will be inferred from the current context if omitted from
the command line.

COMMANDS REFERENCE 279

http://shark.pmel.noaa.gov/Demos/objective_analysis_demo/objective_analysis_demo.html

Command qualifiers for VECTOR:

VECTOR/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

VECTOR/D=
Specifies the default data set to be used when evaluating the expression pair being plotted.

VECTOR/ASPECT
Adjusts the direction of the vectors to compensate for differing axis scaling.

yes? VECTOR/ASPECT[=aspect_ratio] x_expr, y_expr...

The size of vectors is unchanged—only the direction is modified. Under most circumstances
/ASPECT should be specified. The aspect ratio is (Y-scale/X-scale). Under normal circum-
stances no aspect ratio is specified by the user—Ferret will compute the correct ratio. If the plot
lies in the latitude/longitude plane the aspect ratio correction will be adjusted as a function of
COS(LATITUDE) on the plot.

For example, in a typical oceanographic XZ plane plot the vertical (Z) axis is in tens of meters
while the horizontal (X) axis is in hundreds of kilometers. This means the vertical scale is
greatly magnified in comparison to the horizontal. The /ASPECT qualifier correspondingly
magnifies the vertical component of the vector relative to the horizontal while preserving the
length of the vector. The magnification factor is documented on the plot.

VECTOR/FRAME
Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE. In general the FRAME command (p. 222) is more flexible and we recom-
mend its use rather than this qualifier.

VECTOR/LENGTH=
Controls the size of vectors.

yes? VECTOR/LENGTH[=value_of_standard]

If the /LENGTH qualifier is omitted Ferret automatically selects reasonable vector lengths. To
reuse the vector length from the last VECTOR plot use VECTOR/LENGTH.

To specify the vector lengths manually use the value_of_standard argument. This associates
the value “val” with the standard vector length, normally 1/2 inch. Note that the PPLUS com-
mand VECSET can be used to modify the length of the standard vector. This is also the length
that is displayed in the vector key.

280 COMMANDS REFERENCE

Example:

yes? VECTOR/LENGTH=100 U,V

Creates a vector arrow plot of velocities with 1/2 inch vectors for speeds of 100.

VECTOR/NOAXIS
Suppresses all axis lines, tics, and labeling so that no box appears surrounding the contour plot.
This is especially useful for map projection plots.

VECTOR/NOLABELS
Suppresses all plot labels except axis labels.

VECTOR/OVERLAY
Causes the indicated vector field to be overlaid on the existing plot.

VECTOR/PEN=
Specifies the line style for the vectors. /PEN= takes the same arguments as the /LINE= qualifier
for command PLOT. See command PLOT/LINE= (p. 234). “n” ranges from 1 to 18.

yes? VECTOR/PEN=n x_expr, y_expr

VECTOR/SET_UP
Performs all the internal preparations required by program Ferret for vector plots but does not
actually render output. The command PPL can then be used to make changes to the plot prior to
producing output with the PPL VECTOR command. This permits plot customizations that are
not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

VECTOR/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about x_expr and y_expr. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See Chapter 6, sec-
tion “Fonts” (p. 120).

yes? VECTOR/TITLE="title_string" x_expr, y_expr

VECTOR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is always
drawn horizontal and the Y and Z axes are drawn vertical. For Y-Z plots the Z data axis is verti-
cal.

VECTOR/XLIMITS=
Specifies X axis limits and tic interval. Without this qualifier, Ferret selects reasonable values.

yes? VECTOR/XLIMITS=lo:hi:increment x_expr, y_expr

COMMANDS REFERENCE 281

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

VECTOR/XSKIP=/YSKIP=
Draws every nth vector along the requested axis beginning with the first vector requested.

yes? VECTOR/XSKIP=nx/YSKIP=ny u,v

By default, Ferret “thins” vectors to achieve a clear plot. These qualifiers allow control over
thinning.

Note that when the /SETUP qualifier is used the /XSKIP and /YSKIP qualifiers are ignored. In
this case, use arguments to the PPL VECTOR command to achieve the thinning.

PPL VECTOR xskip yskip

VECTOR/YLIMITS=
Specifies Y axis limits and tic interval. See /XLIMITS= (above).

38 WHERE

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Com-
ments that include the digitized position are also written to the current journal file (if open).
The WHERE command can be embedded into scripts to allow interactive positioning of color
keys, boxes, lines, and other annotations.

39 WIRE
/I/J/K/L /X/Y/Z/T /D /FRAME /NOLABEL /OVERLAY
/SET_UP /TITLE /TRANSPOSE /VIEWPOINT /ZLIMITS /ZSCALE

Produces a wire frame representation of a two-dimensional field.

yes? WIRE[/qualifiers] expression

Parameters

The expression may be anything described in Chapter 3, section “Expressions” (p. 49). The ex-
pression will be inferred from the current context if omitted from the command line. Multiple
expressions are not permitted in a single WIRE command. The indicated region should denote
a plane (2D) of data.

282 COMMANDS REFERENCE

Command qualifiers for WIRE:

WIRE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

Example:

The following commands will create a wire frame representation of a simple mathematical
function in two dimensions.

yes? SET REGION/I=1:80/J=1:80
yes? WIRE/VIEWPOINT=-4,-10,2 exp(-1*(((I-40)/20)^2 + ((J-40)/20)^2))

WIRE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

WIRE/FRAME
Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE. In general the FRAME command (p. 222) is more flexible and we recom-
mend its use rather than this qualifier.

WIRE/NOLABEL
Suppresses all plot labels except axis labels.

WIRE/OVERLAY
Causes the indicated wire frame plot to be overlaid on the existing plot.

WIRE/SET_UP
Performs all the internal preparations required by program Ferret for wire frame graphics but
does not actually render output. The command PPL can then be used to make changes to the
plot prior to producing output with the PPL WIRE command. This permits plot customizations
that are not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

WIRE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See Chapter 6, section
“Fonts” (p. 120).

WIRE/TRANSPOSE
Causes the X and Y axes to be interchanged.

WIRE/VIEWPOINT=
Specifies a viewpoint for viewing the wire frame.

COMMANDS REFERENCE 283

yes? WIRE/VIEWPOINT=x,y,z expression

The x,y values are specified as coordinates on the X and Y axes (though they may exceed the
axis limits). The z value is in units of the requested variable.

WIRE/ZLIMITS=
Specifies limits of Z axis for wire frame.

yes? WIRE/ZLIMITS=zmin,zmax,delta expression

The values given are in units of the requested variable. (The string given as an argument to
/ZLIMITS= is passed unmodified to the PPLUS command WIRE as the zmin and zmax param-
eters.)

WIRE/ZSCALE=
Controls Z axis scaling of the 3-D plot.

yes? WIRE/ZSCALE=s expression

The default value is equivalent to (ymax-ymin)/(zmax-zmin) (i.e., the aspect ratio of the Z axis
to the Y axis). This qualifier is identical to the PPLUS VIEW command parameter of the same
name.

284 COMMANDS REFERENCE

GLOSSARY

ABSTRACT EXPRESSION (or VARIABLE)
An expression which contains no dependencies on any disk-resident data is referred to as
“abstract”. For example, SIN(x), where x is a pseudo-variable.

AXIS
A line along one of the dimensions of a grid. The line is divided into n points, or more pre-
cisely, n grid boxes where each grid box is a length along the axis. Adjacent grid boxes must
touch (no gaps along the axis) but need not be uniform in size (points may be unequally
spaced). Axes may be oriented (e.g. latitude, depth, ...) or simply abstract values.

COARDS
A profile for the standardization of NetCDF files.

CONTEXT
The information needed to obtain values for a variable: the location in space and time
(points or ranges), the name of the data set (if a file variable) and an optional grid.

DATA SET
A collection of variables in one or more disk files that may be specified with a single SET
DATA command.

DESCRIPTOR
A file containing background data about a GT or TS-formatted data set: variable names, co-
ordinates, units and pointers to the data files. Descriptor file names normally end with
“.DES”.

DYNAMIC AXIS
An axis that is inferred through the use of lo:hi:delta notation. It is created and destroyed dy-
namically by Ferret.

DYNAMIC GRID
A grid whose axes are inferred from a regridding operation that does not explicitly specify
all of the destination axes or specifies a destination grid that can be rendered conformable
with the originating grid only if some axes are removed or substituted.

EXPRESSION
Any valid combination of operators, functions, transformations, variables and pseudo-vari-
ables is an expression. For example, “ABS(U)”, “TEMP/(-0.03^Z)” or
“COS(TEMP[Y=0:40N@LOC:15])”.

EZ DATA SET
Any disk data file that is readable by Ferret but is not in GT, TS, or NetCDF format.

GLOSSARY 285

FILE VARIABLE
Avariable made available with the SET DATAcommand. File variables are data in disk files
suitable for plotting, listing, using in user-variable definitions, etc.

GKS
The “Graphical Kernel System” — a graphics programming interface that facilitates the de-
velopment of device-independent graphics code.

GO FILE or GO SCRIPT
A file of Ferret commands intended to be executed as a single command with the GO com-
mand.

GRID
A group of 1 to 4 axes defining a coordinate space. A grid can associate the axes as “outer
products” creating a rectangular array of points. Grids may be defined with the DEFINE
GRID command or from inside data sets.

GRID BOX
A length along an axis assumed to belong to a single grid point. It is represented by a box
“middle”, a box upper and a box lower limit. The “middle” need not actually be at the center
of the box but the upper limit of box m must always be the lower limit of box m+1. (This
concept is needed for integration of variables along an axis.)

GRID FILE
A file containing the definition of grids and axes — part of the GT and TS formats.

GT FORMAT
“grids at time steps” format. A direct access format using a separate descriptor file for de-
scriptive metadata.

METAFILE
A representation of graphics stored in a computer file. Such a file can be processed by an in-
terpreter program (such as Fprint) and sent to a graphics output device.

MODULO AXIS
An axis where the first point of the axis logically follows the last. Examples of this are de-
grees of longitude or dates in a climatological year.

MODULO REGRIDDING
A regridding operation where the destination axis is modulo and the regridding transform is
a modulo operation. Typical usage would be to create a 12-month climatology from a
multi-year time series.

286 GLOSSARY

NETCDF
Network Common Data Format is an interface to a library of data access routines for storing
and retrieving scientific data. NetCDF allows the creation of data sets which are self-de-
scribing and network transparent. As of Ferret version 2.30, NetCDF is the suggested
method of data storage.

OPERATOR
A function that is syntactically expressed in-line instead of as a name followed by argu-
ments. The Ferret operators are +, -, *, /, ^, AND, OR, EQ, NE, LT, LE, GT and GE.

PSEUDO-VARIABLE
A special variable whose values are coordinates or coordinate information about a grid. X, I,
and XBOX are the pseudo-variables for the X axis — similarly for the other axes.

QUALIFIER
Commands and variable names may require auxiliary information supplied by qualifiers. In
the command “SHOW DATA/FULL," “/FULL” is a qualifier. In the variable
“SST[Y=20N],” “Y=20N” is a qualifier.

REGION
The location in space and time (or other axis units) at which a variable is to be evaluated.
The locations may be points or ranges. For example, T="1-JAN-1982",Y=12S:12N de-
scribes a region in latitude and time.

REGRID
The process of converting the values of a variable from one grid to another. By default this is
done through multi-linear interpolation along all axes from the old grid to the new. Other
methods are also supported.

SUBSCRIPT
A coordinate system for referring to grid locations in which the points along an axis are re-
garded as integers from 1 to the number of points on the axis. The qualifiers I, J, K, and L are
provided to specify locations by subscript.

TRANSFORMATION
An operation performed on a variable along a particular axis and specified via the syntax
“@trn”. Some transformations, such as averaging (e.g. U[Z=@AVE]), reduce the range of
the variable along the axis to a single point. Others, such as taking a derivative (e.g.,
V[T=@DDC]) do not.

TMAP-FORMAT
Special formats created by the Thermal Modeling and Analysis Project (TMAP). These for-
mats use descriptor files to store information about the variables, units, titles, and grids for
the data. Separate formats allow optimized access as time series (TS format) or as geograph-

GLOSSARY 287

ical regions (GT format). As of Ferret version 2.30, NetCDF is the suggested method of data
storage.

TS FORMAT
“time step” format. A direct access format using a separate descriptor file for descriptive
metadata.

USER-DEFINED VARIABLE
A variable created with DEFINE VARIABLE (alias LET).

VARIABLE
Value defined on a grid.

VARIABLE NAME
The name by which a variable will be indicated in commands and expressions. Names begin
with letters and may include letters, digits, dollar signs, and underscores.

VARIABLE TITLE
A title string used to label plots and listed outputs of a variable.

VIEWPORT
A graphical display region which may be any subrectangle of a window. Graphical com-
mands (PLOT, CONTOUR, etc.) take complete control of a viewport, clearing it as needed.
A window may contain several viewports — possibly overlapping. Viewports are defined
with DEFINE VIEWPORT and controlled with SET and CANCEL VIEWPORT.

WINDOW
A rectangular graphical display region. On a graphics terminal the terminal screen is the one
and only window available. On a graphics workstation there may be many output windows.

WORLD COORDINATE
A coordinate system for referring to grid locations in which the points along an axis are re-
garded as continuous values in some particular units (e.g., meters of depth, degrees of lati-
tude). The qualifiers X, Y, Z, and T are provided to specify locations by world coordinate.

288 GLOSSARY

Index

!

*. 138

@ . 55,82,93
region specifier 93
transformations 55

@AVE
regridding @AVE 84
transformation @AVE 60

@CDA transformation
nearest neighbor above 68

@CDB transformation
nearest neighbor below. 68

@CIA transformation
nearest index below 69

@CIB transformation
nearest index below 69

@DDB transformation
backward derivative 63

@DDC transformation
centered. 63

@DDF transformation
forward derivative 63

@DIN transformation
definite integral. 58

@FAV transformation
averaging filler 64

@FLN transformation
linear integration 65

@FNR transformation
nearest neighbor 65

@IIN transformation
indefinite . 59

@LOC transformation
location of 65

@MAX transformation
maximum value 61

@MIN transformation
minimum value. 61

@NBD transformation

number of bad points 64

@NGD transformation
number of good points 63

@RSUM transformation
running unweighted sum 64

@SBN transformation
binomial smoother 62

@SBX transformation
boxcar smoother 61

@SHF transformation
shift data . 61

@SHN transformation
Hanning smoother 62

@SPZ transformation
Parzen . 62

@SUM transformation
unweighted 64

@SWL transformation
Welch. 63

@VAR transformation
weighted variance 60

@WEQ transformation
weighted equal 66

3-D
WIRE . 282

A

abstract expression 285

abstract variable 46

account
setting up an account 151

action command 49

algebraic expression 49

ALIAS 203,211,221 - 222,240,268,277 - 278

analyzing curvilinear coordinate data 150

analyzing polygonal coordinates 150

analyzing sigma coordinate data 149

animations . 97
FRAME . 222
SET MOVIE 260

INDEX 289

viewing . 98

arguments (script) 18

arrow
text labels 113

ASCII data
accessing . 34
output . 228
reading . 35
ready . 34
SET DATA/EZ 245

association . 84

attributes
NetCDF attributes. 162
NetCDF global attributes 164

autocorrelation . 15

average
transformation @AVE 60

averaging filler
@FAV transformation 64

axis . 105,285
/DEFINE . 77
/NOAXIS 106
CANCEL 203
DEFINE. 212
dynamic 81,285
Ferret controls. 105
label . 111
limits . 105
modulo . 94
NetCDF axis definitions 163
PPLUS commands 106
reversed . 171
transformation 55

AXIS
SET modulo 241

B

backward derivative
@DDB transformation 63

bar charts . 15

batch . 100

big-endian. 246

binary
record structure. 31

binary data
output . 228

reading . 35
record structure 243
SET DATA/EZ 245

binomial smoother
@SBN transformation 62

bold. 16

boxcar smoother
@SBX transformation 61

C

calendar 92,171,214,252

CANCEL . 203
/ALL . 204

CANCEL ALIAS. 203

CANCEL AXIS 203

CANCEL DATA
/ALL . 204

CANCEL DATA_SET 204

CANCEL EXPRESSION 204

CANCEL LIST 204
/ALL . 204
/APPEND 205
/FILE . 205
/FORMAT 205
/HEAD . 205
/PRECISION 205

CANCEL MEMORY. 205
/ALL . 205
/PERMANENT 205
/TEMPORARY 206

CANCEL MODE. 206

CANCEL MOVIE 206
/ALL . 206

CANCEL REGION. 207
/ALL . 207
/I/J/K/L . 207
/X/Y/Z/T 207

CANCEL SYBMOL 206

CANCEL VARIABLE 207
/ALL . 207

CANCEL WINDOW 208
/ALL . 208

CDA transformation

290 INDEX

nearest neighbor above 68

CDB transformation
nearest neighbor below. 68

CDL file 161 - 162
advanced usage 168
sample. 172
using . 165

child_axis
NetCDF . 169

CIA transformation
nearest index below 69

climatological axes
defining . 213

climatology 87,171

COARDS 159,285

COARDS NetCDF. 29

collections
time series. 148
vertical profiles 144

color . 114
contouring. 124
custom control 114,119
Ferret controls 114,118
GO tools . 16
hard copy 156
in HDF movie 99
lines 114,234
palette 16,24,116,210,232,266
pallette3 . 238
pattern2 . 233
PPLUS commands 115,119
text . 114

color_thickness index 115,126,210

command
abbreviated syntax 13
Commands Reference. 203
executing a Unix command. 276
SHOW . 269
syntax. 12

command line
Unix . 6

command line (Unix) 276

conformability 50,74

context . 285

contour
extrema . 16

CONTOUR . 208
/D . 208
/FILL . 208
/FRAME 209
/I /J /K /L 208
/KEY . 209
/LEVELS 209
/LINE . 209
/NOAXIS 209
/NOKEY 209
/NOLABELS 209
/OVERLAY. 209
/PALETTE 210
/PATTERN= 210
/PEN . 210
/SET_UP 210
/TITLE . 210
/TRANSPOSE 210
/X/Y/Z/T 208
/XLIMITS. 211
/YLIMITS. 211
NOAXIS 209

contouring 124,126
CONTOUR 208

converting units. 215

coordinates
curvilinear 132,149
interpolation. 255
SHOW GRID /W/Y/Z/T 272
spacing, NetCDF 170
underlying grid 77

correlation
autocorrelation 14
in variance script 14

COSINE (latitude) 56

curl . 63

curvilinear coordinates 128,149
scripts for 132

D

data
ASCII . 8
CANCEL DATA_SET 204
data set . 27
NetCDF . 28
SET DATA_SET 242
SHOW SET 269
STATISTICS 276
TMAP-formatted 30

data set. 27,285
examples . 22
EZ . 285
locating . 23

INDEX 291

NetCDF . 159
save and restore 18

dates
in ASCII files 143

DDB transformation
backward derivative 63

DDC transformation
centered. 63

DDF transformation
forward deriva 63

debugging 21,76,254 - 255

DEFINE . 211

DEFINE ALIAS 211

DEFINE AXIS 211
/DEPTH . 212
/EDGES . 212
/FILE . 213
/FROM_DATA 213
/MODULO 214
/NAME . 214
/NPOINTS 214
/T0 . 214
/UNITS . 214
/X/Y/Z/T 212

DEFINE GRID 215
/FILE . 216
/LIKE . 216
/X/Y/Z/T 215

DEFINE REGION 217
/DEFAULT 217
/DI/DJ/DK/DL 217
/DX/DY/DZ/DT 217
/I/J/K/L . 217
/X/Y/Z/T 217

DEFINE SYMBOL. 218

DEFINE VARIABLE 218
/D . 219
/QUIET . 219
/TITLE . 219
/UNITS . 219

DEFINE VIEWPORT 219
/CLIP . 220
/ORIGIN 220
/SIZE . 220
/TEXT. 220
/XLIMITS. 220
/YLIMITS. 220

definite integral
@DIN transformation 58

delta . 93

depth. 16,92,212,253
DEFINE AXIS/DEPTH 212

derivative. 63
transformations 55

descriptor . 285
locating . 152
TMAP data set 31

digits . 72

dimensions
multi-dimensional expression 50
NetCDF . 162

DIN transformation
definite integral. 58

divergence . 63

DODS . 39
accessing remote data 40
sharing data. 41

drifter data . 148

dynamic axis . 285

dynamic grid . 285

dynamic height . 15

E

ECHO. 103

ELIF . 220

ELSE
conditional execution 221
masking . 70

embedded expression 71,136

ENDIF . 221

environment
computing environment 135,151
environment variables 23,152
setting up an account 151

environment variable 152

error
insufficient memory 253

errors
generating messages 19,138

292 INDEX

Errors
MODE IGNORE_ERROR 255

EXIT . 221
/COMMAND_FILE 221
QUIT . 221

expression . 49,285
algebraic . 10
CANCEL 204
embedded. 71
MODE POLISH 257
SET default context 247
SHOW . 270

external
anatomy of an External Function 182
compute . 183
ef utility functions 191
ef_bail_out 202
ef_get_arg_info 196
ef_get_arg_ss_extremes 199
ef_get_arg_string 197
ef_get_arg_subscripts 198
ef_get_axis_dates 198
ef_get_axis_info 197
ef_get_bad_flags 199
ef_get_box_limits 201
ef_get_box_size. 200
ef_get_coordinates 199
ef_get_desc 192
ef_get_one_val 201
ef_get_res_subscripts 196
ef_set_arg_desc 193
ef_set_arg_name 193
ef_set_arg_type 194
ef_set_arg_unit 193
ef_set_axis_extend 194
ef_set_axis_influence 194
ef_set_axis_inheritance 192
ef_set_axis_limits 195
ef_set_axis_reduction 195
ef_set_custom_axis 195
ef_set_num_args 192
ef_set_num_work_arrays 195
ef_set_piecemeal_ok 193
ef_set_work_array_dims 196
EF_Util.cmn 190
ef_version_test 201
example: times2bad20 180
External Functions Notes and Suggestions . . 186
getting ef example code. 180
getting started with External Functions. . . . 179
inheriting axes 186
init subroutine. 182
Loop indices 187
Quick Start example 180
reduced axes 188
result_limits 185
string arguments 189
utility functions 190
work_size 184

External Functions 179

extremum 16,61,85

F

Faddpath . 22

Fapropos . 22

FAV transformation
averaging fille 64

Fdata . 23

Fdescr . 23

Fenv . 23

FER_DATA . 152

FER_DESCR . 152

FER_DIR . 152

FER_DSETS . 152

FER_GO . 152

FER_GRIDS . 152

FER_PALETTE 152

Ferret Home Page 2

ferret_paths . 152

Fgo . 23

Fgrids . 23

Fhelp . 23

FILE . 221
alias for SET DATA/EZ 245

files
byte-swapped. 34
DODS . 39
mixed types. 34
real*8 . 33
stream . 33
supported stream types 33

FILL . 222
CONTOUR/FILL 208

filler (missing value) 64 - 65

filtering
transformations 55

flag (missing value) 47

INDEX 293

FLN transformation
linear interpol 65

flow control (scripts) 20 - 21,220,223,255

Fman . 24

FNR transformation
nearest neighbo. 65

font . 120
Ferret controls. 120
PPLUS commands 120

format
/FORMAT qualifier 242,249
data sets . 242
Ferret . 31
FORMAT qualifier 228
HDF . 97
MODE ASCII_FONT 252
MODE LATIT_LABEL 256
MODE LONG_LABEL 256
NetCDF . 28
numeric axis labels 106
standardized data 27
TMAP . 30
TMAP format 287

formatting
numerical output 72,229,249
plots . 105

FORTRAN-formatted files 31

forward derivative
@DDF transformation 63

Fpalette. 24

Fprint . 154

Fpurge . 24
Unix file naming 157

FRAME. 222
/FILE=filename 222
/FORMAT=format 222
/FORMAT=GIF. 222
/FORMAT=HDF 222

Fsort . 24
Unix . 157
Unix file naming 157

Ftoc. 24

functinos
SIN . 52

function . 51
RANDN . 53
RHO_UN. 54

functions
ABS . 52
ACOS . 53
ASIN . 52
ATAN . 53
ATAN2. 53
COS . 52
DAYS1900 53
EXP . 52
IGNORE0 53
INT . 52
LN . 52
LOG . 52
MAX . 52
MIN . 52
MISSING. 53
MOD . 53
RANDU . 53
RESHAPE 54
TAN . 52
THETA_FO 54
TSEQUENCE 54
XSEQUENCE 54
YSEQUENCE 54
ZAXREPLACE 54
ZSEQUENCE 54

G

getting point data into Ferret 142

GIF image . 100

GKS. 286
color map 114
graphic metafile 154
MODE METAFILE 257
MODE SEGMENTS 258

gksm2ps . 156

GLOSSARY . 285

GO . 222
/HELP. 223
files . 13
Unix file naming 158
writing tools 17

GO File . 286

graphics
/SET_UP 104
hard copy 154
memory . 153
MODE METAFILE 257
output controls 104
viewport. 121

gregorian year 214

grid . 77,286

294 INDEX

/DEFINE . 77
conformable 50
default . 246
DEFINE. 215
DEFINE AXIS 211
dynamic 78,285
grid box . 286
grid file . 286
regridding 82
SET . 248
staggered 169

gridded data from point data 143

gridding (point data). 17,278

gridfile
searching 152
UD and DU 212

grids
pseudo-variables 45

GT
locating files 152

H

Hanning smoother
@SHN transformatio. 62

hard copy . 154
Fprint . 154
gksm2ps. 156
MODE . 257
monochrome devices 154

HDF . 97

help
HELP . 223
Unix on-line 24
within Ferret 25

histograms . 15

home page . 2

hyperslabs
NetCDF . 169

I

IF
conditional execution 223
masking . 70

IIN transformation
indefinite integr 59

image . 97,100

immediate mode. 71,136

indefinite integral
@IIN transformation 59

inheritance
of axes . 45

initialization file 152

insufficient memory 153

integral . 58 - 59
transformations 55

integration
irregular limits 57

interpolation . 68

isosurface 11,65 - 66
@LOC . 65
@WEQ . 66

L

label
axis . 111
contour line 126
Ferret controls. 111
LABEL . 225
MODE . 252
MODE ASCII_FONT 252
MODE DEPTH_LABEL 253
MODE LATIT_LABEL 256
MODE LONG_LABEL 256
movable labels 108
plot . 108
positioning with mouse 112
PPLUS commands 108,112
with pointing arrow 113

Label
MODE CALENDAR 252

LABEL /NOUSER 226

land mass
graphical . 15

latitude . 91

layout 16,105,121,124,137,156

least squares . 15

LET . 226

levels (contour) 125

INDEX 295

line
/LINE qualifier 114,124,209,234,266
/LINE qualifier3 237
hard copy 156
line styles 15,114,234

linear interpolation filler
@FLN transformation 65

LIST . 226
/APPEND 227
/D . 227
/FILE . 228
/FORMAT 228
/HEAD . 229
/I /J /K /L 227
/NOHEAD 229
/ORDER 229
/PRECISION=# 230
/QUIET . 230
/RIGID . 230
/SINGLY 230
/TITLE="title string" 230
/X /Y /Z /T 227
/HEADING 229

lists of constants 70

little-endian . 246

LOAD. 231
/D . 231
/I/J/K/L . 231
/NAME . 231
/PERMANENT 231
/TEMPORARY 231
/X/Y/Z/T 231

LOC transformation
location of 65

location transformation
@LOC . 65

logo. 16

long_name
NetCDF variable attributes 162

longitude . 91

loop. 98

M

maps
ETOPO data sets 22
map projections 14,128
overlays using GO tools 14

masking . 70

matrix notation . 35

MAX transformation
maximum value 61

maximum . 61,85

maximum value
@MAX transformation 61

MC data sets. 29,178

memory
CANCEL 205
insufficient memory 153
large calculations 253
loading expressions into 231
management 153,250,253
MODE SEGMENTS 258
NetCDF . 171

MESSAGE . 232
/CONTINUE 232
/QUIET . 232
alias PAUSE 233

metafile . 286
hard copy 154
MODE METAFILE 257
naming 157,257
translation 154

MIN transformation
minimum value. 61

minimum . 85

minimum value
@MIN transformation 61

missing value flag 47,73,262

mode
SHOW MODE 273

MODE
SET MODE 251

MODE ASCII_FONT 252

MODE CALENDAR 252

MODE DEPTH_LABEL 253

MODE DESPERATE 253

MODE DIAGNOSTIC 254

MODE IGNORE_ERROR 255

MODE INTERPOLATE 255

MODE JOURNAL 255

296 INDEX

MODE LATIT_LABEL 256

MODE LONG_LABEL 256

MODE METAFILE 257

MODE POLISH 257

MODE PPLLIST 258

MODE REFRESH 258

MODE SEGMENTS 258

MODE STUPID 258

MODE VERIFY 259

MODE WAIT 260

modes . 18

modulo . 94
axis 94,171,214,286
NetCDF . 171
regridding 87,286

modulo axis . 286

modulo regridding 286

monthly averages 213

mouse
click to position labels 112
WHERE command to define position 282

movies . 97
animations 97

MPEG. 101

multiple axis plots 16

N

naming
Unix file naming 157
variables. 218

NBD transformation
number of bad point 64

ncdump . 161

ncgen . 161,165

nearest neighbor filler
@FNR transformation 65

netCDF
disordered coordinates 29

illegal variable names 30
permuted axis ordering 30
reverse-ordered coordinates 30

NetCDF 28,48,159,228,240,277,285,287
accessing data with USE 277
axis attributes 162
axis definition 163
CDL data initialization 164
CDL files 162
child_axis 169
converting to 159
dimensions 162
global attributes 164
grid_definition 169
hyperslabs 169
locating . 152
long_name 162
modulo axes. 171
multi-file data sets 29,178
parent grid. 169
slab_max_index. 170
slab_min_index 170
special axis interpretations 163
staggered grids 169
utilities . 161
variable attributes 162
variables. 162

NGD transformation
number of good poin 63

non-gridded data 141
collections. 148
curvilinear. 149
point data 141
polygonal 150
sigma coordinate 149
time series. 148
vertical profiles 144

notation
@ notation 93

number of bad points
@NBD transformation 64

number of good points
@NGD transformation 63

O

objective analysis 278

on-line help 22 - 24

operator . 50,287

overlay
/OVERLAY qualifier . . . 209,235,266,281,283
/OVERLAY qualifier3 237

INDEX 297

P

palette
creation . 116
locating files 24,152
PALETTE command 232
restoring default. 119
testing . 16

parent grid
NetCDF . 169

Parzen smoother
@SPZ transformation 62

pattern. 210
PATTERN command 233

PATTERN . 233

pattern3 . 267

pause
MESSAGE 232

PAUSE . 233

PEN
PPLUS commands 115

PLOT . 233
/D . 234
/FRAME 234
/I/J/K/L . 234
/LINE . 234
/NOLABELS 235
/OVERLAY. 235
/SET_UP 235
/SYMBOL 235
/TITLE . 235
/TRANSPOSE 235
/VS . 235
/X/Y/Z/T 234
/XLIMITS. 236
/YLIMITS. 236

point data -- how it is structured 142

polygon . 236

POLYGON . 236
/D . 237
/FRAME 237
/KEY . 237
/LEVELS 237
/NOKEY 237
/NOLABELS 237
/OVERLAY. 237
/PALETTE 238
/PATTERN 238
/SET_UP 238
/TITLE . 238
/TRANSPOSE 238

/YLIMITS. 239
XLIMITS 238

PPLUS . 103,239
/RESET . 239
MODE ASCII_FONT 252

precision . 72

print . 154

printing
hard copy 154

profile collection structure 145

profile data into Ferret 146

projection . 128
curvilinear coordinates 129
map projections 130
mp_mask 130
overlays . 131
polar stereographic 16
scripts. 16
sigma coordinates 129
standard parallel. 130
using scripts 130
y_page . 130

pseudo-variable 44,287

Q

qualifier . 287

QUIET . 230

QUIT
alias for EXIT. 239

R

RANDU function 53

reading data files
NetCDF . 28

reading scattered data 36

record structure
file . 31

region . 90,287
CANCEL 207
DEFINE. 217
named . 93
pre-defined 94
save and restore 18

298 INDEX

SET . 261
SHOW . 274

region (irregular) 57

regressions . 15

regrid . 287

regridding 3,82,287
transformations 84

relative version
GO . 222
numbers . 158
Unix file naming 158

REPEAT . 240
/I/J/K/L . 240
/X/Y/Z/T 240

reserved names 218

RGB mapping
by level . 118
by value . 117
percent . 117

RSUM transformation
running unweighted s 64

running unweighted sum
@RSUM transformation 64

S

sampling . 17,279
scattered sampling 279

SAVE
alias for LIST/FORM=CDF 240

SBN transformation
binomial . 62

SBX transformation
boxcar . 61

scatter plots . 236

scattered sampling 279

scripts . 13,17

seasonal averages 213

segments
MODE SEGMENTS 258

SET . 241

SET AXIS . 241

/DEPTH . 242

SET DATA
/EZ . 245
/EZ/COLUMNS 245
/EZ/GRID 246
/EZ/ORDER 246
/EZ/SKIP 246
/EZ/SWAP 246
/EZ/TITLE 246
/EZ/TYPE. 247
/EZ/VARIABLES 247
/FORMAT 242
/RESTORE 244
/SAVE . 244

SET DATA_SET 242

SET EXPRESSION 247

SET GRID . 248
/RESTORE 248
/SAVE . 248

SET LIST . 248
/APPEND 249
/FILE . 249
/FORMAT 249
/HEAD . 250
/PRECISION 250

SET MEMORY. 250

SET MODE. 251
/LAST. 252
ASCII_FONT 251
CALENDAR 251
DEPTH_LABEL 251
DESPERATE 251
DIAGNOSTIC 251
GUI . 251
IGNORE_ERROR 251
INTERPOLATE 251
JOURNAL 251
LATIT_LABEL. 251
LONG_LABEL 251
METAFILE 251
POLISH . 252
PPLLIST 252
REFRESH 252
SEGMENT 252
STUPID . 252
VERIFY. 252
WAIT . 252

SET MOVIE . 260
/COMPRESS 260
/FILE . 260
/LASER . 260
/START . 261

SET REGION 261
/DI/DJ/DK/DL 261
/DX/DY/DZ/DY 261

INDEX 299

/I/J/K/L . 261
/X/Y/Z/T 261

SET VARIABLE 262
/BAD . 262
/GRID . 262
/TITLE . 262
/UNITS . 262

SET VIEWPORT. 263

SET WINDOW 263
/ASPECT 264
/CLEAR. 264
/LOCATION 264
/NEW . 265
/SIZE . 265

setup
/SET_UP 103
setting up an account 151

SHADE . 265
/D . 265
/FRAME 265
/I/J/K/L . 265
/KEY . 266
/LEVELS 266
/NOAXIS 266
/NOKEY 266
/NOLABELS 266
/OVERLAY. 266
/PALETTE 266
/TITLE . 267
/TRANSPOSE 267
/X/Y/Z/T 265
/XLIMITS. 267
/YLIMITS. 267

shape (of variable) 74

SHF transformation
shift data . 61

shift transformation
@SHF . 61

SHN transformation
Hanning smoother 62

SHOW . 268
/ALL . 268

SHOW ALIAS 268

SHOW AXIS . 268
/ALL . 269
/I/J/K/L/X/Y/Z/T 269

SHOW COMMANDS 269

SHOW DATA
/BRIEF . 270
/FILES . 270

/FULL. 270
/VARIABLES 270

SHOW DATA_SET 269

SHOW EXPRESSION 270

SHOW FUNCTION 271

SHOW GRID . 271
/ALL . 272
/I/J/K/L . 272
/X/Y/Z/T 272

SHOW LIST . 272
/ALL . 272

SHOW MEMORY 272
/ALL . 273
/FREE . 273
/PERMANENT 273
/TEMPORARY 273

SHOW MODE 273
/ALL . 273

SHOW MOVIE. 274
/ALL . 274

SHOW QUERIES 274

SHOW REGION 274

SHOW SYMBOL 274

SHOW TRANSFORM 275
/ALL . 275

SHOW VARIABLES 275
/ALL . 275
/DIAGNOSTIC 275
/USER. 275

SHOW VIEWPORT 276
/ALL . 276

SHOW WINDOWS 276
/ALL . 276

slab_max_index
NetCDF . 170

slab_min_index
NetCDF . 170

smoothing
contour lines 126
transformations 55,57

SPAWN. 276

special axis interpretations
NetCDF . 163

300 INDEX

special data . 141

SPZ transformation
Parzen . 62

staggered grids
NetCDF . 169

standard deviation 60

state (Ferret state). 18,248,251

STATISTICS . 276
/D . 277
/I/J/K/L . 277
/X/Y/Z/T 277
BRIEF. 277

string . 135,137

strings
function arguments 51

subroutines (scripts) 20

subsampling to points. 143

subsampling to profiles 147

subscript . 287

SUM transformation
unweighted sum 64

SWL transformation
Welch. 63

symbol 206,218,274
plot point symbols 15,235
text . 135
text string as. 137

syntax . 12
command 287
filenames 158
region. 90
regridding 82
transformation 55
variable 43,55

T

Tektronix
MODE WAIT. 260

text . 135,137
color. 114
font . 120,252

THETA_FO functions 54

three-dimensional plot

WIRE . 282

time . 92,171

time axis
MODE CALENDAR 252

title
/TITLE qualifier 235,267,281,283
data set . 246
defining variable title 219
plot . 108
TITLE qualifier 210

TMAP-formatted file 30,287

tools
Unix tools 22

transformation 55,287
@AVE average. 60
@CDA closest distance above 68
@CDB closest distance below 68
@CIA closest index above 69
@CIB closest index below 69
@DDB backward derivative 63
@DDC centered derivative 63
@DDF forward derivative 63
@DIN definite integral. 58
@FAV averaging filler. 64
@FLN linear interpolation filler 65
@FNR nearest neighbor filler 65
@IIN indefinite integral 59
@LOC location of 65
@MAX maximum value 61
@MIN minimum value 61
@NBD number of bad points 64
@NGD number of good points 63
@RSUM running unweighted sum 64
@SBN binomial smoother 62
@SBX boxcar smoother 61
@SHF shift data 61
@SHN Hanning smoother 62
@SPZ Parzen smoother 62
@SUM unweighted sum 64
@SWL Welch smoother 63
@VAR weighted variance 60
@WEQ weighted equal 66
axis . 55
examples . 56
general information 56
regridding 84
SHOW . 56

TS
locating files 152

U

unformatted files 31

units . 214,262

INDEX 301

axis . 214
in transformations 56

Unix
command line 6
environment variables 23
setting up an account 151
Unix tools 22

unmapped windows 6

unweighted sum
@SUM transformation 64
transformation @RSUM 64
transformation @SUM 64

USE . 277
SET DATA/FORMAT=CDF 243

USER . 278

utilities
NetCDF utilities 161
Unix tools 22

V

VAR transformation
weighted variance 60

variable . 285
abstract. 9,46,285
conformable 50
default . 75
DEFINE. 218
file . 44,286
global . 75
local . 75
NetCDF . 162
pseudo 44,287
reserved names 218
SET . 262
SET DATA_SET 242
SHOW . 275
syntax. 43
user . 46
user-defined 48,75,207,218

variable names
in files . 44

variance
GO tool . 14
regridding transform 84
transformation @VAR 60

VECTOR . 279
/ASPECTS 280
/D . 280
/FRAME 280
/I/J/K/L . 280
/LENGTH. 280

/NOAXIS 281
/NOLABELS 281
/OVERLAY. 281
/PEN . 281
/SET_UP 281
/TITLE . 281
/TRANSPOSE 281
/X/Y/Z/T 280
/XLIMITS. 281
/XSKIP . 282
/YLIMITS. 282
/YSKIP . 282

vectors
special . 15

versions
GO . 222
purging . 24
relative version numbers 158
Unix file naming 157

vertical profile
example of reading file. 38

vertical sections, defining from profiles 147

viewport . 121,219
advanced usage 123
CANCEL 207
pre-defined 122
SET . 263
SHOW . 276

visualizing curvilinear coordinate data 149

visualizing Lagrangian data 148

visualizing point data 144

visualizing polygonal coordinate data 150

visualizing profile data 147

visualizing sigma coordinate data 149

W

wait
MESSAGE 232

weighted equal
@WEQ transformation. 66

weighted variance
@VAR . 60

Welch smoother
@SWL transformation 63

WEQ transformation
weighted equal 66

302 INDEX

WHERE . 282
command 282

window . 288
CANCEL 208
SET . 263
SHOW . 276

windowing
transformations 55

windows
size and shape 263

WIRE . 282
/D . 283
/FRAME 283
/I/J/K/L . 283
/NOLABEL 283
/OVERLAY. 283
/SET_UP 283
/TITLE . 283
/TRANSPOSE 283
/VIEWPOINT. 283
/X/Y/Z/T 283
/ZLIMITS 284
/ZSCALE 284
example . 283

wire frame . 282

world coordinate 288

World Wide Web 100

X

X windows
size and shape 263

X Data Slice . 98

X windows
backing store 258
setting up an account 151
unmapped . 6

X-Y plot
PLOT . 233

INDEX 303

	Con tents
	Chapter 1: INTRODUCTION
	1 OVERVIEW 1
	 1.1 Fer ret User™s Group 2
	 1.2 Fer ret Home Page 2

	2 GETTING STARTED 2
	 2.1 Con cepts 2
	 2.1.1 Thinking like a Fer ret: 4

	 2.2 Unix com mand line switches 6
	 2.3 Sam ple ses sions 7
	 2.3.1 Ac cessing a NetCDF data set 7
	 2.3.2 Read ing an ASCII data file 8
	 2.3.3 Using viewports 8
	 2.3.4 Using ab stract vari ables 9
	 2.3.5 Using trans for ma tions 9
	 2.3.6 Using al ge braic ex pres sions 10
	 2.3.7 Find ing the 20-de gree iso therm 11

	3 COMMON COMMANDS 12
	4 COMMAND SYNTAX 12
	5 GO FILES 13
	 5.1 Dem on stra tion files 13
	 5.2 GO tools 14
	 5.3 Writ ing GO tools 17
	 5.3.1 Doc u menting GO tools 18
	 5.3.2 Pre serving the Fer ret state in GO tools 18
	 5.3.3 Si lent GO tools 18
	 5.3.4 Ar gu ments to GO tools 18
	 5.3.5 Flow Con trol in GO tools 20
	 5.3.6 De bugging GO tools 21

	6 SAMPLE DATA SETS 22
	7 UNIX TOOLS 22
	8 HELP 24
	 8.1 Unix on-line help 24
	 8.2 Ex am ples and dem on stra tions 25
	 8.3 Help from within Fer ret 25

	Chapter 2: DATA SET BASICS
	1 OVERVIEW 27
	2 NETCDF DATA 28
	 2.1 Multi-file NetCDF data sets 29
	 2.2 Non-stan dard NetCDF data sets 29

	3 TMAP-FORMATTED DATA 30
	4 BINARY DATA 31
	 4.1 FOR TRAN-struc tured bi nary files 31
	 4.1.1 Re cords of uni form length 31
	 4.1.2 Re cords of non-uni form length 32

	 4.2 Stream bi nary files 33
	 4.2.1 Sim ple stream files 33
	 4.2.2 Mixed stream files 34

	5 ASCII DATA 34
	 5.1 Read ing ASCII files 35

	6 TRICKS TO READING BINARY AND ASCII FILES 38
	7 ACCESS TO REMOTE DATA SETS WITH DODS 39

	Chapter 3: VARIABLES AND EXPRESSIONS
	1 Vari ables 43
	 1.1 Vari able syn tax 43
	 1.2 File vari ables 44
	 1.3 Pseudo-vari ables 44
	 1.3.1 Grids and axes of pseudo-vari ables 45

	 1.4 User-de fined vari ables 46
	 1.5 Ab stract vari ables 46
	 1.6 Missing value flags 47
	 1.6.1 Missing val ues in in put files 47
	 1.6.2 Missing val ues in user-de fined vari ables 48
	 1.6.3 Missing val ues in out put NetCDF files 48
	 1.6.4 Dis playing the miss ing value flag 49

	2 EXPRESSIONS 49
	 2.1 Op er a tors 50
	 2.2 Multi-di men sional ex pres sions 50
	 2.3 Func tions 51
	 2.4 Trans for ma tions 55
	 2.4.1 Gen eral in for ma tion about trans for ma tions 56
	 2.4.2 Trans for ma tions ap plied to ir reg u lar re gions 57
	 2.4.3 Gen eral in for ma tion about smooth ing trans for ma tions 57
	 2.4.4 @DINŠdef i nite in te gral 58
	 2.4.5 @ IIN Šin def i nite in te gral 59
	 2.4.6 @AVEŠav er age 60
	 2.4.7 VARŠweighted vari ance 60
	 2.4.8 MINŠmin i mum 61
	 2.4.9 @MAXŠmax i mum 61
	 2.4.10 @SHF:nŠshift 61
	 2.4.11 @ SBX :nŠbox car smoother 61
	 2.4.12 @SBN:nŠbi no mial smoother 62
	 2.4.13 @ SHN :nŠ Hanning smoother 62
	 2.4.14 @ SPZ :nŠ Parzen smoother 62
	 2.4.15 @ SWL :nŠWelch smoother 63
	 2.4.16 @ DDC Šcen tered de riv a tive 63
	 2.4.17 @ DDF Šfor ward de riv a tive 63
	 2.4.18 @ DDB Šback ward de riv a tive 63
	 2.4.19 @ NGD Šnum ber of good points 63
	 2.4.20 @ NBD Šnum ber of bad points 64
	 2.4.21 @SUMŠun weight ed sum 64
	 2.4.22 @ RSUM Šrun ning un weight ed sum 64
	 2.4.23 @ FAV :nŠav er ag ing filler 64
	 2.4.24 @ FLN :nŠlin ear in ter po la tion filler 65
	 2.4.25 @ FNR :nŠnear est neigh bor filler 65
	 2.4.26 @ LOC Šlo ca tion of 65
	 2.4.27 @ WEQ Šweighted equal; in te gra tion ker nel 66
	 2.4.28 @ ITP Šin ter po late 68
	 2.4.29 @ CDA Šclos est dis tance above 68
	 2.4.30 @ CDB Šclos est dis tance be low 68
	 2.4.31 @CIAŠclos est in dex above 69
	 2.4.32 @ CIB Šclos est in dex be low 69

	 2.5 IF-THEN logic (ﬁmask ingﬂ) 70
	 2.6 Lists of con stants (ﬂcon stant ar raysﬂ) 70

	3 EMBEDDED EXPRESSIONS 71
	 3.1 Spe cial cal cu la tions us ing em bed ded ex pres sions 72

	4 DEFINING NEW VARIABLES 75
	 4.1 Global, lo cal, and de fault vari able def i ni tions 75

	5 DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS 76

	Chapter 4: GRIDS AND REGIONS
	1 OVERVIEW 77
	2 GRIDS 77
	 2.1 De fining grids 78
	 2.2 Dy namic grids and axes 78
	 2.2.1 Dy namic grids 79
	 2.2.2 Dy namic axes 81
	 2.2.3 Dy namic pseudo-vari ables 81

	 2.3 Regridding 82
	 2.3.1 Regridding trans for ma tions 84

	 2.4 Modulo regridding 87
	 2.4.1 Modulo regridding sta tis tics 89

	3 REGIONS 90
	 3.1 Lat i tude 91
	 3.2 Lon gi tude 91
	 3.3 Depth 92
	 3.4 Time 92
	 3.5 Delta 93
	 3.6 Modulo axes 94
	 3.7 Re gion Con flicts 95

	Chapter 5: ANIMATIONS AND GIF IMAGES
	1 OVERVIEW 97
	2 CREATING AN HDF MOVIE 97
	3 DISPLAYING AN HDF MOVIE 98
	4 ADVANCED MOVIE-MAKING 98
	 4.1 REPEAT com mand 98
	 4.1.1 Ini tial izing the color ta ble 99
	 4.1.2 Making mov ies in batch mode 100

	5 CREATING GIF IMAGES 100
	6 CREATING MPEG ANIMATIONS 101

	Chapter 6: CUSTOMIZING PLOTS
	1 OVERVIEW 103
	2 GRAPHICAL OUTPUT 104
	 2.1 Fer ret graph i cal out put con trols 104
	 2.2 PPLUS graph i cal out put com mands 105

	3 AXES 105
	 3.1 Fer ret axis con trols 105
	 3.2 PPLUS axis com mands 106

	4 LABELS 108
	 4.1 List ing la bels 108
	 4.2 Adding la bels 109
	 4.3 Re moving mov able la bels 110
	 4.4 Axis la bels and ti tle 111
	 4.5 Fer ret la bel con trols 111
	 4.6 PPLUS la bel com mands 112
	 4.7 Po si tioning la bels us ing the mouse pointer 112
	 4.8 La beling de tails with ar rows and text 113

	5 COLOR 114
	 5.1 Text and line col ors 114
	 5.1.1 Fer ret color con trols for lines 114
	 5.1.2 PPLUS text and line color com mands 115

	 5.2 Shade and fill col ors 116
	 5.2.1 Fer ret shade and fill color con trols 118
	 5.2.2 PPLUS shade color com mands 119

	6 FONTS 120
	 6.1 Fer ret font con trols 120
	 6.2 PPLUS font com mands 120

	7 PLOT LAYOUT 121
	 7.1 Fer ret lay out con trols 121
	 7.1.1 Viewports 121
	 7.1.2 Pre-de fined viewports 122
	 7.1.3 Ad vanced us age of viewports 123

	 7.2 PPLUS lay out com mands 123
	 7.3 Con trolling the white space around plots 124

	8 CONTOURING 124
	 8.1 Fer ret con tour con trols 124
	 8.1.1 /LEVELS qual i fier 125

	 8.2 PPLUS con tour com mands 126

	9 Map Pro jec tions and Curvilinear Co or di nates 128
	 9.1 Three-ar gu ment (curvilinear) ver sion of SHADE, FILL, CONTOUR, and VECTOR 128
	 9.2 Gridded data sets on curvilinear co or di nates 129
	 9.3 Layered (sigma) co or di nates 129
	 9.4 Map Pro jec tions 130
	 9.4.1 Using Map Pro jec tion scripts 130
	 9.4.2 Over lays with Map Pro jec tions 131
	 9.4.3 Map Pro jec tion scripts 132

	Chapter 7: HANDLING STRING DATA: ﬁSYMBOLSﬂ
	1 AUTOMATICALLY GENERATED SYMBOLS 135
	2 USE WITH EMBEDDED EXPRESSIONS 136
	3 ORDER OF STRING SUBSTITUTIONS 136
	4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS 137
	5 USING SYMBOLS IN COMMAND FILES 137
	6 PLOT+ STRING EDITING TOOLS 137
	7 SYMBOL EDITING 137
	8 SPECIAL SYMBOLS 139

	Chapter 8: WORKING WITH SPECIAL DATA SETS
	1 WHAT IS NON-GRIDDED DATA? 141
	2 POINT DATA 141
	 2.1 Getting point data into Fer ret 142
	 2.2 How point data is struc tured in Fer ret 142
	 2.2.1 Working with dates 143

	 2.3 Subsampling gridded fields onto point data lo ca tions and times 143
	 2.4 De fining gridded vari ables from point data 143
	 2.5 Vi su al iza tion tech niques for point data 144

	3 VERTICAL PROFILES 144
	 3.1 How col lec tions of pro files are struc tured in Fer ret 145
	 3.2 Getting pro file data into Fer ret 146
	 3.3 De fining ver ti cal sec tions from pro files 147
	 3.4 Vi su al iza tion and anal y sis tech niques for pro file sec tions 147
	 3.5 Subsampling gridded fields onto pro file co or di nates and times 147

	4 COLLECTIONS OF TIME SERIES 148
	5 COLLECTIONS OF 2-DIMENSIONAL GRIDS 148
	6 LAGRANGIAN DATA 148
	 6.1 Vi su al iza tion tech niques for Lagrangian data 148

	7 SIGMA COORDINATE DATA 149
	 7.1 Vi su al iza tion tech niques for sigma co or di nate data 149
	 7.2 Anal y sis tech niques for sigma co or di nate data 149

	8 CURVILINEAR COORDINATE DATA 149
	 8.1 Vi su al iza tion tech niques for curvilinear co or di nate data 149
	 8.2 Anal y sis tech niques for curvilinear co or di nate data 150

	9 POLYGONAL DATA 150
	 9.1 Vi su al iza tion tech niques for po lyg o nal data 150
	 9.2 Anal y sis tech niques for po lyg o nal data 150

	Chapter 9: COMPUTING ENVIRONMENT
	1 SETTING UP AN ACCOUNT 151
	2 FILES AND ENVIRONMENT VARIABLES USED BY FERRET 152
	3 MEMORY USE 153
	4 HARD COPY AND METAFILE TRANSLATION 154
	 4.1 Hard copy 154
	 4.2 Metafile trans la tion 156

	5 OUTPUT FILE NAMING 157
	6 INPUT FILE NAMING 158
	 6.1 Rel a tive ver sion num bers 158

	Chapter 10: CONVERTING TO NetCDF
	1 OVERVIEW 159
	2 SIMPLE CONVERSIONS USING FERRET 159
	3 WRITING A CONVERSION PROGRAM 161
	 3.1 Cre ating a CDL file with Fer ret 161
	 3.2 The CDL file 162
	 3.2.1 Di men sions 162
	 3.2.2 Vari ables 162
	 3.2.3 Data 164

	 3.3 Stan dard ized NetCDF at trib utes 165
	 3.4 Di recting data to a CDF file 166
	 3.5 Ad vanced NetCDF pro ce dures 168
	 3.5.1 Stag gered grid 169
	 3.5.2 Hyperslabs 169
	 3.5.3 Un evenly spaced co or di nates 170
	 3.5.4 Evenly spaced co or di nates (long axes) 170
	 3.5.5 ﬁModuloﬂ axes 171
	 3.5.6 Re versed-co or di nate axes 171
	 3.5.7 Con verting time word data to nu mer i cal data 171

	 3.6 Ex am ple CDL file 172

	4 CREATING A MULTI-FILE NETCDF DATA SET 178

	Chapter 11: EXTERNAL FUNCTIONS
	1 OVERVIEW 179
	2 GETTING STARTED 179
	 2.1 Getting ex am ple/de vel op ment code 180

	3 QUICK START EXAMPLE 180
	 3.1 The times2bad20 func tion 180

	4 ANATOMY OF AN EXTERNAL FUNCTION 182
	 4.1 The ~_ init sub rou tine (re quired) 182
	 4.2 The ~_com pute sub rou tine (re quired) 183
	 4.3 The ~_work_size sub rou tine (op tional) 184
	 4.4 The ~_re sult_lim its sub rou tine (op tional) 185
	 4.5 The ~_cus tom_axes sub rou tine (op tional) 185

	5 NOTES AND SUGGESTIONS 186
	 5.1 In heriting axes 186
	 5.2 Loop in di ces 187
	 5.3 Re duced axes 188
	 5.4 String Ar gu ments 189

	6 UTILITY FUNCTIONS 190
	 6.1 EF _ Util . cmn 190
	 6.2 Avail able util ity func tions 191

	Part II: COMMANDS REFERENCE
	1 ALIAS 203
	2 CANCEL 203
	 2.1 CANCEL ALIAS 203
	 2.2 CANCEL AXIS 203
	 2.3 CANCEL DATA_SET 204
	 2.4 CANCEL EXPRESSION 204
	 2.5 CANCEL LIST 204
	 2.6 CANCEL MEMORY 205
	 2.7 CANCEL MODE 206
	 2.8 CANCEL MOVIE 206
	 2.9 CANCEL SYMBOL 206
	 2.10 CANCEL REGION 207
	 2.11 CANCEL VARIABLE 207
	 2.12 CANCEL VIEWPORT 207
	 2.13 CANCEL WINDOW 208

	3 CONTOUR 208
	4 DEFINE 211
	 4.1 DEFINE ALIAS 211
	 4.2 DEFINE AXIS 211
	 4.3 DEFINE GRID 215
	 4.4 DEFINE REGION 217
	 4.5 DEFINE SYMBOL 218
	 4.6 DEFINE VARIABLE 218
	 4.7 DEFINE VIEWPORT 219

	5 ELIF 220
	6 ELSE 221
	7 ENDIF 221
	8 EXIT 221
	9 FILE 221
	10 FILL 222
	11 FRAME 222
	12 GO 222
	13 HELP 223
	14 IF 223
	15 LABEL 225
	16 LET 226
	17 LIST 226
	18 LOAD 231
	19 MESSAGE 232
	20 PALETTE 232
	21 PATTERN 233
	22 PAUSE 233
	23 PLOT 233
	24 POLYGON 236
	25 PPLUS 239
	26 QUIT 239
	27 REPEAT 240
	28 SAVE 240
	29 SET 241
	 29.1 SET AXIS 241
	 29.2 SET DATA_SET 242
	 29.3 SET EXPRESSION 247
	 29.4 SET GRID 248
	 29.5 SET LIST 248
	 29.6 SET MEMORY 250
	 29.7 SET MODE 251
	 29.7.1 SET MODE ASCII_FONT 252
	 29.7.2 SET MODE CALENDAR 252
	 29.7.3 SET MODE DEPTH_LABEL 253
	 29.7.4 SET MODE DESPERATE 253
	 29.7.5 SET MODE DIAGNOSTIC 254
	 29.7.6 SET MODE IGNORE_ERROR 255
	 29.7.7 SET MODE INTERPOLATE 255
	 29.7.8 SET MODE JOURNAL 255
	 29.7.9 SET MODE LATIT _LABEL 256
	 29.7.10 SET MODE LONG_LABEL 256
	 29.7.11 SET MODE METAFILE 257
	 29.7.12 SET MODE POLISH 257
	 29.7.13 SET MODE PPLLIST 258
	 29.7.14 SET MODE REFRESH 258
	 29.7.15 SET MODE SEGMENTS 258
	 29.7.16 SET MODE STUPID 258
	 29.7.17 SET MODE VERIFY 259
	 29.7.18 SET MODE WAIT 260

	 29.8 SET MOVIE 260
	 29.9 SET REGION 261
	 29.10 SET VARIABLE 262
	 29.11 SET VIEWPORT 263
	 29.12 SET WINDOW 263

	30 SHADE 265
	31 SHOW 268
	 31.1 SHOW ALIAS 268
	 31.2 SHOW AXIS 268
	 31.3 SHOW COMMANDS 269
	 31.4 SHOW DATA_SET 269
	 31.5 SHOW EXPRESSION 270
	 31.6 SHOW FUNCTION 271
	 31.7 SHOW GRID 271
	 31.8 SHOW LIST 272
	 31.9 SHOW MEMORY 272
	 31.10 SHOW MODE 273
	 31.11 SHOW MOVIE 274
	 31.12 SHOW QUERIES 274
	 31.13 SHOW REGION 274
	 31.14 SHOW SYMBOL 274
	 31.15 SHOW TRANSFORM 275
	 31.16 SHOW VARIABLES 275
	 31.17 SHOW VIEWPORT 276
	 31.18 SHOW WINDOWS 276

	32 SPAWN 276
	33 STATISTICS 276
	34 UNALIAS 277
	35 USE 277
	36 USER 278
	 36.1 Ob jec tive anal y sis 278
	 36.2 Scat tered sam pling 279

	37 VECTOR 279
	38 WHERE 282
	39 WIRE 282
	 GLOSSARY 285
	 In dex 289

	Index
	!
	* 138
	@ 55,82,93
	region specifier 93
	transformations 55

	@AVE
	regridding @AVE 84
	transformation @AVE 60

	@CDA transformation
	nearest neighbor above 68

	@CDB transformation
	nearest neighbor below 68

	@CIA transformation
	nearest index below 69

	@CIB transformation
	nearest index below 69

	@DDB transformation
	backward derivative 63

	@DDC transformation
	centered 63

	@DDF transformation
	forward derivative 63

	@DIN transformation
	definite integral 58

	@FAV transformation
	averaging filler 64

	@FLN transformation
	linear integration 65

	@FNR transformation
	nearest neighbor 65

	@IIN transformation
	indefinite 59

	@LOC transformation
	location of 65

	@MAX transformation
	maximum value 61

	@MIN transformation
	minimum value 61

	@NBD transformation
	number of bad points 64

	@NGD transformation
	number of good points 63

	@RSUM transformation
	running unweighted sum 64

	@SBN transformation
	binomial smoother 62

	@SBX transformation
	boxcar smoother 61

	@SHF transformation
	shift data 61

	@SHN transformation
	Hanning smoother 62

	@SPZ transformation
	Parzen 62

	@SUM transformation
	unweighted 64

	@SWL transformation
	Welch 63

	@VAR transformation
	weighted variance 60

	@WEQ transformation
	weighted equal 66

	3-D
	WIRE 282

	A
	abstract expression 285
	abstract variable 46
	account
	setting up an account 151

	action command 49
	algebraic expression 49
	ALIAS 203,211,221 - 222,240,268,277 - 278
	analyzing curvilinear coordinate data 150
	analyzing polygonal coordinates 150
	analyzing sigma coordinate data 149
	animations 97
	FRAME 222
	SET MOVIE 260
	viewing 98

	arguments (script) 18
	arrow
	text labels 113

	ASCII data
	accessing 34
	output 228
	reading 35
	ready 34
	SET DATA/EZ 245

	association 84
	attributes
	NetCDF attributes 162
	NetCDF global attributes 164

	autocorrelation 15
	average
	transformation @AVE 60

	averaging filler
	@FAV transformation 64

	axis 105,285
	/DEFINE 77
	/NOAXIS 106
	CANCEL 203
	DEFINE 212
	dynamic 81,285
	Ferret controls 105
	label 111
	limits 105
	modulo 94
	NetCDF axis definitions 163
	PPLUS commands 106
	reversed 171
	transformation 55

	AXIS
	SET modulo 241

	B
	backward derivative
	@DDB transformation 63

	bar charts 15
	batch 100
	big-endian 246
	binary
	record structure 31

	binary data
	output 228
	reading 35
	record structure 243
	SET DATA/EZ 245

	binomial smoother
	@SBN transformation 62

	bold 16
	boxcar smoother
	@SBX transformation 61

	C
	calendar 92,171,214,252
	CANCEL 203
	/ALL 204

	CANCEL ALIAS 203
	CANCEL AXIS 203
	CANCEL DATA
	/ALL 204

	CANCEL DATA_SET 204
	CANCEL EXPRESSION 204
	CANCEL LIST 204
	/ALL 204
	/APPEND 205
	/FILE 205
	/FORMAT 205
	/HEAD 205
	/PRECISION 205

	CANCEL MEMORY 205
	/ALL 205
	/PERMANENT 205
	/TEMPORARY 206

	CANCEL MODE 206
	CANCEL MOVIE 206
	/ALL 206

	CANCEL REGION 207
	/ALL 207
	/I/J/K/L 207
	/X/Y/Z/T 207

	CANCEL SYBMOL 206
	CANCEL VARIABLE 207
	/ALL 207

	CANCEL WINDOW 208
	/ALL 208

	CDA transformation
	nearest neighbor above 68

	CDB transformation
	nearest neighbor below 68

	CDL file 161 - 162
	advanced usage 168
	sample 172
	using 165

	child_axis
	NetCDF 169

	CIA transformation
	nearest index below 69

	climatological axes
	defining 213

	climatology 87,171
	COARDS 159,285
	COARDS NetCDF 29
	collections
	time series 148
	vertical profiles 144

	color 114
	contouring 124
	custom control 114,119
	Ferret controls 114,118
	GO tools 16
	hard copy 156
	in HDF movie 99
	lines 114,234
	palette 16,24,116,210,232,266
	pallette3 238
	pattern2 233
	PPLUS commands 115,119
	text 114

	color_thickness index 115,126,210
	command
	abbreviated syntax 13
	Commands Reference 203
	executing a Unix command 276
	SHOW 269
	syntax 12

	command line
	Unix 6

	command line (Unix) 276
	conformability 50,74
	context 285
	contour
	extrema 16

	CONTOUR 208
	/D 208
	/FILL 208
	/FRAME 209
	/I /J /K /L 208
	/KEY 209
	/LEVELS 209
	/LINE 209
	/NOAXIS 209
	/NOKEY 209
	/NOLABELS 209
	/OVERLAY 209
	/PALETTE 210
	/PATTERN= 210
	/PEN 210
	/SET_UP 210
	/TITLE 210
	/TRANSPOSE 210
	/X/Y/Z/T 208
	/XLIMITS 211
	/YLIMITS 211
	NOAXIS 209

	contouring 124,126
	CONTOUR 208

	converting units 215
	coordinates
	curvilinear 132,149
	interpolation 255
	SHOW GRID /W/Y/Z/T 272
	spacing, NetCDF 170
	underlying grid 77

	correlation
	autocorrelation 14
	in variance script 14

	COSINE (latitude) 56
	curl 63
	curvilinear coordinates 128,149
	scripts for 132

	D
	data
	ASCII 8
	CANCEL DATA_SET 204
	data set 27
	NetCDF 28
	SET DATA_SET 242
	SHOW SET 269
	STATISTICS 276
	TMAP-formatted 30

	data set 27,285
	examples 22
	EZ 285
	locating 23
	NetCDF 159
	save and restore 18

	dates
	in ASCII files 143

	DDB transformation
	backward derivative 63

	DDC transformation
	centered 63

	DDF transformation
	forward deriva 63

	debugging 21,76,254 - 255
	DEFINE 211
	DEFINE ALIAS 211
	DEFINE AXIS 211
	/DEPTH 212
	/EDGES 212
	/FILE 213
	/FROM_DATA 213
	/MODULO 214
	/NAME 214
	/NPOINTS 214
	/T0 214
	/UNITS 214
	/X/Y/Z/T 212

	DEFINE GRID 215
	/FILE 216
	/LIKE 216
	/X/Y/Z/T 215

	DEFINE REGION 217
	/DEFAULT 217
	/DI/DJ/DK/DL 217
	/DX/DY/DZ/DT 217
	/I/J/K/L 217
	/X/Y/Z/T 217

	DEFINE SYMBOL 218
	DEFINE VARIABLE 218
	/D 219
	/QUIET 219
	/TITLE 219
	/UNITS 219

	DEFINE VIEWPORT 219
	/CLIP 220
	/ORIGIN 220
	/SIZE 220
	/TEXT 220
	/XLIMITS 220
	/YLIMITS 220

	definite integral
	@DIN transformation 58

	delta 93
	depth 16,92,212,253
	DEFINE AXIS/DEPTH 212

	derivative 63
	transformations 55

	descriptor 285
	locating 152
	TMAP data set 31

	digits 72
	dimensions
	multi-dimensional expression 50
	NetCDF 162

	DIN transformation
	definite integral 58

	divergence 63
	DODS 39
	accessing remote data 40
	sharing data 41

	drifter data 148
	dynamic axis 285
	dynamic grid 285
	dynamic height 15

	E
	ECHO 103
	ELIF 220
	ELSE
	conditional execution 221
	masking 70

	embedded expression 71,136
	ENDIF 221
	environment
	computing environment 135,151
	environment variables 23,152
	setting up an account 151

	environment variable 152
	error
	insufficient memory 253

	errors
	generating messages 19,138

	Errors
	MODE IGNORE_ERROR 255

	EXIT 221
	/COMMAND_FILE 221
	QUIT 221

	expression 49,285
	algebraic 10
	CANCEL 204
	embedded 71
	MODE POLISH 257
	SET default context 247
	SHOW 270

	external
	anatomy of an External Function 182
	compute 183
	ef utility functions 191
	ef_bail_out 202
	ef_get_arg_info 196
	ef_get_arg_ss_extremes 199
	ef_get_arg_string 197
	ef_get_arg_subscripts 198
	ef_get_axis_dates 198
	ef_get_axis_info 197
	ef_get_bad_flags 199
	ef_get_box_limits 201
	ef_get_box_size 200
	ef_get_coordinates 199
	ef_get_desc 192
	ef_get_one_val 201
	ef_get_res_subscripts 196
	ef_set_arg_desc 193
	ef_set_arg_name 193
	ef_set_arg_type 194
	ef_set_arg_unit 193
	ef_set_axis_extend 194
	ef_set_axis_influence 194
	ef_set_axis_inheritance 192
	ef_set_axis_limits 195
	ef_set_axis_reduction 195
	ef_set_custom_axis 195
	ef_set_num_args 192
	ef_set_num_work_arrays 195
	ef_set_piecemeal_ok 193
	ef_set_work_array_dims 196
	EF_Util.cmn 190
	ef_version_test 201
	example: times2bad20 180
	External Functions Notes and Suggestions 186
	getting ef example code 180
	getting started with External Functions 179
	inheriting axes 186
	init subroutine 182
	Loop indices 187
	Quick Start example 180
	reduced axes 188
	result_limits 185
	string arguments 189
	utility functions 190
	work_size 184

	External Functions 179
	extremum 16,61,85

	F
	Faddpath 22
	Fapropos 22
	FAV transformation
	averaging fille 64

	Fdata 23
	Fdescr 23
	Fenv 23
	FER_DATA 152
	FER_DESCR 152
	FER_DIR 152
	FER_DSETS 152
	FER_GO 152
	FER_GRIDS 152
	FER_PALETTE 152
	Ferret Home Page 2
	ferret_paths 152
	Fgo 23
	Fgrids 23
	Fhelp 23
	FILE 221
	alias for SET DATA/EZ 245

	files
	byte-swapped 34
	DODS 39
	mixed types 34
	real*8 33
	stream 33
	supported stream types 33

	FILL 222
	CONTOUR/FILL 208

	filler (missing value) 64 - 65
	filtering
	transformations 55

	flag (missing value) 47
	FLN transformation
	linear interpol 65

	flow control (scripts) 20 - 21,220,223,255
	Fman 24
	FNR transformation
	nearest neighbo 65

	font 120
	Ferret controls 120
	PPLUS commands 120

	format
	/FORMAT qualifier 242,249
	data sets 242
	Ferret 31
	FORMAT qualifier 228
	HDF 97
	MODE ASCII_FONT 252
	MODE LATIT_LABEL 256
	MODE LONG_LABEL 256
	NetCDF 28
	numeric axis labels 106
	standardized data 27
	TMAP 30
	TMAP format 287

	formatting
	numerical output 72,229,249
	plots 105

	FORTRAN-formatted files 31
	forward derivative
	@DDF transformation 63

	Fpalette 24
	Fprint 154
	Fpurge 24
	Unix file naming 157

	FRAME 222
	/FILE=filename 222
	/FORMAT=format 222
	/FORMAT=GIF 222
	/FORMAT=HDF 222

	Fsort 24
	Unix 157
	Unix file naming 157

	Ftoc 24
	functinos
	SIN 52

	function 51
	RANDN 53
	RHO_UN 54

	functions
	ABS 52
	ACOS 53
	ASIN 52
	ATAN 53
	ATAN2 53
	COS 52
	DAYS1900 53
	EXP 52
	IGNORE0 53
	INT 52
	LN 52
	LOG 52
	MAX 52
	MIN 52
	MISSING 53
	MOD 53
	RANDU 53
	RESHAPE 54
	TAN 52
	THETA_FO 54
	TSEQUENCE 54
	XSEQUENCE 54
	YSEQUENCE 54
	ZAXREPLACE 54
	ZSEQUENCE 54

	G
	getting point data into Ferret 142
	GIF image 100
	GKS 286
	color map 114
	graphic metafile 154
	MODE METAFILE 257
	MODE SEGMENTS 258

	gksm2ps 156
	GLOSSARY 285
	GO 222
	/HELP 223
	files 13
	Unix file naming 158
	writing tools 17

	GO File 286
	graphics
	/SET_UP 104
	hard copy 154
	memory 153
	MODE METAFILE 257
	output controls 104
	viewport 121

	gregorian year 214
	grid 77,286
	/DEFINE 77
	conformable 50
	default 246
	DEFINE 215
	DEFINE AXIS 211
	dynamic 78,285
	grid box 286
	grid file 286
	regridding 82
	SET 248
	staggered 169

	gridded data from point data 143
	gridding (point data) 17,278
	gridfile
	searching 152
	UD and DU 212

	grids
	pseudo-variables 45

	GT
	locating files 152

	H
	Hanning smoother
	@SHN transformatio 62

	hard copy 154
	Fprint 154
	gksm2ps 156
	MODE 257
	monochrome devices 154

	HDF 97
	help
	HELP 223
	Unix on-line 24
	within Ferret 25

	histograms 15
	home page 2
	hyperslabs
	NetCDF 169

	I
	IF
	conditional execution 223
	masking 70

	IIN transformation
	indefinite integr 59

	image 97,100
	immediate mode 71,136
	indefinite integral
	@IIN transformation 59

	inheritance
	of axes 45

	initialization file 152
	insufficient memory 153
	integral 58 - 59
	transformations 55

	integration
	irregular limits 57

	interpolation 68
	isosurface 11,65 - 66
	@LOC 65
	@WEQ 66

	L
	label
	axis 111
	contour line 126
	Ferret controls 111
	LABEL 225
	MODE 252
	MODE ASCII_FONT 252
	MODE DEPTH_LABEL 253
	MODE LATIT_LABEL 256
	MODE LONG_LABEL 256
	movable labels 108
	plot 108
	positioning with mouse 112
	PPLUS commands 108,112
	with pointing arrow 113

	Label
	MODE CALENDAR 252

	LABEL /NOUSER 226
	land mass
	graphical 15

	latitude 91
	layout 16,105,121,124,137,156
	least squares 15
	LET 226
	levels (contour) 125
	line
	/LINE qualifier 114,124,209,234,266
	/LINE qualifier3 237
	hard copy 156
	line styles 15,114,234

	linear interpolation filler
	@FLN transformation 65

	LIST 226
	/APPEND 227
	/D 227
	/FILE 228
	/FORMAT 228
	/HEAD 229
	/I /J /K /L 227
	/NOHEAD 229
	/ORDER 229
	/PRECISION=# 230
	/QUIET 230
	/RIGID 230
	/SINGLY 230
	/TITLE="title string" 230
	/X /Y /Z /T 227
	/HEADING 229

	lists of constants 70
	little-endian 246
	LOAD 231
	/D 231
	/I/J/K/L 231
	/NAME 231
	/PERMANENT 231
	/TEMPORARY 231
	/X/Y/Z/T 231

	LOC transformation
	location of 65

	location transformation
	@LOC 65

	logo 16
	long_name
	NetCDF variable attributes 162

	longitude 91
	loop 98

	M
	maps
	ETOPO data sets 22
	map projections 14,128
	overlays using GO tools 14

	masking 70
	matrix notation 35
	MAX transformation
	maximum value 61

	maximum 61,85
	maximum value
	@MAX transformation 61

	MC data sets 29,178
	memory
	CANCEL 205
	insufficient memory 153
	large calculations 253
	loading expressions into 231
	management 153,250,253
	MODE SEGMENTS 258
	NetCDF 171

	MESSAGE 232
	/CONTINUE 232
	/QUIET 232
	alias PAUSE 233

	metafile 286
	hard copy 154
	MODE METAFILE 257
	naming 157,257
	translation 154

	MIN transformation
	minimum value 61

	minimum 85
	minimum value
	@MIN transformation 61

	missing value flag 47,73,262
	mode
	SHOW MODE 273

	MODE
	SET MODE 251

	MODE ASCII_FONT 252
	MODE CALENDAR 252
	MODE DEPTH_LABEL 253
	MODE DESPERATE 253
	MODE DIAGNOSTIC 254
	MODE IGNORE_ERROR 255
	MODE INTERPOLATE 255
	MODE JOURNAL 255
	MODE LATIT_LABEL 256
	MODE LONG_LABEL 256
	MODE METAFILE 257
	MODE POLISH 257
	MODE PPLLIST 258
	MODE REFRESH 258
	MODE SEGMENTS 258
	MODE STUPID 258
	MODE VERIFY 259
	MODE WAIT 260
	modes 18
	modulo 94
	axis 94,171,214,286
	NetCDF 171
	regridding 87,286

	modulo axis 286
	modulo regridding 286
	monthly averages 213
	mouse
	click to position labels 112
	WHERE command to define position 282

	movies 97
	animations 97

	MPEG 101
	multiple axis plots 16

	N
	naming
	Unix file naming 157
	variables 218

	NBD transformation
	number of bad point 64

	ncdump 161
	ncgen 161,165
	nearest neighbor filler
	@FNR transformation 65

	netCDF
	disordered coordinates 29
	illegal variable names 30
	permuted axis ordering 30
	reverse-ordered coordinates 30

	NetCDF 28,48,159,228,240,277,285,287
	accessing data with USE 277
	axis attributes 162
	axis definition 163
	CDL data initialization 164
	CDL files 162
	child_axis 169
	converting to 159
	dimensions 162
	global attributes 164
	grid_definition 169
	hyperslabs 169
	locating 152
	long_name 162
	modulo axes 171
	multi-file data sets 29,178
	parent grid 169
	slab_max_index 170
	slab_min_index 170
	special axis interpretations 163
	staggered grids 169
	utilities 161
	variable attributes 162
	variables 162

	NGD transformation
	number of good poin 63

	non-gridded data 141
	collections 148
	curvilinear 149
	point data 141
	polygonal 150
	sigma coordinate 149
	time series 148
	vertical profiles 144

	notation
	@ notation 93

	number of bad points
	@NBD transformation 64

	number of good points
	@NGD transformation 63

	O
	objective analysis 278
	on-line help 22 - 24
	operator 50,287
	overlay
	/OVERLAY qualifier 209,235,266,281,283
	/OVERLAY qualifier3 237

	P
	palette
	creation 116
	locating files 24,152
	PALETTE command 232
	restoring default 119
	testing 16

	parent grid
	NetCDF 169

	Parzen smoother
	@SPZ transformation 62

	pattern 210
	PATTERN command 233

	PATTERN 233
	pattern3 267
	pause
	MESSAGE 232

	PAUSE 233
	PEN
	PPLUS commands 115

	PLOT 233
	/D 234
	/FRAME 234
	/I/J/K/L 234
	/LINE 234
	/NOLABELS 235
	/OVERLAY 235
	/SET_UP 235
	/SYMBOL 235
	/TITLE 235
	/TRANSPOSE 235
	/VS 235
	/X/Y/Z/T 234
	/XLIMITS 236
	/YLIMITS 236

	point data -- how it is structured 142
	polygon 236
	POLYGON 236
	/D 237
	/FRAME 237
	/KEY 237
	/LEVELS 237
	/NOKEY 237
	/NOLABELS 237
	/OVERLAY 237
	/PALETTE 238
	/PATTERN 238
	/SET_UP 238
	/TITLE 238
	/TRANSPOSE 238
	/YLIMITS 239
	XLIMITS 238

	PPLUS 103,239
	/RESET 239
	MODE ASCII_FONT 252

	precision 72
	print 154
	printing
	hard copy 154

	profile collection structure 145
	profile data into Ferret 146
	projection 128
	curvilinear coordinates 129
	map projections 130
	mp_mask 130
	overlays 131
	polar stereographic 16
	scripts 16
	sigma coordinates 129
	standard parallel 130
	using scripts 130
	y_page 130

	pseudo-variable 44,287

	Q
	qualifier 287
	QUIET 230
	QUIT
	alias for EXIT 239

	R
	RANDU function 53
	reading data files
	NetCDF 28

	reading scattered data 36
	record structure
	file 31

	region 90,287
	CANCEL 207
	DEFINE 217
	named 93
	pre-defined 94
	save and restore 18
	SET 261
	SHOW 274

	region (irregular) 57
	regressions 15
	regrid 287
	regridding 3,82,287
	transformations 84

	relative version
	GO 222
	numbers 158
	Unix file naming 158

	REPEAT 240
	/I/J/K/L 240
	/X/Y/Z/T 240

	reserved names 218
	RGB mapping
	by level 118
	by value 117
	percent 117

	RSUM transformation
	running unweighted s 64

	running unweighted sum
	@RSUM transformation 64

	S
	sampling 17,279
	scattered sampling 279

	SAVE
	alias for LIST/FORM=CDF 240

	SBN transformation
	binomial 62

	SBX transformation
	boxcar 61

	scatter plots 236
	scattered sampling 279
	scripts 13,17
	seasonal averages 213
	segments
	MODE SEGMENTS 258

	SET 241
	SET AXIS 241
	/DEPTH 242

	SET DATA
	/EZ 245
	/EZ/COLUMNS 245
	/EZ/GRID 246
	/EZ/ORDER 246
	/EZ/SKIP 246
	/EZ/SWAP 246
	/EZ/TITLE 246
	/EZ/TYPE 247
	/EZ/VARIABLES 247
	/FORMAT 242
	/RESTORE 244
	/SAVE 244

	SET DATA_SET 242
	SET EXPRESSION 247
	SET GRID 248
	/RESTORE 248
	/SAVE 248

	SET LIST 248
	/APPEND 249
	/FILE 249
	/FORMAT 249
	/HEAD 250
	/PRECISION 250

	SET MEMORY 250
	SET MODE 251
	/LAST 252
	ASCII_FONT 251
	CALENDAR 251
	DEPTH_LABEL 251
	DESPERATE 251
	DIAGNOSTIC 251
	GUI 251
	IGNORE_ERROR 251
	INTERPOLATE 251
	JOURNAL 251
	LATIT_LABEL 251
	LONG_LABEL 251
	METAFILE 251
	POLISH 252
	PPLLIST 252
	REFRESH 252
	SEGMENT 252
	STUPID 252
	VERIFY 252
	WAIT 252

	SET MOVIE 260
	/COMPRESS 260
	/FILE 260
	/LASER 260
	/START 261

	SET REGION 261
	/DI/DJ/DK/DL 261
	/DX/DY/DZ/DY 261
	/I/J/K/L 261
	/X/Y/Z/T 261

	SET VARIABLE 262
	/BAD 262
	/GRID 262
	/TITLE 262
	/UNITS 262

	SET VIEWPORT 263
	SET WINDOW 263
	/ASPECT 264
	/CLEAR 264
	/LOCATION 264
	/NEW 265
	/SIZE 265

	setup
	/SET_UP 103
	setting up an account 151

	SHADE 265
	/D 265
	/FRAME 265
	/I/J/K/L 265
	/KEY 266
	/LEVELS 266
	/NOAXIS 266
	/NOKEY 266
	/NOLABELS 266
	/OVERLAY 266
	/PALETTE 266
	/TITLE 267
	/TRANSPOSE 267
	/X/Y/Z/T 265
	/XLIMITS 267
	/YLIMITS 267

	shape (of variable) 74
	SHF transformation
	shift data 61

	shift transformation
	@SHF 61

	SHN transformation
	Hanning smoother 62

	SHOW 268
	/ALL 268

	SHOW ALIAS 268
	SHOW AXIS 268
	/ALL 269
	/I/J/K/L/X/Y/Z/T 269

	SHOW COMMANDS 269
	SHOW DATA
	/BRIEF 270
	/FILES 270
	/FULL 270
	/VARIABLES 270

	SHOW DATA_SET 269
	SHOW EXPRESSION 270
	SHOW FUNCTION 271
	SHOW GRID 271
	/ALL 272
	/I/J/K/L 272
	/X/Y/Z/T 272

	SHOW LIST 272
	/ALL 272

	SHOW MEMORY 272
	/ALL 273
	/FREE 273
	/PERMANENT 273
	/TEMPORARY 273

	SHOW MODE 273
	/ALL 273

	SHOW MOVIE 274
	/ALL 274

	SHOW QUERIES 274
	SHOW REGION 274
	SHOW SYMBOL 274
	SHOW TRANSFORM 275
	/ALL 275

	SHOW VARIABLES 275
	/ALL 275
	/DIAGNOSTIC 275
	/USER 275

	SHOW VIEWPORT 276
	/ALL 276

	SHOW WINDOWS 276
	/ALL 276

	slab_max_index
	NetCDF 170

	slab_min_index
	NetCDF 170

	smoothing
	contour lines 126
	transformations 55,57

	SPAWN 276
	special axis interpretations
	NetCDF 163

	special data 141
	SPZ transformation
	Parzen 62

	staggered grids
	NetCDF 169

	standard deviation 60
	state (Ferret state) 18,248,251
	STATISTICS 276
	/D 277
	/I/J/K/L 277
	/X/Y/Z/T 277
	BRIEF 277

	string 135,137
	strings
	function arguments 51

	subroutines (scripts) 20
	subsampling to points 143
	subsampling to profiles 147
	subscript 287
	SUM transformation
	unweighted sum 64

	SWL transformation
	Welch 63

	symbol 206,218,274
	plot point symbols 15,235
	text 135
	text string as 137

	syntax 12
	command 287
	filenames 158
	region 90
	regridding 82
	transformation 55
	variable 43,55

	T
	Tektronix
	MODE WAIT 260

	text 135,137
	color 114
	font 120,252

	THETA_FO functions 54
	three-dimensional plot
	WIRE 282

	time 92,171
	time axis
	MODE CALENDAR 252

	title
	/TITLE qualifier 235,267,281,283
	data set 246
	defining variable title 219
	plot 108
	TITLE qualifier 210

	TMAP-formatted file 30,287
	tools
	Unix tools 22

	transformation 55,287
	@AVE average 60
	@CDA closest distance above 68
	@CDB closest distance below 68
	@CIA closest index above 69
	@CIB closest index below 69
	@DDB backward derivative 63
	@DDC centered derivative 63
	@DDF forward derivative 63
	@DIN definite integral 58
	@FAV averaging filler 64
	@FLN linear interpolation filler 65
	@FNR nearest neighbor filler 65
	@IIN indefinite integral 59
	@LOC location of 65
	@MAX maximum value 61
	@MIN minimum value 61
	@NBD number of bad points 64
	@NGD number of good points 63
	@RSUM running unweighted sum 64
	@SBN binomial smoother 62
	@SBX boxcar smoother 61
	@SHF shift data 61
	@SHN Hanning smoother 62
	@SPZ Parzen smoother 62
	@SUM unweighted sum 64
	@SWL Welch smoother 63
	@VAR weighted variance 60
	@WEQ weighted equal 66
	axis 55
	examples 56
	general information 56
	regridding 84
	SHOW 56

	TS
	locating files 152

	U
	unformatted files 31
	units 214,262
	axis 214
	in transformations 56

	Unix
	command line 6
	environment variables 23
	setting up an account 151
	Unix tools 22

	unmapped windows 6
	unweighted sum
	@SUM transformation 64
	transformation @RSUM 64
	transformation @SUM 64

	USE 277
	SET DATA/FORMAT=CDF 243

	USER 278
	utilities
	NetCDF utilities 161
	Unix tools 22

	V
	VAR transformation
	weighted variance 60

	variable 285
	abstract 9,46,285
	conformable 50
	default 75
	DEFINE 218
	file 44,286
	global 75
	local 75
	NetCDF 162
	pseudo 44,287
	reserved names 218
	SET 262
	SET DATA_SET 242
	SHOW 275
	syntax 43
	user 46
	user-defined 48,75,207,218

	variable names
	in files 44

	variance
	GO tool 14
	regridding transform 84
	transformation @VAR 60

	VECTOR 279
	/ASPECTS 280
	/D 280
	/FRAME 280
	/I/J/K/L 280
	/LENGTH 280
	/NOAXIS 281
	/NOLABELS 281
	/OVERLAY 281
	/PEN 281
	/SET_UP 281
	/TITLE 281
	/TRANSPOSE 281
	/X/Y/Z/T 280
	/XLIMITS 281
	/XSKIP 282
	/YLIMITS 282
	/YSKIP 282

	vectors
	special 15

	versions
	GO 222
	purging 24
	relative version numbers 158
	Unix file naming 157

	vertical profile
	example of reading file 38

	vertical sections, defining from profiles 147
	viewport 121,219
	advanced usage 123
	CANCEL 207
	pre-defined 122
	SET 263
	SHOW 276

	visualizing curvilinear coordinate data 149
	visualizing Lagrangian data 148
	visualizing point data 144
	visualizing polygonal coordinate data 150
	visualizing profile data 147
	visualizing sigma coordinate data 149

	W
	wait
	MESSAGE 232

	weighted equal
	@WEQ transformation 66

	weighted variance
	@VAR 60

	Welch smoother
	@SWL transformation 63

	WEQ transformation
	weighted equal 66

	WHERE 282
	command 282

	window 288
	CANCEL 208
	SET 263
	SHOW 276

	windowing
	transformations 55

	windows
	size and shape 263

	WIRE 282
	/D 283
	/FRAME 283
	/I/J/K/L 283
	/NOLABEL 283
	/OVERLAY 283
	/SET_UP 283
	/TITLE 283
	/TRANSPOSE 283
	/VIEWPOINT 283
	/X/Y/Z/T 283
	/ZLIMITS 284
	/ZSCALE 284
	example 283

	wire frame 282
	world coordinate 288
	World Wide Web 100

	X
	X windows
	size and shape 263

	X Data Slice 98
	X windows
	backing store 258
	setting up an account 151
	unmapped 6

	X-Y plot
	PLOT 233

