Diag C.

LATIIUNE

EOSSBY RATME

TOGA — TAO 55T

4] || |
an 1]
1 M -
Llw*é‘—_-s ¥
2 AT AR i =
I , g
a0 i r
A ||||||||||||||||||||||||||||||||'||I||||I||||
4 2 g pr ¥ & E B M 31 g P ¥ ¢ E I H 2 B D WM 2 E D o 2 E
1286 1887 1988 1888 1880 1881 1283
: ™
5

- e
LELE T -
s o -_ﬁ‘-__—..__

LR ! \t_ =
2 P
u— Hegapiumes & Vi L
5 -

E 1R 3 __J’ r

| -
e L ll
T 1T 1T T T T 71 T 17T 1T 171
T T I TR T TR ET R R TS

—{B+1/2)%D_*eB,/D"

e
oo

a
|:| Iy

EHES

[y Sy
==

= I S

S PP D R e

a

FERRET

USER'S GUIDE

Version 5.0

NOAA/PMEL/TMAP

Steve Hankin
Ansley Manke
Kevin O'Brien
November 1999

About the Cover

The cover of this User’s Guide was produced by Ferret. From the top down the plots are:
“TOGA-TAO SST,” time series from the Tropical Pacific TAO array; “Levitus Climatological
SST,” an equal area projection of level one of the annual Climatological Atlas of the World Oceans
by Sydney Levitusof NOAA/NODC; * Perturbation Solution,” avisualization of abstract functions

by Dr. Ping Chang; “Vents Megaplume Thermal Structure,” vertical temperature profiles of under-
sea thermal vents from the NOAA Vents program.

A~ w

~

w

Contents

CHAPTER 1: INTRODUCTION

OVERVIEW e 1
1.1 Ferret User’'sGroup o i i e 2
1.2 Ferret HomePage 2
GETTING STARTED e e e 2
2.1 CONCEPLS o o 2
211 ThinkinglikeaFerret:. 4
2.2 Unix command line switches L. 6
2.3 Sample sesSiONS 7
231 AccessingaNetCDFdataset 7
2.3.2 Readingan ASClldatafile 8
233 Usingviewports 8
2.34 Usingabstractvariables 9
2.3.5 Usingtransformations 9
2.3.6 Usingalgebraic expressions 10
2.3.7 Finding the 20-degree isotherm. 11
COMMON COMMANDS e e e s e 12
COMMAND SYNTAX . . . e e s 12
GOFILES 13
5.1 Demonstrationfiles 13
5.2 GOtoOIs . . . o 14
5.3 Writing GO tools. 17
53.1 DocumentingGOtools 18
5.3.2 Preserving the Ferretstate inGOtools 18
533 SilentGOtools 18
534 Argumentsto GOtools 18
535 FlowControlinGOtools 20
53.6 DebuggingGOtools. 21
SAMPLE DATASETS o e 22
UNIXTOOLS. e e e 22
HELP . . . 24
8.1 Unixon-linehelp 24
8.2 Examples and demonstrations 25
8.3 Help fromwithin Ferret 25

CHAPTER 2: DATA SET BASICS

OVERVIEW. e 27
NETCDF DATA . . . o e e e 28
2.1 Multi-file NetCDF datasets 29
2.2 Non-standard NetCDF datasets 29
TMAP-FORMATTED DATA e 30
BINARY DATA. . 31
4.1 FORTRAN-structured binary files 31

411 Recordsofuniformlength 31

412 Records of non-uniformlength 32
4.2 Stream binaryfiles. 33

CONTENTS V

VI

421 Simplestreamfiles. 33

422 Mixedstreamfiles 34
ASCIIDATA . . e 34
5.1 Reading ASCllfiles 35
TRICKS TO READING BINARY AND ASCIIFILES 38
ACCESS TO REMOTE DATASETSWITHDODS 39

CHAPTER 3: VARIABLES AND EXPRESSIONS

Variables 43
11 Variablesyntax 43
1.2 Filevariables 44
1.3 Pseudo-variables. 44
1.3.1 Gridsand axes of pseudo-variables 45
1.4 User-defined variables 46
15 Abstractvariables 46
1.6 Missing valueflags. 47
1.6.1 Missing valuesininputfiles. 47
1.6.2 Missing values in user-defined variables 48
1.6.3 Missing values in output NetCDF files. 48
1.6.4 Displaying the missingvalueflag 49
EXPRESSIONS 49
2.1 Operators e 50
2.2 Multi-dimensional expressions. oo 50
2.3 Functions 51
24 Transformations 55
2.4.1 General information about transformations 56
2.4.2 Transformations applied to irregularregions 57
2.43 General information about smoothing transformations 57
244 @DIN—definiteintegral o L. 58
245 @IIN—indefiniteintegral 59
246 @AVE—average 60
247 VAR—weightedvariance 60
248 MIN—minimum 61
249 Q@MAX—maximum. 61
2410 @SHFn—shift 61
2411 @SBX:n—boxcar smoother, 61
2.4.12 @SBN:n—binomial smoother 62
2413 @SHN:n—Hanning smoother 62
2414 @SPZ.n—Parzensmoother 62
2415 @SWL:n—Welch smoother 63
2416 @DDC—centered derivative, 63
2417 @DDF—forward derivative. 63
2.4.18 @DDB—backward derivative 63
2419 @NGD—numberofgoodpoints 63
2420 @NBD—number ofbadpoints 64
2421 @SUM—unweightedsum 64
2422 @RSUM—running unweighted sum 64
2.4.23 @FAV:n—averagingfiller 64
2.4.24 @FLN:n—linear interpolation filler 65
2.4.25 @FNR:n—nearest neighborfiller 65
2426 @LOC—locationof 65
2427 @WEQ—weighted equal; integration kernel 66

CONTENTS

B wWDN -

2428 @ITP—interpolate, 68

2429 @CDA—closestdistanceabove. 68
2.430 @CDB—closestdistancebelow 68
2431 @CIA—=closestindexabove, 69
2432 @CIB—<closestindexbelow 69
2.5 IF-THEN logic (“masking™) 70
2.6 Lists of constants ("constant arrays™) oL 70
EMBEDDED EXPRESSIONS e 71
3.1 Special calculations using embedded expressions 72
DEFINING NEW VARIABLES. e e e 75
4.1 Global, local, and default variable definitions 75
DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS. 76

CHAPTER 4: GRIDS AND REGIONS

OVERVIEW. e 77
GRIDS. . . 77
2.1 Defining grids 78
2.2 Dynamicgridsand axes 78

221 Dynamicgrids 79

222 DynamicaxeS. 81

2.2.3 Dynamic pseudo-variables o 0 0L 81
2.3 Regridding e 82

2.3.1 Regridding transformations oL 84
2.4 Moduloregridding 87

241 Modulo regridding statistics oL 89
REGIONS. . . . e 90
31 Latitude 91
3.2 Longitude 91
3.3 Depth 92
34 TIMeE . . 92
3.5 Delta 93
3.6 Moduloaxes 94
3.7 Region Conflicts 95

CHAPTER 5: ANIMATIONS AND GIF IMAGES

OVERVIEW. e 97
CREATINGANHDFMOVIE e 97
DISPLAYING AN HDFMOVIE e 98
ADVANCED MOVIE-MAKING e 98
4.1 REPEAT command 98

411 Initializing thecolortable 99

4.1.2 Making moviesinbatchmode 100
CREATING GIFIMAGES e 100
CREATING MPEG ANIMATIONS. e 101

CHAPTER 6: CUSTOMIZING PLOTS

OVERVIEW 103

CONTENTS VII

2 GRAPHICAL OQUTPUT e e 104

2.1 Ferret graphical outputcontrols. 104

2.2 PPLUS graphical outputcommands 105

3 AXES. . 105
3.1 Ferretaxiscontrols 105

3.2 PPLUS axiscommands i 106

4 LABELS e e 108
4.1 Listing labels 108

4.2 Addinglabels 109

4.3 Removing movablelabelso 110

4.4 Axislabelsandtitle. 111

4.5 Ferretlabelcontrols 111

4.6 PPLUS labelcommands 112

4.7 Positioning labels using the mouse pointer 112

4.8 Labeling details with arrowsandtext 113

5 COLOR . . 114
5.1 Textand linecolors 114

5.1.1 Ferretcolorcontrolsforlines 114

512 PPLUStext and line colorcommands 115

5.2 Shadeandfillcolors 116

5.2.1 Ferretshade and fill colorcontrols 118

522 PPLUSshadecolorcommands 119

6 FONTS. . . 120
6.1 Ferretfontcontrols 120

6.2 PPLUS fontcommands, 120

7 PLOT LAYOUT e e e e e 121
7.1 Ferretlayoutcontrols 121

711 Viewports 121

7.1.2 Pre-defined viewports 122

7.1.3 Advanced usage of viewports. L 123

7.2 PPLUS layoutcommands 123

7.3 Controlling the white space around plots 124

8 CONTOURING. e 124
8.1 Ferretcontourcontrols. 124

8.1.1 /LEVELSqualifier 125

8.2 PPLUS contourcommands 126

9 Map Projections and Curvilinear Coordinates 128

9.1 Three-argument (curvilinear) version of SHADE, FILL, CONTOUR, and
VECTOR 128

9.2 Gridded data sets on curvilinear coordinates 129
9.3 Layered (sigma) coordinates. 129
9.4 Map Projections. 130
9.4.1 Using Map Projectionscripts 130
9.4.2 Overlays with Map Projections 131
9.4.3 Map Projectionscripts 132

CHAPTER 7: HANDLING STRING DATA: “SYMBOLS”

1 AUTOMATICALLY GENERATED SYMBOLS 135
2 USE WITH EMBEDDED EXPRESSIONS 136
3 ORDER OF STRING SUBSTITUTIONS 136
4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS 137
5 USING SYMBOLS INCOMMANDFILES 137

VIII CONTENTS

oo N o

[EEN

[l

B0

(63}

[EEN

PLOT+ STRING EDITING TOOLS. e 137
SYMBOLEDITING. 137
SPECIALSYMBOLS 139

WHAT IS NON-GRIDDED DATA? e e e 141
POINT DATA . . . e e e e 141
2.1 Getting pointdataintoFerret 142
2.2 How point datais structuredinFerret. 142

221 Workingwithdates. 143
2.3 Subsampling gridded fields onto point data locations and times. 143
2.4 Defining gridded variables from pointdata. 143
2.5 Visualization techniques for pointdata 144
VERTICALPROFILES e 144
3.1 How collections of profiles are structured in Ferret. 145
3.2 Getting profile dataintoFerret 146
3.3 Defining vertical sections from profiles 147
3.4 Visualization and analysis techniques for profile sections. 147
3.5 Subsampling gridded fields onto profile coordinates and times 147
COLLECTIONSOFTIMESERIES e 148
COLLECTIONS OF 2-DIMENSIONALGRIDS oo 148
LAGRANGIAN DATA. . . e 148
6.1 Visualization techniques for Lagrangiandata. 148
SIGMA COORDINATE DATA e e 149
7.1 Visualization techniques for sigma coordinatedata 149
7.2 Analysis techniques for sigma coordinatedata 149
CURVILINEAR COORDINATE DATA e 149
8.1 Visualization techniques for curvilinear coordinatedata. 149
8.2 Analysis techniques for curvilinear coordinatedata 150
POLYGONAL DATA. . . . e 150
9.1 Visualization techniques for polygonal data. 150
9.2 Analysis techniques for polygonaldata 150

CHAPTER 9: COMPUTING ENVIRONMENT

SETTING UP AN ACCOUNT e e s e e e e 151
FILES AND ENVIRONMENT VARIABLES USED BY FERRET 152
MEMORY USE e e 153
HARD COPY AND METAFILE TRANSLATION 154
4.1 Hardcopy 154
4.2 Metafile translation 156
OUTPUT FILE NAMING e s e 157
INPUT FILE NAMING e e e 158
6.1 Relative versionnumbers 158

CHAPTER 10: CONVERTING TO NETCDF

OVERVIEW . . . 159
SIMPLE CONVERSIONS USING FERRET 159

CONTENTS

IX

3 WRITING ACONVERSIONPROGRAM 161

3.1 Creatinga CDL filewith Ferret 161
3.2 The CDLfile 162
321 DIMENSiONS e 162

3.22 MVariables 162

323 Data 164

3.3 Standardized NetCDF attributes 165
3.4 Directingdatatoa CDFfile 166
3.5 Advanced NetCDF procedures i 168
351 Staggered grid 169

352 Hyperslabs 169

3.5.3 Unevenly spaced coordinates 170

3.5.4 Evenly spaced coordinates (longaxes) 170

355 “Modulo”axes 171

3.5.6 Reversed-coordinateaxes 171

3.5.7 Converting time word data to numericaldata 171

3.6 Example CDLfile. 172
4 CREATING A MULTI-FILE NETCDF DATASET o i e 178

CHAPTER 11: EXTERNAL FUNCTIONS

1 OVERVIEW . . . e 179
2 GETTING STARTED e e e e 179
2.1 Getting example/developmentcode. oL 180
3 QUICK START EXAMPLE e e 180
3.1 Theti mes2bad20 function. 180
4 ANATOMY OF AN EXTERNALFUNCTION, 182
4.1 The ~_i ni t subroutine (required) 182
4.2 The ~_conput e subroutine (required) 183
4.3 The ~_wor K_Si ze subroutine (optional) 184
4.4 The~_result _|imts subroutine (optional) 185
45 The ~_cust om_axes subroutine (optional) 185
5 NOTES AND SUGGESTIONS e e e e e 186
51 Inheritingaxes. 186
5.2 LoopindiCes. o v v vt 187
53 Reduced axes 188
5.4 String Arguments. 189
6 UTILITY FUNCTIONS. s e e 190
6.1 EF Utilemn e 190
6.2 Available utility functions 191
PART II: COMMANDS REFERENCE
1 ALIAS . o e e 203
2 CANCEL . . . e 203
2.1 CANCELALIAS . . . 203
2.2 CANCELAXIS . . . e 203
2.3 CANCELDATA _SET. e e s e e 204
24 CANCELEXPRESSION 204
25 CANCELLIST. 204
2.6 CANCEL MEMORY e 205

X CONTENTS

oo ~N o o1

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

2.7 CANCELMODE 206

28 CANCELMOVIE . . o oo, 206
29 CANCELSYMBOL . . . oot oot e 206
210 CANCELREGIONo\ oi e 207
241 CANCELVARIABLE. . . o\ oot 207
212 CANCELVIEWPORT . . o\ oot 207
213 CANCELWINDOW . .« o\ oo 208
CONTOUR .« o oo e e e 208
DEFINE © o o v oo e e e e e e e 211
41 DEFINEALIAS . o o oo 211
42 DEFINEAXIS . o oot 211
43 DEFINEGRID. . . o o oo 215
44 DEFINEREGION. . o o\, 217
45 DEFINESYMBOL . . oo\ ooo et 218
46 DEFINEVARIABLE oo 218
47 DEFINEVIEWPORT . .« oo oot 219
ELIF © oo o e e 220
ELSE . o oo e e 221
ENDIF . o oot e e 221
EXIT © oo o e e 221
FILE © oo e e e e e e 221
FILL © oo e e e e e e 222
FRAME © o o oo e 222
GO o e 222
HELP. © o oo o 223
=3 R 223
LABEL . © o ottt e e e 225
LET. o o e e 226
LIST © v e e e e e e 226
LOAD . . o o oo e e 231
MESSAGE . . o o o oo e e 232
PALETTE & o o v oo et e e e 232
PATTERN © o o oo e e e e 233
PAUSE . . o o o e e e 233
PLOT. o o e e e e 233
POLYGON . o v oo e e e e 236
PPLUS . o o o v e e e e 239
QUIT . o o e 239
REPEAT .« o o e e e e e e e 240
SAVE . o oo 240
SET . o o e 241
291 SETAXIS o oot 241
292 SETDATA SET . . o oo oo 242
293 SETEXPRESSION . . o oot oot 247
294 SETGRID . .o oo e et 248
295 SETLIST . « o ot e e e e 248
296 SETMEMORY. . . o oottt 250
297 SETMODE . . .\ o oo 251

2971 SETMODEASCIL_FONT . . . oo 252

29.7.2 SETMODE CALENDAR . . . o oo 252

2973 SETMODEDEPTH LABEL. . . o o oo 253

2974 SETMODEDESPERATE . . . vt ii i 253

2975 SETMODEDIAGNOSTIC . . o oo 254

29.7.6 SETMODE IGNORE_ERROR oo oo 255

29.7.7 SETMODE INTERPOLATE . .« o o oo 255

CONTENTS XI

X1l

29.78 SETMODEJOURNAL 255

29.79 SETMODELATIT LABEL 256

29.7.10 SETMODELONG_LABEL 256

29.7.11 SETMODE METAFILE 257

29.7.12 SETMODEPOLISH 257

29.7.13 SETMODEPPLLIST e 258

29.7.14 SETMODEREFRESH 258

29.7.15 SETMODESEGMENTS i 258

290.7.16 SETMODESTUPID i 258

29.7.17 SETMODE VERIFY 259

29.7.18 SETMODEWAIT e e 260

298 SETMOVIE 260

29.9 SETREGION 261

29.10 SETVARIABLE 262

29.11 SETVIEWPORT e s 263

29.12 SETWINDOW e 263

30 SHADE 265
31 SHOW . . . e 268
31.1 SHOWALIAS . . . 268

312 SHOWAXIS. . . . 268

31.3 SHOW COMMANDS e 269

314 SHOWDATA SET e e e e 269

315 SHOWEXPRESSION e 270

316 SHOWRFUNCTION. e 271

31.7 SHOWGRID e 271

31.8 SHOWLIST 272

319 SHOWMEMORY. 272

3110 SHOW MODE 273

3111 SHOWMOVIE e 274

3112 SHOWQUERIES e 274

31.13 SHOWREGION e 274

31.14 SHOWSYMBOL e 274

31.15 SHOW TRANSFORM s 275

31.16 SHOW VARIABLES 275

3117 SHOW VIEWPORT e s e 276

31.18 SHOWWINDOWS e e 276

32 SPAWN . . o 276
33 STATISTICS e s 276
34 UNALIAS . e 277
35 USE. . . . e 277
36 USER. . . . 278
36.1 Objectiveanalysis e 278

36.2 Scattered sampling 279

37 VECTOR. . . . 279
38 WHERE 282
39 WIRE. . . . 282
GLOSSARY. . . . e 285

Index 289

CONTENTS

Chapter 1: INTRODUCTION

1 OVERVIEW

Ferret is an interactive computer visualization and analysis environment designed to meet the
needs of oceanographers and meteorologists analyzing large and complex gridded data sets.
“Gridded data sets’ in the Ferret environment may be multi-dimensional model outputs,
gridded data products (e.g., climatologies), singly dimensioned arrays such as time series and
profiles, and for certain classes of analysis, scattered n-tuples (optionally, grid-able using Fer-
ret’s objective analysis procedures). Ferret accepts datafrom ASCII and binary files, and from
two standardized, self-describing formats. Ferret’s gridded variables can be oneto four dimen-
sions—usually (but not necessarily) longitude, latitude, depth, and time. The coordinatesaong
each axis may be regularly or irregularly spaced.

Ferret offers the ability to define new variables interactively as mathematical expressions in-
volving data set variables and abstract coordinates. Calculations may be applied over arbi-
trarily shaped regions. Ferret’s“external functions’ framework allows external codewrittenin
FORTRAN, C, or C++ to merge seamlessly into Ferret at runtime. Using external functions,
users may easily add specialized model diagnostics, advanced mathematical capabilities, and
custom output formats to Ferret. A collection of general utility external functionsis included
with Ferret.

Ferret provides fully documented graphics, data listings, or extractions of data to fileswith a
single command. Without leaving the Ferret environment, graphical output may be customized
to produce publication-ready graphics. Graphic representationsinclude line plots, scatter plots,
line contours, filled contours, rasters, vector arrows, polygonal regions and 3D wire frames.
Graphics may be presented on awide variety of map projections. Interfaces to integrate with
3D and animation applications, such as VisbD and XDataSlices are also provided.

Ferret has an optional point-and-click graphical user interface (GUI). The GUI is fully inte-
grated with Ferret’'s command line interface. The user may freely mix text-based commands
with mouse actions (push buttons, etc.). Ferret’'s journal file will log all of the actions per-
formed during a session such that the entire session, including GUI inputs, can be replayed and
edited at alater time.

This User’s Guide describes only the command line interface to Ferret. Other documents de-
scribe the point and click interface.

Ferret was developed by the Thermal Modeling and Analysis Project (TMAP) at
NOAA/PMEL in Seattle to analyze the outputs of its numerical ocean models and compare
them with gridded, observational data. Model data sets are often multi-gigabyte in size with
mixed 3- and 4-dimensional variables defined on staggered grids.

INTRODUCTION 1

1.1

1.2

2.1

Ferret issupported on avariety of Unix workstationswith aversion also availablefor Windows
NT/9x. Ferret is available at no charge from anonymous FTP [node ftp.ferret.noaa.gov] or
from the World Wide Web [URL http://ferret.wrc.noaa.gov/].

Ferret User’s Group

The Ferret User’s Group provides a venue to ask experienced Ferret users for advice solving
problems and to keep abreast of the latest Ferret updates. To (un)join simply send an e-mail

message to

Majordomo@ferret.wrc.noaa.gov

and include a message which says simply

(un) subscribe ferret users

(Note this must be in the e-mail message BODY —not in the subject line.) To learn about the
user’s list without joining send this message instead to the same address:

info ferret users

Ferret Home Page

The Ferret Home Page contains source code distributions, on line documentation, Users
Group archives, Frequently Asked Questions and more. It is available at

http://ferret.wrc.noaa.gov/Ferret/

GETTING STARTED

A quick way to get to know Ferret isto run the tutorial provided with the distribution.

% ferret
yes? GO tutorial

If Ferret isnot yet installed consult Chapter 8. (Thetutorial isalso available through the World
Wide Web.) The tutorial demonstrates many of Ferret’s features, showing the user both the
commands given and Ferret’s textual and graphical output. You may find the explanations,
terms and examples in this manual easier to understand after running the tutorial.

Concepts

Wordsin bold below are defined in the glossary of this manual.

2 CHAPTER1

http://ferret.wrc.noaa.gov/Ferret/

—
T

Fab 191907 0W51

TIME : 16—JaM-1982 1Z:00 DaTs SET: coods
COADS 2x? Degree Monthly Averoge Surfoce Morne Cbservations

30 I I I I ! I I
nq_v:.z// N ,r&/\/ //’/‘(J/::
I T) ’// A4 L
N T "‘"////"/i N
e T AR S A

10°N — 4 (J"/{//‘/ /(Kh:_

A A B A
I S~ A AN |

" 4/’;/« s N ‘x/;\‘\

E a T e é,/*——.a/\ 4—-/ r‘s‘"“\i

E ! v e — B i T
; e o e
A NS e T
: L/ “:—» AT A

s ' - \ m\r/ W ‘/i/_
N L Ny b LSl
MOV N AR -oWl
7 - - ‘\\\13"/ PO e
R R R R

e - |‘ T - e -
160°E 170°E 1 su 170 1607w

LONGITUDE
ZONAL WIND (M/S) , MERIDIONAL WINT (M/S)

—= 105

Figure 1.

In Ferret all variables are regarded as defined on grids. The gridstell Ferret how to locate the
datain space and time (or whatever the underlying units of the grid axes are). A collection of
variables stored together on disk isa data set.

To access a variable Ferret must know its name, data set and the region of its grid that is de-
sired. Regions may be specified as subscripts (indices) or inwor Id coor dinates. Data sets, af -
ter they have been pointed to with the SET DATA command (alias“USE”), may bereferred to
by data set number or name.

Using the LET command new variables may be created “from thin air” as abstract expres-
sionsor created from combinations of known variables asarbitrary expressions. If component
variables in an expression are on different grids, then regridding may be applied simply by
naming the desired grid.

The user need never explicitly tell Ferret to read data. From start to finish the sequence of oper-
ations needed to obtain results from Ferret is simply:

1) specify the data set

2) specify the region

3) define the desired variable or expression (optional)
3) request the output

For example (Figure 1),

INTRODUCTION 3

yes? USE coads !global sea surface data
yes? SET REGION/Z=0/T="16-JAN-1982"/X=160E:160W/Y=20S:20N
yes? VECTOR uwnd, vwnd 'wind velocity vector plot

2.1.1 Thinking like a Ferret:

(A discussion on the Ferret outlook on the concepts of data, variables, grids and other basics of
Ferret.)

Plottable variables

For thisdiscussion wewill cointheterm “ plottable variables.” There are no non-plottable vari-
ablesthat will comeup inthisdiscussion but “variables’ isabit too generic. Plottablevariables
are of 3 types:

» filevariables—read from disk files
» user-defined variables — defined by the LET command
« pseudo-variables—regions (1,J,K,L,X,Y,...) used as variables

As much as possible Ferret tries to make all types of variablesindistinguishable. All plottable
variablesaredefined on grids. No plottable variables existsin avacuum for Ferret. Thegrid on
which a plottable variable exists tells how to locate the variable in space and time. In cases
where the variables are abstract in nature—disconnected from space and time—Ferret will as-
sociate those variables with grids that are abstract, too. Where a geographical grid will associ-
ate the Nth position along an axis with alocation (like 20 degrees north latitude) an abstract
grid will simply associate the Nth position with the number N. Plottable variables may be
regridded to other grids than the one on which they are defined. (Done with “G=".)

All referencesto plottable variables must have acomplete context. A complete context will be
described in detail later—Dbriefly it means a region in space, an interval in time and the data
set(s) in which the variables will be found.

Grids

All Ferret grids are 4-dimensional. In most cases the axes have the obvious interpretation of 3
space coordinates and time but sometimes the axes are abstract.

A grid iscomposed of 4 axes, each describing the coordinates along one dimension. 3d, 2d, 1d
and Od grids are regarded as special cases of the full 4 dimensionsinwhich 1 or more axes are
set to “NORMAL.”

Ferret triesto look at all axes equally—the same syntax of regions and transformations applies
to each. Calendar dates, east-west longitudes and north-south latitudes are merely convenient
ways to format positions along axes that have special interpretations to people—not to Ferret.
(The only exception to this is that if the Y axis has units of Latitude Ferret will insert co-
sing(L atitude) factors into some calculations.)

4 CHAPTER1

Axes and grids may be defined by “grid files” (which normally have .GRD filename exten-
sions). Axesmay also be defined by the DEFINE A XIS command; gridsby the DEFINE GRID
command.

Contexts

A context isaregion or point in space and time and adataset(s). Thisistheinformation needed
by Ferret to make sense of areferenceto aplottablevariable. Supposethat “U” isavariableina
data set (file) called U_DATA. A command like “PLOT U” is meaningful only when Ferret
knowsthat it issupposed to belooking for U indataset U_DATA and knowswherein 4-dimen-
sional space it is supposed to plot.

The context space-time region may be described by a mix of subscript and world coordinate
positions. Subscripts are specified by 1=,J=,K=,L= for axes 1 through 4, respectively. World
coor dinates are specified by X=,Y=,Z=,T=. On theright of the equal sign asingle point may
be given or arange specified by low:high may be given. Special formats are alowed for X=
(longitude, eg. 160W), Y=(latitude, eg. 23.5S) and time (calendar dates like
“7-NOV-1989:12:35:00" in quotation marks).

The data set may be given by name or number. The commands SET DATA and CANCEL
DATA and the D= context descriptor all accept the name of the data set or its number. The data
setsare numbered by the order in which they are pointed to with SET DATA. Thisorder may be
seen with SHOW DATA.

You can tell Ferret the context in 3 places:

1. Theprogram context: Using the commands SET REGION and SET DATA you can describe
a context in which all commands and expressions will be interpreted. You can look at the
program context with SHOW REGION and SHOW DATA. (The command SET DATA is
used both to initialize new data sets and to make previously initialized sets the current pro-
gram context. When SET DATA initializesanew dataset that set automatically becomesthe
data set for the program context.) Example: SET REGION/Z=50

2. The command context: Using the command qualifiers 1,J,K,L,X,Y,Z, T and D commands
like PLOT,CONTOUR,SHADE,LIST and VECTOR can specify additional context infor-
mation. Command context information on any axis or on the data set will replace any pro-
gram context information on the same axis or the data set.

3. Thevariable context: Using the same qualifiers as the command context any plottable vari-
able name can be modified with additional context information in square brackets (e.g.
U[Z=200,D=U_DATAY]). Variable context information on any axis or the data set will re-
place any program or command context information on the same axis or the data set.

Transformations

Ferret can transform plottable variables along their axes. Transformations may be specified
only inthevariable context. Ferret understands anumber of transformationsthat may be speci-

INTRODUCTION 5

fied with the space-time region qualifiers. Some examples: PLOT U[Z=0:100@AVE] — the
variable U averaged between Z=0 and Z=100 LI1ST/L=1:200 U[L=@SBX:5] — U with abox-
car smoother of width 5 pointsalong L.

Also,

@FAYV (fill data holeswith averages)

@DIN (definiteintegral) @IIN (indefinite integral)
@DDC (centered derivative)

@SHF (shift data a number of points along an axis)
@MIN (minimum value along an axis)

... and others (see HELP TRANSFORMATIONS inside Ferret)

2.2 Unix command line switches

ferret [-batch<file>.ps][-memsize Mwords] [-unmapped] [-gui] [-help]

-memsize Mwords
specify the memory (data cache) size in Megawords default: 3.2

-unmapped
use invisible output windows (useful for creating animations and GIF files)

-qui
start Ferret in point-and-click mode (may not be available on all platforms)

-help
obtain help on the Unix command line options

-gif
Ferret can run in batch mode—without an X server. Graphical output is buffered, and is
stored in aGIF file by executing the FRAME command. For example:

yes? FRAME/FILE=picture.gif

sends the stored graphical output from Ferret to the GIF file picture.gif.

Please note the following when using batch mode:

» Window resizing only works if the window is cleared before resizing the window. For
instance:

yes? set window/clear/size=0.25

will resize the window while

6 CHAPTER1

yes? set window/size=0.25/clear
will cause an error.
» Avoid metafile commands when running in batch mode. In particular,
yes? set mode meta
may cause problems.
» Don't create new Ferret windows when running without an X server. The following
command:
yes? set window/new

will cause Ferret to crash.

-batch
Ferret can generate PostScript files without an X server. If you wish to use thismode, start
Ferret with the -batch option:

ferret -batch <file>.ps
where <file> is the name of the output file. Note that the filename must end with “.ps”.
Please note the following when using PostScript mode:

» ThePostScript output will not befully written to the output file until you exit from Ferret.
» Window sizing commands do not have any effect on PostScript outpuit.
 Avoid metafile commands when running in PostScript mode.
« Don’'t create new Ferret windows when running without an X server. The following
command:
yes? set window/new

will cause Ferret to crash.

2.3 Sample sessions

This section presents a number of short Ferret sessions that demonstrate common uses. Data
setsused in these sessions and throughout thismanual areincluded with thedistribution. If Fer-
ret isinstalled on your system, you can duplicate the examples shown.

2.3.1 Accessing a NetCDF data set

In this sample session, the data set “ monthly _navy winds” is specified and certain aspectsof it
are examined. The command SHOW DATA/VARIABLES displays the variables in
“monthly_navy winds’ and where on each axis they are defined. SET REGION specifies
wherein the grid the user wishes to examine the data. VECTOR produces a vector plot of the
indicated variables over the specified region.

yes? USE monthly navy winds ! specify the data set
>yes? SHOW DATA/VARIABLES ! what’s in it?
currently SET data sets:

INTRODUCTION 7

TIME : 16—MaY

FERFET (Al v, 440
i A
Fab 15 1907 DRE45

2556 D&TA SET: <cads_climatology
COADS Menthly Climatology (1946—1989)
1 1 1 | 1 1 L 1 1 1

a°N]

LATITUDE

=

-

38« 8
|

“’\@&ﬁ y

[y
28 .

I8
T T T T T T

),

8N
4 -

i

LATIMTUDE

475

T
1B5°E

TIME : 16—haY

1757 1655w 155 145

LONGITUDE

175E

SEA SURFACE TEMPERATURE (Deg C)

FERRET (8 v, 440
R
2356 DATA SET: <oads_climatology
COADS Menthly Climatology (1946—1989)

W
: Nt
AN o -

®

875 —

1
k)

[Py
T I T

1S
1 T

185°E

175°E

176w

1B5°W

166°%

LONGTUDE

AIR TEMPERATURE (DEG C)

Figure 2.
1> /opt/local/ferret/fer dsets/descr/monthly navy winds.des (default)
FNOC 2.5 Degree 1 Month Average World-wide Wind Field
name title I J K L
UWND ZONAL WIND 1:144 1:73 1:132
M/S on grid FNOC251 with -99.9 for missing data
X=18.8E:18.8E(378.8) Y=91.25:91.2N
VWND MERIDIONAL WIND 1:144 1:73 1:132

M/S on grid FNOC251 with -99.9 for missing data
X=18.8E:18.8E(378.8) ¥=91.2S5:91.2N

time range: 16-JAN-1982 20:00 to 17-DEC-1992 03:30

2.3.2 Reading an ASCII data file

Many examples of accessing ASCII data are available later in this manual. See Chapter 2,
“DataSets’ (p. 27) The simplest access, one variablewith onevalue per record, lookslikethis:

s ferret

yes? FILE/VARIABLE=v1l snoopy.dat
yes? PLOT vl

yes? QUIT

2.3.3 Using viewports

The command SET VIEWPORT allows the user to divide the output graphics “page’ into
smaller display viewports.

In this sample session, we create two plots in two halves of awindow (Figure 2):

8 CHAPTER1

.
Ei

Fd
&
£
L]

(82 — ~

62 — ~

i — —

(20 — —

B89 T T T T T T T
10 30 B3 ki) ile]

SIN(3.14*1/100)
Figure 3.

s ferret

yes? USE coads climatology
yes? SET REGION/X=160E:130W
yes? SET REGION/Y=-10:10/L=5
yes? SET VIEWPORT upper

yes? CONTOUR sst

yes? SET VIEWPORT lower

yes? CONTOUR airt

yes? QUIT

2.3.4 Using abstract variables

Abstract variables (expressionsthat contain no dependencies on disk-resident data) can be eas-
ily displayed with Ferret. See Chapter 3, section “ Abstract variables’ (p. 46), for several exam-
ples and detailed information.

For example, auser wishing to examine the function SIN(X) on theinterval [0,3.14] might use
(Figure 3):

% ferret
yes? PLOT/I=1:100 sin(3.14*I/100)
yes? QUIT

2.3.5 Using transformations
A transformation is an operation performed on a variable along a particular axis and is speci-

fied with the syntax “ @trn” where“trn” isthe name of atransformation. See Chapter 3, section
“Transformations’ (p. 55), for detailed information.

INTRODUCTION 9

R
LONGITUDE : 160.5W
DEFTH (m) © © to 106G (averaged) DATA SET: levitus_climotology

Levitus annual climotology (1x1 degree)

200 I I I I ! ! I I I

270 — ~

250 — ~

DEG C
|
T

250 — ~

2.0~ —

10 T T T T T T T T T T

LATITUDE

TEMPERATURE {DEG C)

Figure 4.

A user may wish to look at ocean temperatures averaged over arange of depths. In thissample
session, welook at temperatures averaged from O to 100 meters of depth using a data set which
has detailed resol ution in depth (Figure 4). We pl ot the dataal ong longitude 160 west from | ati-
tude 30 south to 30 north.

o)

% ferret

yes? USE levitus climatology
yes? SET REGION/Y=30s:30n/X=160W
yes? PLOT temp[Z=0:100Q@AVE]

yes? QUIT

2.3.6 Using algebraic expressions
See Chapter 3, section “Expressions’ (p. 49) for adescription of valid expressions.
In thisexample, the data set contains raw sea surface temperatures, air temperatures, and wind

speed measurements. We wish to look at a shaded plot of sensible heat at its first timestep
(L=1) (Figure 5). We specify alatitude range and contour levels.

% ferret
yes? USE coads climatology !monthly COADS climatology
yes? LET kappa = 1 larbitrary

yes? LET/TITLE="SENSIBLE HEAT" sens heat = kappa * (airt-sst) * wspd
yes? SHADE/L=1/LEV=(-20,20,5)/Y=-90:40 sens_heat
yes? QUIT

10 CHAPTER1

TIME © 16—JiN [HiHeH] DATA SET: coods_climatclogy
COADS Monthly Climotalogy (1946—1989)

LATITUDE

S0°E. 150°E 110% 107
LONGITUDE

SENSIBLE HEAT

Figure5.

2.3.7 Finding the 20-degree isotherm

| sotherms can be located with the “ @LOC” transform, which returns the axis location where
the value of the argument of @LOC first occurs. Thus, “TEMP[Z=0:200@L OC:20]” locates
the first occurrence of the temperature value 20 along the Z axis, scanning all the data between
0 and 200 meters.

A session examining the 20-degree isotherm in mid-Pacific ocean data (Figure 6):

v o o 440
PR
DEPTH {m) : © te 200 (location of 20) DATA SET: levitus_climatalogy
Levitus annual climatelogy (1x1 degree)
1 I I I I I 1

0
Iy N [m‘\

| 10— |

| ————1an
ff———-wso»—f—k_*im_ﬁ

2o |10

10N o Ny

LETITUDE

T 160 o r
—__/_\ \/w\,\a@
" &
0

T T T T T T
160°E 170°E 17D 1500

LCHGTUDE
DEPTH (m) of 20 in TEMPERATURE (METERS)

Figure 6.

INTRODUCTION 11

% ferret

yes? USE levitus_climatology
yes? SET REG/Y=10s:30n/X=140E:140W

yes? PPL CONSET

!'label size

yes? CONTOUR temp[Z=0:200QLOC:20]

yes? QUIT

Notethat the transformation @WEQ could have been used to display ANY variable on the sur-
face defined by the 20 degree isotherm.

COMMON COMMANDS

A quick reference to the most commonly used Ferret commands (typing “SHOW
COMMANDS’ at the Ferret prompt lists all commands):

Command Description

USE names the data set to be analyzed (alias for “SET DATA”)
SHOW DATA produces a summary of avariable

SHOW GRID examines the coordinates of agrid

SET REGION sets the region to be analyzed

LIST produces alisting of data

PLOT produces a plot

CONTOUR produces a line contour plot

FILL produces a color filled contour plot

SHADE produces a shaded-area plot

VECTOR produces a vector arrow plot

POLY GON plots polygonal regions

DEFINE define new axes, grids, and symbols

STATISTICS produces summary statistics about variables and expressions
LET defines a new variable

SAVE saves datain NetCDF format

GO executes Ferret commands contained in afile

Information on all Ferret commandsisavailablein Part 11, Commands Reference, of this man-
ual.

4 COMMAND SYNTAX

Commands in program Ferret conform to the following template:

COMM [/Q1/Q2...] [SUBCOM[/S1/S2...]1] [ARGl ARG2 ...] [!comment]

where

12 CHAPTER1

5

5.1

COMM isacommand name yes? LI ST

Q1. are qualifiers of the command yes> contour/SET_UP

SUBCOM isasubcommand hame yes? sHow MODE

Si.. are qualifiers of the subcommand yes? set 1.1s7T/APPEND

ARGL1... are arguments of commands ves? cancen MODE | NTERPOLATE
notes...

* Itemsin sgquare brackets are optional .

» One or more spaces or tabs must separate the command from the subcommand and from
each of the arguments. Spaces and tabs are optional preceding qualifiers.

» Multiple commands, separated by semi-colons, can be given on the same line.

« Command names, subcommand names, and qualifiers require at most 4 characters.
(9., yes? CANCEL LIST/PRECISTON iISequivalentto yes? caNC LIST/PREC)

» Some qualifiers take an argument following “=" (e.g., yes? 1157/v=105:10N).

» Anexclamation mark normally signifiesthe end of acommand and the start of (optional)
comment text.

» The backslash character (\), when placed directly before an exclamation point (1),
apostrophe (*), semicolon (;), or forward slash (/), will hide it (“escapeit”) from Ferret.

» See the Expressions section (p. 49) for information on algebraic expressions as
arguments to commands

 See the Symbols sections (p. 135) for information on symbol substitution in commands

GO FILES

GO filesarefiles containing Ferret commands. They can be executed with the command “ GO
filename’. Throughout thismanual, thesefilesarereferred to as GO scriptsor journal files (the
filenamesend in *.jnl). There aretwo kinds of GO files provided with the distribution (differ-
ing in function, not form)—demos and tools.

Demonstration files

Demonstration GO files provide examples of various Ferret capabilities (the tutorial issuch a
script) . The demonstration GO files may be executed simply by typing the Ferret command

yes? GO demo name
example: vyes? GO vector demo

Below is alist of the demo files provided as of 4/99 (located in directory $FER_DIR/exam-
ples). The Unix command “Fgo demo” will list all GO scripts containing the string “demo”.
Use Fgo ‘*’ to see al the scripts that are currently available on your system.

INTRODUCTION 13

Name

tutorial
topographic_relief_demo
coads demo

levitus_demo

fnoc_demo
vector_demo
wire_frame_demo
custom_contour_demo
viewports_demo
multi_variable demo
objective_analysis demo
mp_demo
log_plot_demo
depth_to_density_demo
file_reading_demo
regridding_demo
mathematics_demo
statistics_demo
spirograph_demo
splash_demo
symbol_demo
sigma_coordinate_demo

Description

brief tour through Ferret capabilities

global topography

view of global climate using the Comprehensive
Ocean-Atmosphere Data Set

T-Srelationships using Sydney Levitus' climatological Atlas
of the World Oceans

Naval Fleet Numerical Oceanography Center data
vector plots

3D wire frame representation

customized contour plots

output to viewports

multiple variables with multiple dependent axes
interpolating scattered data to grids

map projections demo

log plots using PPLUS in Ferret

contour with a user-defined variable as an axis
reading an ASCII file

tutorial on regridding data

abstract function calculation

probability distributions

for-fun plots from abstract functions

for-fun mathematical color shaded plots

how to use symbolsfor plot layouts

how to work with sigma coordinates

5.2 GO tools

GO tools are scripts which contain Ferret commands and perform dataset-independent tasks.
For example, “GO land” overlaysthe outline of the continentson your plot. (Note: In order for
Ferret to locate the GO scripts, the environment variable FER_GO must be properly defined.
See Chapter 9, “Computing Environment,” p. 151, for guidance.)

The Unix command Fgo has been provided to assist with locating tools within the Unix direc-
tory hierarchy. For example,

displays all tools with the substring “grid” in their names
displays all GO tools and demonstrations

$ Fgo grid
% Fgo '*!

Below isatable of thetools provided with your Ferret installation. Some tool s accept optional
argumentsto control details. Use g0 -more script name for details on ascript.

14 CHAPTER1

Tool name

OVERLAYS
basemap
land
bold_land
fland
focean
graticule
tics
gridxy
gridxz
gridxt
gridyz
gridyt
gridzt
box
ellipse

MATHEMATICAL
autocorrelation

frequency_histogram

ts frequency
polar

regressx
regressy
regressz
regresst
unit_sguare
variance

var_ n
dynamic_height

SAMPLE DISPLAY S
line_samples
line_thickness
fill_samples
show_symbols
show_88 syms

GRAPHICS
bar_chart
bar_chart2
centered_vectors

Description

a geographical basemap of continentsto overlay on
overlays continental boundaries (color controls)
overlays darker continental boundaries

overlaysfilled continents (color and resolution controls)
overlays ocean mask (for terrestrial plots)

sets the plot axis style to use a graticule (rather than tics)
resets the plot style to use axis tics (rather than a graticule)
overlays a“graticule” labeling the I,J subscripts
overlaysa*“graticule” labeling the I,K subscripts
overlaysa“graticule” labeling the I,L subscripts
overlaysa“graticule’ labeling the J,K subscripts
overlaysa“graticule” labeling the J,L subscripts
overlaysa“graticule” labeling the K,L subscripts

draws a box at the specified location on the plot
draws an ellipse at the specified location on the plot

external function to compute autocorrelation function

makes a frequency distribution plot (histogram) of data

creates a 2-variable histogram (typically an oceanographer’s TS
density diagram)

dlerfines R and THETA from X and Y to perform (limited) polar
plots

defines variables for linear regression along X axis

defines variables for linear regression along Y axis

defines variables for linear regression along Z axis

defines variables for linear regression along T axis

sets unit square as default for abstract variables

defines variables to compute variances and covariances

refines TVARIANCE with corrected n/n+1 factors

defines Ferret variables for dynamic height calculations

draws specimens of the available line styles

draws examples of pen color/thickness stylesin PPLUS
draws specimens of the available fill styles

draws specimens of the default symbols

draws specimens of all 88 PPLUS symbols

makes a color-filled bar chart from aline of data
makes a bar chart using hollow rectangles
makes a vector plot with coords at vector midpoints

INTRODUCTION 15

Tool name

scattered vectors
stick_vectors
extremum

split_z

PLOT APPEARANCE

margins
magnify [factor]
unmagnify
black

white

bold

unbold

unlabel [label #]
remove_logo
box_plot
reminder

COLOR

try_palette [pal]
try_centered_palette

exact_colors

sgueeze colors

left_axis plot
right_axis plot
multi_xaxis_plotl
multi_xaxis_overlay
multi_yaxis plotl
multi_yaxis overlay

mp_~name~

mp_aspect
mp_fland

mp_graticuled
mp_label

16 CHAPTER1

Description

makes a vector plot from an ASCII file: x,y,u,v
makes a stick vector plot of aline of U,V values
annotate contour extrema on a plot
oceanographic-style plot with 2 z-axis scalings

tweak the sizing of the plot on the page

increases the data plotting area (areainside the axes)
restores the plot origin and axis lengths to default values
sets video background to black, foreground to white
sets video background to white, foreground to black

sets up PLOT+ and Ferret to produce bolder-looking plots
resets plot environment to normal after “ GO bold”
removes a specified (numbered) PPLUS movable |abel
removes labels 1-3 that form the Ferret logo

produces a plot with “bare” axes (no tics, no labels)
place small annotations in upper left corner of plot

displays pal ette appearance for various numbers of color levels
displays centered pal ette appearance for various numbers of lev-
els

sets up Ferret and PPLUS to modify individual colorsin acolor
palette

modifies a color palette by squeezing and stretching the color
scale

MULTIPLE X AND Y AXES (run demo: yes? GO multi_variable_plots)

plots asingle variable preparing for a 2nd axis on the right
overlays aplot of asingle variable using an axis on the right
draws a plot formatted for later overlays using multiple X axes
overlays avariable with adistinct X axis

draws a plot formatted for later overlays using multiple Y axes
overlays avariable with adistinct Y axis

MAP PROJECTIONS (run demo: yes? co mpidemo)

individual projectionsinclude

bonne, craster_parabolic, eckert greifendorff, eckert iii,
eckert_v, hammer, lambert_cyl, mcbryde fpp, mercator, ortho-
graphic, plate caree, polyconic, sinusoidal, stereographic eq,
stereographic_north, stereographic_south, vertical_perspective,
wagner_vii, winkel_i

set the appropriate window aspect ratio for this map projection
overlays “map projected” filled continents (color controls)
overlays “map projected” graticule (color controls)

plots alabel using world coordinates

Tool name
mp_land
mp_land_stripmap

mp_line
mp_ocean_stripmap

mp_polygon

Description

ov<|ar|)ays “map projected” continental boundaries (color con-
trols

creates a land-centric, interrupted “stripmap” using the current
map projection

overlays “map projected” plotted data

creates an ocean-centric, interrupted “stripmap” using the cur-
rent map projection

overlays “map projected” polygons

SAMPLING A GRIDDED FIELD

samplexy
bullseye

sample afield at aset of (x,y) locations
locate a bullseyein a2d field

GRIDDING POINT DATA/ OBJECTIVE ANALY SIS

scatter2gridgauss_xy

scatter2gridliaplace_xy

scatter2gridgauss xz

scatter2gridliaplace xz
TESTS

test

ptest
squares

5.3 Writing GO tools

put scattered dataonto aregular x-y grid using Gaussian interpo-

ﬂosrtl:attered data onto aregular x-y grid using Laplace interpo-

ﬂtc;r(]:attered dataonto aregular x-z grid using Gaussian interpo-

:{E;()szr;mtaed dataonto aregular x-z grid using L aplace interpo-
ion

tests proper functioning of FER_GO
produces a quick test plot
creates afilled-areatest plot

A GOtool (“GO script,” “journal file,” ...) issimply asequence of Ferret commandsstoredina
file and executed with the GO command. Writing asimple GO tool requires nothing more than
typing normal commandsinto afile.

Towritearobust GO tool that may be shared, however, certain guidelines should befollowed:

1) the GO tool should be well documented

2) the GO tool should |eave the Ferret context unmodified
3) the GO tool may need to run “silently”

4) the GO tool may need to accept arguments (parameters)

INTRODUCTION 17

5.3.1 Documenting GO tools

Documentation consists primarily of well-chosen comment lines (lines beginning with an ex-
clamation mark). In addition, aline of this form should be included:

! Description: [one-1line summary of your GO tool]

Thislineis displayed by the Fgo tool.

5.3.2 Preserving the Ferret state in GO tools

Often acomplex GO tool requires setting data sets, modifying the current region, etc. But to a
user executing thistool its behavior may seem erratic if the user’s previous context is modified
by running the tool. A tool can restore the previous state of Ferret by these means:

region: Save the current default region with the command DEFINE REGION/DEFAULT
save. Restoreit at the end of your GO tool with SET REGION save.

dataset: Save the current default data set with SET DATA/SAVE. Restore it at the end of
your GO tool with SET DATA/RESTORE.

grid: Save the current default grid set with SET GRID/SAVE. Restore it at the end of
your GO tool with SET GRID/RESTORE.

modes. If you modify amodeinside your GO tool by issuing a SET MODE or a CANCEL
MODE command the original state of that mode can be restored using SET
MODE/LAST.

5.3.3 Silent GO tools

If auser has set mode “verify” then by default every line of your GO tool, including comment
lines, will be displayed at the screen as Ferret processesit. To make your GO tool run silently
include the command CANCEL MODE VERIFY at the beginning of the GO tool and SET
MODE/LAST VERIFY at the end. If the backslash character “\” is found at the beginning of
any line that single line will not be displayed regardless of the state of MODE VERIFY. Thus
the command “\CANCEL MODE VERIFY” isoften thefirst line of a GO tool. Note al so that
the command LET/SILENT is useful in GO tools which need to define variables.

5.3.4 Arguments to GO tools

Arguments (parameters) may be passed to GO tools on the command line. For example,

yes? GO land red

18 CHAPTER1

passes the string “red” into the GO file named land.jnl. Inside the GO tool the argument string
“red” is substituted for the string “$1a’ wherever it occurs. The “1a’ signifies that thisis the
first argument—similar logic can be applied to $1,... $9 or $0 where $0 isreplaced by the name
of the GO tool itself. Similarly “$*” isreplaced by all the arguments, 1-9 asasingle string.

As Ferret performs the substitution of $1 (or other) argumentsit offers anumber of string pro-
cessing and error processing options. For example, without these options, if a user failed to
supply an argument to “GO land” then Ferret would not know what to substitute for $1 and it
would havetoissue an error message. A default value can be supplied by the GO tool writer us-
ing the syntax

$1%string%

for example,

$1%black$s

inside land.jnl would default to “black” if no color were specified. Note that in the example
percent signs were used to delimit the default string but any of the characters! #$ % or & also
work as delimiters.

In another caseit might not be appropriate to supply adefault string but instead it would be de-
sirable to issue an instructional error message. The “<” character indicates an error message
text:

$1"<you must supply an argument to this GO tool"

In still other casesthere are arange of acceptable arguments but all other argumentsareillegal.
The allowable arguments can be specified following “|” (vertical bar) charactersasin this ex-
ample:

S1"|black]|red|<You must specify black or red"

or adefault of “black” could be specified together with the options as

S1"black|black|red|"

In the interest of “friendliness” a GO file may want to allow the user to specify a string other
than the string actually needed by the GO tool. For example, ared plot lineisactually obtained
by the PLOT command qualifier /[LINE=2—the string “red” never appears in this command.
To allow auser to specify “red” and yet havethe string “2” substituted, Ferret has provided the
replacement arrow “>". Thus

$S1"1 | red>2|"
specifiesadefault string of “1” if no argument is given but substitutes“2” if “red” is supplied.

In atypical GO tool line, defaults, options, substitutions, and an error message are combined
likethis:

INTRODUCTION 19

PLOT/LINE=S$1"1|red>2|green>3|blue>4|<must be red, green, or blue"

Note that the error message will be issued only if some color other than “red,” “green,” or
“blue’ is specified; if no argument is specified then “1” is substituted.

An asterisk (*) can be used to designate that any text whatsoever is acceptable as an option.

PLOT/LINE=$1"1|red>2|green>3|blue>4|*>7"

would never generate an error and would useline style 7 (thick black) if an unrecognized argu-
ment string such as “ purple” were given.

Anasterisk (*) can also be used on the right-hand side of a substitution, in which caseit stands
for the entire original argument string. For example

SET VARIABLE/TITLE=S$1%*>"*"%
will place double quotation marks around the string in argument 1.

A final style note to keep in mind when writing GO tools that use arguments: providing error
message feedback and appropriate documentation for the user is essential. In complex GO
tools, all arguments should be checked at the beginning of the GO tool using the no-op com-
mand (has no effect) “QUERY/IGNORE”. Thusthe GO tool land.jnl might contain these lines
at the beginning:

! check the argument
QUERY/IGNORE $1"1|redl|green|blue|<must be red, green, or blue"

Once argument errors have been trapped and reported, the lengthy error text would not be
needed again in the GO tool.

GO toolsthat use arguments should also be carefully documented. There are numerous exam-
ples provided with Ferret; try, for example, the Unix commands

$ Fgo -more fland.jnl
% Fgo -more stick vectors

or

% Fgo -more squeeze colors

5.3.5 Flow Control in GO tools

There are severa Ferret commands and techniques to assist with flow control in your GO
scripts.

GO (subroutines)

20 CHAPTER1

The GO command may be used inside of a GO script (tool) to execute another (nested) GO
script. If an error occursinside of anested GO script and SET MODE IGNORE_ERROR has
not been issued then the GO script will beinterrupted and control returnsto the command line.

REPEAT (looping)

The REPEAT command may be used to execute loops within Ferret. The loop “ counter” may
beanindex (1,JK, or L) or aworld coordinate (longitude, latitude, depth, or time). The incre-
ment between loop iterations need not correspond to the spacing of pointson agrid. When used
in conjunction with the “d” options of SET REGION, such as SET REGION/DI="-5:-5" the
loops may be used to zoom in or out of aregion or to pan a limited-width window of view
across alarger region. Seethe Advanced Movie-Making section (p. 98) of this manual for fur-
ther details.

|F-THEN-EL SE (conditional execution)

An IF-THEN-EL SE syntax can be used to conditionally execute Ferret commands. It may be
used in two styles—single line and multi-line. See the IF command (p. 223) in the Commands
Reference section of this manual for further details.

5.3.6 Debugging GO tools

As the complexity of Ferret GO scripts increases it becomes more challenging to locate and
correct errorsin GO scripts. Thisisespecialy trueif, as so many GO scriptsdo, the scriptsare
made silent by containing the command CANCEL MODE VERIFY. Inasilent script it can be
unclear from where within the script an error message is originating.

A special VERIFY mode has been provided to assist with locating the source of these error
messages

SET MODE VERIFY:ALWAYS

The ALWAY Sargument to thiscommand instructs Ferret toignore CANCEL MODE VERIFY
commands inside of command files. All of the script commands that Ferret executes will be
echoed when this mode is set. Error messages will appear with the commands that generated
them. To restore normal non-debugging operations issue CANCEL MODE VERIFY or SET
MODE VERIFY (no argument) interactively from the yes> prompt.

Complex webs of variable definitions (defined with LET or DEFINE VARIABLE) may also

create challenges for debugging scripts. See Debugging Complex Hierarchies of Expressions
(p. 76) for further discussion of thistopic.

INTRODUCTION 21

6 SAMPLE DATA SETS

A number of demonstration data sets are included with this distribution. Several of these data
setsare used by the demonstration “GO” files, above. The datasets should be accessible simply
by typing the Ferret command

yes? USE data set name for example,
yes? USE coads_ climatology

Data set Description
etopo120 relief of the earth’s surface at 120-minute resolution
etopo60 relief of the earth’s surface at 60-minute resolution

levitus climatology subset of the Climatological Atlas of the World Oceans by Sydney
Levitus (Note: the updated World Ocean Atlas, 1994, is also avail-
able with Ferret)

coads_climatology 12-month climatology derived from 1946-1989 of the Comprehen-
sive Ocean/Atmosphere Data Set

monthly _navy_winds monthly-averaged Naval Fleet Numerical Oceanography Center
global marine winds (1982—1990)

esku_heat_budget Esbensen-Kushnir 4x5 degree monthly climatology of the global
ocean heat budget (25 variables)

7 UNIXTOOLS

A number of tools are provided with Ferret to assist with Unix-level activities: on-line help,
converting datato Ferret’ sformats, locating files, etc. They arelocated inthe Ferret install ation
area—typically $FER_DIR/bin. See Chapter 9, “ Setting Up an Account” (p. 151), if the tools
are not available on-line. They are described below.

Faddpath Usage: Faddpath new_path
Faddpath will add anew path nameto the default lists of directoriesthat Ferret searchesa) in

response to the SET DATA command; b) when looking for grid definition files; c) when
looking for datafiles.

Fapropos Usage: Fapropos string (i.e. 5 Fapropos regridding)
Fapropos searches the Ferret User’s Guide for all occurrences of the given word or string.
The string is not case sensitive. If the string contains multiple words it must be enclosed in
guotation marks. Fapropos will list all lines of the User’s Guide that contain the word or
string and report their line numbers. The line numbers may be used with Fhelp to enter the

User’s Guide at the desired location.

22 CHAPTER1

Fdata Usage: Fdata data file substring
Searchesthelist of directoriescontainedinthe environment variable FER_DATA tofind the
data files whose names contain the indicated substring. For example,

% Fdata coads

locates the data files containing “coads’ in their names. (Use this command to locate
NetCDF data sets by giving the string “cdf”.)

Fdescr Usage: Fdescr des name_substring
Searches the list of directories contained in the environment variable FER_DESCR to find
the descriptor files whose names contain the indicated substring. For example,

% Fdescr coads

locates the descriptor files containing “coads” in their names. (“Fdescr .des” will list all ac-
cessible descriptors.)

Fenv Usage: Fenv
Prints the values of environment variables used by Ferret

Fgo Usage: Fgo name_substring
Searches the list of directories contained in the environment variable FER_GO to find the
GO command files whose names contain the indicated substring. For example,

% Fgo grid
locates the Ferret tools that contain “grid”.

Forids Usage: Fgrids gridfile_substring
Searches the list of directories contained in the environment variable FER_GRIDS to find
the grid definition files whose names contain the indicated substring. For example,

% Fgrids fnoc

locatesthe grid definition filescontaining “fnoc” intheir names. (“rgrids .grd” will listall
accessible grid files.)

Fhelp Usage: Fhelp line_number or Fhelp string
Fhelp entersthe Ferret User’s Guide beginning at theindicated line number or at thefirst oc-
currence of thegiven string. Thestring, if used, isnot case sensitive. The Unix “more” com-
mand is used to access the User’s Guide. The most commonly used “more” commands are
documented under Ftoc.

Examples: $ Fhelp 1136

% Fhelp "“modulo axis”

INTRODUCTION 23

Fman Usage: Fman
(Not yet implemented.) Enters the Ferret User’s Guide as on-line, formatted hypertext.

Fpalette Usage: Fpalette name_substring
Searches the list of directories contained in the environment variable FER_PALETTE to
find the palette files whose names contain the indicated substring. For example,

% Fpalette blue
locates the palette files containing “blue”’ in their names.

Fpurge Usage: Fpurge filename_template
Fpurgeis asupport routine to manage multiple versions of files created by Ferret—particu-
larly journal filesand graphic metafiles. Fpurge will remove al versions of afile except the
current version. For example, “ Fpurgeferret.jnl” will eliminateall past versionsof ferret.jnl
in the current directory.

Fsort Usage: Fsort filename_template
Fsort is a support routine for sorting file versions. Fsort reorders the incorrect ordering of
emacs-style version numbers assigned by the Unix “Is’ utility. For example, when sorting,
Is will place filename.~19~ before filename.~2~. “Fsort filename*” will take care of this
problem. Fsort may be used in Unix pipes.

Ftoc Usage: Ftoc
Ftoc enters the table of contents of the Ferret User’s Guide using the Unix “more” com-
mand. Within “more” the following are the most commonly used commands:

? interactive help for “more”

q exit (quit)

space advance to next screen

return advance to next line

b back one screen

/string locate the next occurrence of “string” (Note: the string is case sensitive)
8 HELP

8.1 Unixon-line help

On Unix systems interactive Ferret help is available from the command line. If multiple win-
dowsare not available on your system theZ key can be used to suspend the current Ferret ses-
sion and access the help; the Unix “fg” command resumes the suspended session.

24 CHAPTER1

Several Unix commands provide assistance with rapidly locating information in the Ferret
User’'s Guide. The entire Ferret User’s Guide is available on-line as document
$FER_DIR/doc/ferret_users guidetxt. A printable version is aso available in PostScript:
$FER_DIR/doc/ferret_users guide.ps.

These commands are available to access the Ferret User’'s Guide:

Ftoc browse the table of contents of the User’s Guide

Fapropos locate words or character stringsin the User’s Guide

Fhelp enter and browse the User’s Guide

Fman enter eg;}d browse the User’s Guide as formatted hypertext (not yet imple-
ment

Normally Ftoc or Faproposis used first to locate the desired information in the User’s Guide.
Then Fhelp is used to enter the User’s Guide at the selected location.

8.2 Examples and demonstrations

As discussed earlier in this chapter (Getting Started, GO files), the demonstrations that come
with the Ferret distribution are asource of help. See Chapter 1, section “Demonstration files,”
(p. 13) for alist of demonstrations, or look in $FER_DIR/examples; you may find something
that addresses your problem.

8.3 Help from within Ferret

Typing “help” while running Ferret will give you information on using the Unix tool Fhelp to
access the User’s Guide.

The Ferret command SHOW COMMANDS will list al Ferret commands, SHOW
COMMAND *“command” will display all qualifiersfor the specified command.

INTRODUCTION 25

Chapter 2. DATA SET BASICS

1 OVERVIEW

Ferret accepts input data from both ASCII and binary files and recognizes two standardized,
self-describing data formats—NetCDF, and TMAP. Network Common Data Format
(NetCDF) is the suggested method of data storage.

SET DATA_SET or just SET DATA specifies adata set for access. ASCII and binary files can
beread using SET DATA/EZ (also known as“FILE”). To unambiguously specify the format of
adataset, includetheextension .cdf or .desinitsname, or usethequalifier/[FORMAT=CDF.

To examine what each data set consists of (variables, grids, etc.) after specifying them with
SET DATA, use SHOW DATA. This command displays the variables in the data set and over
what geographical and time ranges they are defined.

Hereis an example of Ferret’s output:

yes? SET DATA coads climatology
yes? SHOW DATA N
currently SET data sets:
1> /home/el/tmap/fer dsets/descr/coads climatology.des (default)

name title I J K L

SST SEA SURFACE TEMPERATURE 1:180 1:90 1:1 1:12
AIRT AIR TEMPERATURE 1:180 1:90 1:1 1:12
SPEH SPECIFIC HUMIDITY 1:180 1:90 1:1 1:12
WSPD WIND SPEED 1:180 1:90 1:1 1:12
UWND ZONAL WIND 1:180 1:90 1:1 1:12
VWND MERIDIONAL WIND 1:180 1:90 1:1 1:12
SLP SEA LEVEL PRESSURE 1:180 1:90 1:1 1:12

If multiple data sets have been requested in asingle Ferret session, thelast requested will bethe
default data set. To specify other data sets, use the name of the data set or the number of the set
as given by the SHOW DATA statement. For example:

yes? LIST/D=2 temp

will list the data for the variable “temp” in data set number 2 as displayed by SHOW
DATA/BRIEF, while

yes? LIST temp[D=levitus_climatology] - temp[D=coads_ climatology]

will list the differences between the variable “temp” in dataset “levitus_climatology” and data
set “coads_climatology.”

DATA SET BASICS 27

2 NETCDF DATA

The Network Common Data Format (NetCDF) is an interface to alibrary of data access rou-
tines for storing and retrieving scientific data. NetCDF allows the creation of data sets which
are self-describing and platform-independent. NetCDF was created under contract with the Di-
vision of Atmospheric Sciences of the National Scientific Foundation and isavailablefrom the
Unidata Program Center in Boulder, Colorado (unidata.ucar.edu).

See Chapter 10, “Converting Datato NetCDF” (p. 159), for a complete description of how to
create NetCDF data sets or how to convert existing data sets into NetCDF.

To output avariablein NetCDF, ssimply use:

yes? LIST/FORMAT=CDF variable name

LIST/FORMAT=CDF (aias SAVE) can also be used with abstract variables:

yes? SAVE/FILE=example.cdf/I=1:100 sin(I/100)
Thiswill create afile named example.cdf.

The current region and data sets determine the variable names in the saved file and the range
over which they are saved. Saved data can then be accessed as follows:

yes? USE example

(USE isan aliasfor SET DATA/FORMAT=CDF)

If afilenameis not specified, Ferret will generate one. (See command SET LIST/FILE in the
Commands Reference section, p. 249). An example of converting TMAP-formatted data to
NetCDF goes as follows:

yes? SET DATA coads _climatology
yes? SAVE/L=1 sst,airt,uwnd,vwnd

These commands will save sst, airt, uwnd, and vwnd at the first time step over their entire re-
gionsto a NetCDF file named by Ferret.

One advantage to using NetCDF isthat users on adifferent system (i.e., VM Sinstead of Unix)
with different software (i.e., with an analysistool other than Ferret) can share data easily with-
out substantial conversion work. NetCDF files are self-describing; with asimple command the
size, shape and description of all variables, grids and axes can be seen.

28 CHAPTER?2

2.1 Multi-file NetCDF data sets

Ferret supports collections of NetCDF filesthat areregarded asasingle NetCDF dataset. Such
datasetsarereferredtoas“MC” (multi CDF) datasets. They are particularly useful to manage
the outputs of numerical models. MC data sets use adescriptor file, in the style of TMAP-for-
matted data sets. The data set is referred to inside Ferret by the name of this descriptor file.

A collection of NetCDF filesis suitable to form a multi-file data set if

1) The files are connected through their time axis—each file represents one or more time
snapshots of the variables it contains.

2) Each fileis self-documenting with respect to the time axis of the variables—even if the
time axisrepresentsonly asingle point. (All of thetime axes must beidentically encoded
with respect to units and date of the time origin.)

3) All non-time-dependent variablesin the data set must be contained in thefirst file of the
data set (or those variables will not appear in the merged, MC, data set).

A typical MC descriptor file may be found in Chapter 9, Section 4, “ Creating amulti-NetCDF
dataset.” Further documentation on M C datasets may befound in the Ferret home pageson the
Web.

2.2 Non-standard NetCDF data sets

As discussed in Chapter 10, “Converting Data to NetCDF,” (p. 159) Ferret expects netCDF
files to adhere to the COARDS conventions (http://ferret.wrc.noaa.gov/noaa _coop/
coop_cdf profile.ntml). If thefilesdo not adhereto the COARDS conventions, Ferret will still
attempt to access them. Often, the user can use Ferret controls for regridding, reshaping, and
otherwise transforming data to recover the intended file contents.

Here are afew common ways in which netCDF files may deviate from the COARDS standard
and how one may cope with those situations in Ferret.

» Fileswith disordered coordinates

In the COARDS conventions an axis (ak.a “coordinate variable’) must have
monotonically-increasing coordinate values. If the coordinates are disordered or repeating
in anetCDF file, then Ferret will present the coordinatesto the user (in SHOW DATA) asa
dependent variable, whose name isthe axis name, and it will substitute an axis of the index
valuesl, 2, 3, ... Note that Ferret will apply this same behavior when files have long irregu-
lar axis definitions that exceed Ferret’s axis memory capacity.

DATA SET BASICS 29

http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

» Fileswith reverse-ordered axes

If the coordinates of an axis are monotonically decreasing, instead of increasing, Ferret will
transparently reverse both the axis coordinates and the dependent variables that are defined
upon that axis. Note that if Ferret writes a reverse-ordered variable to a new netCDF file
(with the SAVE command), the coordinates and data in the output file will be in
monotonically increasing coordinate order—reversed from the input file.

If the values of a dependent variable are reversed, but there is no associated coordinate axis
then use attach aminus sign to the corresponding axis orientation in the USE/ORDER= or
SET VARIABLE/ORDER= qualifier to designate that the variable(s) should be reversed
along the corresponding axis. (Feature not yet implemented as of 5/5/99)

* Fileswith “invalid”’ variable names

The COARDS standard specifiesthat variable names should begin with aletter and be com-
posed of letters, digits, and underscores. In fileswhere the variable names contain other | et-
ters, references to those variable names in Ferret must be enclosed in single quotes.

* Fileswith permuted axis ordering

The COARDS standard specifiesthat if any or all of the dimensions of avariable have the
interpretationsof “dateor time” (ak.a. “T"), “height or depth” (a.k.a.“Z"), “latitude”’ (a.k.a.
“Y™), or “longitude” (a.k.a. “X”) then those dimensions should appear in the relative order
T, then Z, then Y, then X in the CDL definition corresponding to thefile. In files where the
axis ordering has been permuted the command qualifiers USE/ORDER= and SET
VARIABLE/ORDER-= allow the user to inform Ferret of the correct permutation of coordi-
nates. Note that if Ferret writes a permuted variable to a new netCDF file (with the SAVE
command), the coordinates and datain the output filewill bein standard X-Y-Z-T ordering
(asindicated in the user’'s /ORDER specification)—permuted from the original file order-
ing. See the Command Reference (p. 203) for a complete description of the ORDER quali-
fier.

3 TMAP-FORMATTED DATA
As of Ferret version 2.30, NetCDF is the suggested format for data storage (see Chapter 10,
“Converting to NetCDF,” p. 159). This section describing TMAP information isincluded only

for users who already work with datain TMAP format.

To access TMAP-formatted data sets use

SET DATA SET TMAP setl, TMAP set2, ...

30 CHAPTER 2

4.1

TMAP_setn must be the name of a descriptor file for a data set that is in TMAP “GT”
(grids-at-timesteps) or “TS’ (time series) format. (“Ferret” format and “TMAP’ format are
synonyms.)

If the directory portion of the filenameis omitted the environment variable FER_DESCR will
beusedto providealist of directoriesto search. Theorder of directoriesin FER_DESCR deter-
minesthe order of directory searches. If the extension is omitted a default of “.des” will be as-
sumed (if the filename has more than one period, the extension must be given explicitly).

Descriptors

For every TMAP-formatted data set there is a descriptor file containing summary information
about the contents of the data set. Thisincludes variable names, units, grids, and coordinates.
When the command SET DATA_SET isgiven to Ferret pointing to a GT-formatted or TS-for-
matted data set, it is the name of the descriptor file that must be specified.

BINARY DATA

Ferret can read binary datafiles that are formatted with and without FORTRAN record length
headers (binary files without FORTRAN record |length formatting are a so known as “ stream”
files).

FORTRAN-structured binary files

Files containing record length information are created by FORTRAN programs using the
ACCESS="SEQUENTIAL" (the FORTRAN default) mode of file creation and also by Ferret
using LIST/FORMAT=unf. Filesthat contain FORTRAN record length headers must have all
dataaligned on a4-byte boundary. Suppose “rrrr” represents 4 bytes of record length informa-
tion and “dddd” represents a4-byte datavalue. Then FORTRAN-structured files are organized
in one of the following two ways:

4.1.1 Records of uniform length

A FORTRAN-structured file with records of uniform length (3 single-precision floating point
data values per record in thisfigure) looks like this:

rrrr dddd dddd dddd rrrr ...

FORTRAN code that creates adatafile of thistype might look something like this (sequential
access is the default and need not be specified in the OPEN statement):

REAL VARI (10), VAR2(10), VAR3(10)

DATA SET BASICS 31

OPEN (UNIT=20, FORMAT='UNFORMATTED’ , ACCESS=' SEQUENTIAL'’ ,FILE="MYFILE.DAT")

DO 10 I=1,10
WRITE (20) VAR1(I), VAR2(I), VAR3(I)
10 CONTINUE

To access data from thisfile, use

yes? SET DATA/EZ/FORMAT=UNF/VAR=varl,var2,var3/COL=3 myfile.dat or,
yes? FILE/FORMAT=UNF/VAR=varl,var2,var3/COLUMNS=3 myfile.dat

Thisisvery similar to accessing ASCII datawith the addition of the/FORMAT=unf qualifier.
The /COLUMNS= qualifier tells Ferret the number of data values per record. Although op-
tional in the above example, thisqualifier isrequired if the number of datavaluesper recordis
greater than the number of variables being read (examples follow in section “ ASCII Data’).

4.1.2 Records of non-uniform length

A FORTRAN-structured file with variable-length records might look like this:

rrrr dddd dddd rrrr

rrrr dddd rrrr

rrrr dddd dddd dddd dddd rrrr
etc.

With care, it ispossibleto read adatafile containing variable-length records which was created
using the simplest unformatted FORTRAN OPEN statement and a single WRITE statement
for each variable. Use /[FORMAT=stream to read such files. Note that sequential accessisthe
FORTRAN default and does not need to be specified in the OPEN statement:

REAL VAR1 (1000), VARZ2(500)
OPEN (UNIT=20, FORMAT="UNFORMATTED", FILE="MYFILE.DAT")

WRITE (20) VARL
WRITE (20) VAR2

Usethequalifier /SK1Pto skip past therecord length information (/SKI1Pargumentsarein units
of words), and define agrid which will not read past the datavalues. The /COLUMNS= quali-
fier can be used when reading multiple variables to specify the number of words separating the
start of each variable:

yes? DEFINE AXIS/X=1:500:1 =xaxis
yes? DEFINE GRID/X=XAXIS mygrid
yes? FILE/FORMAT=stream/SKIP=1003/GRID=mygrid/VAR=var2 myfile.dat

Theargument 1003 isthe sum of the 1000 datawordsin record 1, plus 2 words of record length

information surrounding the data valuesin record 1 (variable varl), plus 1 word of record in-
formation preceding the datain record 2.

32 CHAPTER?2

4.2 Stream binary files

Files without embedded record length information are created by FORTRAN programs using
ACCESS="DIRECT" in OPEN statements and by C programs using the C studio library.
These files can contain a mix of integer and real numbers. The following types can be read
from an unstructured file:

FORTRAN C Sizein bytes
INTEGER* 1 char 1
INTEGER*2 short 2
INTEGER*4 int 4
REAL*4 float 4
REAL*8 double 8

4.2.1 Simple stream files

Suppose“ dddd” representsa4-byte datavalue. Then astream (or “ direct access’) binary file of
FORTRAN REAL*4 or Cfloatsis:

dddd dddd dddd dddd dddd dddd ...

The structure of the records is implied by the program accessing the data. FORTRAN code
which generates a direct access binary file might look like this:

REAL*4 MYVAR(10,5)
C Use RECL=40 for machines that specify in bytes
OPEN (UNIT=20, FILE="myfile.dat", ACCESS="DIRECT", RECL=10)

DO 100 § = 1, 5
100 WRITE (20,REC=7) (MYVAR(i,j),i=1,10)
Use the following Ferret commands to read variable “myvar” from thisfile:

yes? DEFINE AXIS/X=1:10:1 x10

yes? DEFINE AXIS/Y=1:5:1 y5

yes? DEFINE GRID/X=x10/Y=y5 glOx5

yes? FILE/VAR=MYVAR/GRID=gl0x5/FORMAT=stream myfile.dat

If thefile consisted of aset of FORTRAN REAL* 8 or C doubles, then the datawould look like:

dddddddd dddddddd dddddddd ...

and the following Ferret commands would read the data into “myvar”:

yes? DEFINE AXIS/X=1:10:1 x10
yes? DEFINE AXIS/Y=1:5:1 y5

DATA SET BASICS 33

yes? DEFINE GRID/X=x10/Y=y5 glO0x5
yes? FILE/VAR=MYVAR/GRID=gl0x5/FORMAT=stream/type=r8 myfile.dat

Note the addition of the “type” qualifier. See the FILE command (p. 221) for more details.

Since Ferret represents all variables as REAL*4, some precision is lost when reading in
REAL*8 or INTEGER*4 values. Also, some REAL*8 numbers cannot be represented as
REAL*4 numbers; the internal Ferret value of such a number is system dependent.

4.2.2 Mixed stream files

Ferret can read binary files that contain amix of numbers of different type. However, agiven
Ferret variable can only be one type. Say you have a file containing a mix of REAL*8 and
REAL*4 numbers:

dddddddd dddd dddddddd dddd dddddddd ...

The following would successfully read thefile:

yes? FILE/VAR=MYDOUBLE,MYFLOAT/GRID=somegrid/FORMAT=stream/type=r8, rd
myfile.dat

while:

yes? FILE/VAR=MYDOUBLE/GRID=someothergrid/FORMAT=stream/type=r8, r4
myfile.dat

would fail.
Stream files with byte-swapped numbers can be read with the /swap qualifier; the /order, and

/skip qualifiers are also available (see section 5.1, “Reading ASCI|I files,” p. 35, for more de-
tails on /order and /skip).

5 ASCII DATA

To access ASCII datafile sets use

yes? SET DATA/EZ ASCIT file name OF equivalently
yes? FILE ASCII file name

The following are qualifiersto SET DATA/EZ or FILE:

Qualifier Description
IVARIABLES names the variablesin the file
[TITLE associates a title with the data set

34 CHAPTER?2

5.1

Qualifier Description

/IGRID indicates multi-dimensional data and units
/COLUMNS tells how many data values are in each record
/[FORMAT specifies the format of thefile

ISKIP skipsinitial records of thefile

/ORDER specifies order of axes (which varies fastest)

Use command SET VARIABLE to individually customize the variables.

Reading ASCII files

Below are several examples of reading ASCII data properly. (Uniform record length, FOR-
TRAN-structured binary data are read similarly with the addition of the qualifier /[FORMAT=
“unf”. See Chapter 2 section “Binary Data,” p. 31, for other binary types). First, welook briefly
at the relationship between Ferret and standard matrix notation.

Linear algebra uses established conventions in matrix notation. In amatrix A(i,j), thefirst in-
dex denotes a (horizontal) row and the second denotes a (vertical) column.

All Al2 Al3 Aln
A21 A22 A23 A2n Matrix A(i,))
Aml Am2 Am3 Amn

X-Y graphsfollow established conventionsaswell, which arethat X isthe horizontal axis (and
in ageographical context, the longitude axis) and increases to the right, and Y is the vertical
axis (latitude) and increases upward (Ferret providesthe/DEPTH qualifier to explicitly desig-
nate axes where the vertical axis convention is reversed).

In Ferret, thefirst index of amatrix, i, isassociated with thefirst index of an (x,y) pair, x. Like-
wise,] correspondstoy. Element Am2, for example, correspondsgraphically tox=m andy=2.

By default, Ferret stores datain the same manner as FORTRAN—the first index varies fastest.
Use the qualifier /ORDER to alter this behavior. The following examples demonstrate how
Ferret handles matrices.

Example 1—1 variable, 1 dimension

1a) Consider adata set containing the height of aplant at regular timeintervals, listed in asin-
gle column:

2.3
3.1

DATA SET BASICS 35

ENC N
. Oy U

To access, hame, and plot this variable properly, use the commands

yes? FILE/VAR=height plant.dat
yes? PLOT height

1b) Now consider the same data, except listed in four columns:

2.3 3.1 4.5 5.6
5.7 5.9 6.1 7.2

Because there are more values per record (4) than variables (1), use:

yes? FILE/VAR=height/COLUMNS=4 plant4.dat
yes? PLOT height

Example 2—2 variables, 1 dimension

2a) Consider a data set containing the height of a plant and the amount of water given to the
plant, measured at regular time intervals:

U W
oUW
: =
w1
W I N

To read and plot this data use

yes? FILE/VAR="height,water" plant wat.dat
yes? PLOT height,water

2b) The number of columns need be specified only if the number of columns exceeds the num-
ber of variables. If the data arein six columns

2.3 20.4 3.1 31.2 4.5 15.7

use

yes? FILE/VAR="height,water"/COLUMNS=6 plant waté6.dat
yes? PLOT height,water

Example 3—1 variable, 2 dimensions
3a) Consider adifferent situation: agreenhouse with three rows of four plantsand afilewith a

single column of data representing the height of each plant at a single time (successive values
represent plantsin arow of the greenhouse):

36 CHAPTER?2

oW N W
= oy oy

If we want to produce acontour plot of height asafunction of position in the greenhouse, axes
will have to be defined:

yes? DEFINE AXIS/X=1:4:1 xplants

yes? DEFINE AXIS/Y=1:3:1 yplants

yes? DEFINE GRID/X=xplants/Y=yplants gplants

yes? FILE/VAR=height/GRID=gplants greenhouse plants.dat
yes? CONTOUR height

When reading datathe first index, x, variesfastest. Schematically, the datawill be assigned as
follows:

w w X
(GRS
o X
= o N
o X
X
o

S
wWN -

3b) If the filein the above example has, instead, 4 values per record:

3.1 2.6 5.4 4.6
3.5 6.1 . . .

then add /COLUMNS=4 to the FILE command:
yes? FILE/VAR=height/COLUMNS=4/GRID=gplants greenhouse plants.dat
Example 4—2 variables, 2 dimensions

Like Example 3, consider a greenhouse with three rows of four plants each and a data set with
the height of each plant and the length of its longest |eaf:

3.1 0.54
2.6 0.37
5.4 0.66
4.6 0.71
3.5 0.14
6.1 0.95

Again, axes and a grid must be defined:

yes? DEFINE AXIS/X=1:4:1 xht leaf

yes? DEFINE AXIS/Y=1:3:1 Yht leaf

yes? DEFINE GRID/X=xht leaf/Y=yht leaf ght leaf

yes? FILE/VAR="height,leaf"/GRID=ght leaf greenhouse ht 1f.dat
yes? SHADE height N -

yes? CONTOUR/OVER leaf

DATA SET BASICS 37

The above commands create a color-shaded plot of height in the greenhouse, and overlay a
contour plot of leaf length. Schematically, the data will be assigned as follows:

x=1 xX=2 x=3 x=4
ht , 1f ht , 1f
y=1 3.1, 0.54 2.6, 0.37 5.4, 0.66 4.6, 0.71
y=2 3.5, 0.14 6.1, 0.95 .
y=3 .o

Example 5—2 variables, 3 dimensions (time series)

Consider the same greenhouse with height and leaf length data taken at twelve different times.
Thefollowing commands will create athree-dimensional grid and a plot of the height and |eaf
length versus time for a specific plant.

yes? DEFINE AXIS/X=1:4:1 xplnt tm

yes? DEFINE AXIS/Y=1:3:1 yplnt tm

yes? DEFINE AXIS/T=1:12:1 tplnt tm

yes? DEFINE GRID/X=xplnt tm/Y=yplnt tm/T=tplnt tm gplant2
yes? FILE/VAR="height,leaf"/GRID=gplant2 green time.dat
yes? PLOT/X=3/Y=2 height, leaf N

Example 6—1 variable, 3 dimensions, permuted order (vertical profile)

Consider a collection of oceanographic measurements made to a depth of 1000 meters. Sup-
pose that the data file contains only asingle variable, salt. Each record contains a vertical pro-
file (11 values) of a particular x,y (long,lat) position. Supposing that successive records are
successive longitudes, the datafile would look as follows (assume the equivalencies are not in
thefile):

z=0 z=10 z=20
x=30W, y=55 35.89 35.90 35.93 35.97 36.02 36.05 35.96 35.40 35.13 34.89 34.72
x=29W,y=535 35.89 35.91 35.94 35.97 36.01 36.04 35.94 35.39 35.13 34.90 34.72

Use the qualifier /IDEPTH= when defining the Z axis to indicate positive downward, and
/ORDER when setting the data set to properly read in the permuted data:

yes? DEFINE AXIS/X=30W:25W:1/UNIT=degrees salx

yes? DEFINE AXIS/Y=5S:5N:1/UNIT=degrees saly

yes? DEFINE AXIS/Z=0:1000:100/UNIT=meters/DEPTH salz
yes? DEFINE GRID/X=salx/Y=saly/Z=salz salgrid

yes? FILE/ORDER=zxy/GRID=salgrid/VAR=sal/COL=11 sal.dat

TRICKS TO READING BINARY AND ASCII FILES

Since binary and ASCI| files are found in abewildering variety of non-standardized formats a
few tricks may help with reading difficult cases.

38 CHAPTER?2

» Sometimes variables are interleaved with data axesin unstructured (stream) binary files. A
simple trick is to read them all as a single variable, say, “Vall,” in which the sequence of
variables in the file V1, V2, V3, ... isregarded as an axis of the grid. Then extract the
variables by defining V1 = Vall[I=1] (if the | axis was used, else J=1, K=1, or L=1) as
needed.

 In some ASCII files the variables are presented as blocks—a full grid of variable 1, then a
full grid of variable 2, etc. Thesefilesmay be read using Unix soft links so that the samefile
can be opened as several Ferret data sets. Then use the FILE command to point separately to
each soft link using the /SKIP qualifier to locate the correct starting point in thefilefor each
variable. For example,

Unix commands:

In -s my data my dat.vl
In -s my data my dat.v2
In -s my data my dat.v3

Ferret commands:

yes? FILE/SKIP=0/VAR=vl my dat.vl
yes? FILE/SKIP=100/VAR=v2 my dat.v2
yes? FILE/SKIP=200/VAR=v3 my dat.v3

+ If an ASCII file contains a repeating sequence of recordstry describing the entire sequence
using asingle FORTRAN FORMAT statement. An example of such a statement would be
(3F8.4,2(/5F6.2)). The dlash character and the nested parentheses all ow multi-record groups
to appear as a single format. Note that the /COLUMNS qualifier should reflect the total
number of columns in the repeating group of records.

 If an ASCII or binary file contains gridded data in which the order of axesisnot X-Y-Z-T
read the data in (which results in the wrong axis ordering) and use the LIST/ORDER= to
permute the order on output. The resulting file will have the desired axis ordering.

+ If the times and geographical coordinate locations of the grid are inter-mixed with the
dependent variablesin thefilethen 1) issuea FIL E command to read the coordinates only; 2)

use DEFINE AXIS/FROM_DATA to define axes and DEFINE GRID to define the grid; 3)
use FILE/GRID=mygrid to read the file again.

7 ACCESS TO REMOTE DATA SETSWITH DODS

* What isDODS?
DODS, the Distributed Oceanographic Data System, allows users to access data anywhere

fromtheinternet using avariety of client/server methods, including Ferret. Employing tech-
nology similar to that used by the World Wide Web, DODS and Ferret create apowerful tool

DATA SET BASICS 39

for the retrieval, sampling, analyzing and displaying of datasets; regardless of size or data
format (though there are dataformat limitations).

For more information on DODS, please see the DODS home page at

http://unidata.ucar.edu/packages/dods/

Similar to the WWW, DODS s an emerging technology and isunder devel opment. Asare-
sult, it islikely that the detail s with which things are accomplished will be changing.

» Accessing Remote Data Sets

Datasets are accessed through Ferret using their raw Universal Resource Locator (URL) ad-
dress. For example, to access the Coads climatology, hosted at PMEL :

yes? use “http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc”

Once the dataset has been initialized, it is used just like any other local dataset.

yes? list/x=140w/y=2n/t="16-Feb" sst

SEA SURFACE TEMPERATURE (Deg C)

LONGITUDE: 141w

LATITUDE: 1N

TIME: 15-FEB 16:29

DATA SET:
http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc

26.39

We have developed some general scripts (available at http:/ferret.wrc.noaa.gov/
Ferret/Dods/) which will assist in both finding and using data with Ferret and DODS. This
script illustrates the use of datasets which are located on our server at PMEL.

yes? go dods

DODS data suppliers currently known to your Ferret installation:
*x ok * ok * ok * ok ll’l .

dods cdc.jnl: “Use” a dods data set from NOAA/CDC

dods:fsu.jnl: “Use” a dods data set from FSU

dods jpl.jnl: “Use” a dods data set from JPL

dods:pmel.jnl: “Use” a dods data set from NOAA/PMEL

dods uri.jnl: “Use” a dods data set from URI/GSO

The techniques for cataloging and organizing distributed DODS data are still under de-
velopment. The Ferret scripts to assist with DODS access are subject to change.

yes? go dods pmel

The available data sets are:
coads climatology.nc levitus climatology.nc

The base URL is: http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/
yes? go dods pmel coads climatology.nc

yes? sh data/br
currently SET data sets:

40 CHAPTER 2

http://unidata.ucar.edu/packages/dods/
http://ferret.wrc.noaa.gov/Ferret/Dods/
http://ferret.wrc.noaa.gov/Ferret/Dods/

1> http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads climatology.nc
(default)
yes? list/x=140w/y=2n/t="16-Apr" sst

SEA SURFACE TEMPERATURE (Deg C)

LONGITUDE: 141W

LATITUDE: 1N

TIME: 16-APR 13:27

DATA SET:
http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc

27.07

» Debugging Accessto Remote DODS Data Sets

To find out more information about a particular dataset, or to debug problems, there are
three elements of the dataset which may be accessed viaaweb browser. To accessthisinfor-
mation, merely append a dds, das, or info to the dataset name. For example:

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads climatology.nc.dds

DDS standsfor Data Description Structure and thiswill return atext description of the data
sets structure.

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.das

DAS stands for Dataset Attribute Structure and this will return atext description of attrib-
utes assigned to the variables in the data set.

http://ferret.wrc.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.info
Thiswill return atext description of the variablesin the dataset.
» Sharing Data SetsviaDODS

One of the most powerful aspect of DODSisthe ease withwhichit allowsfor the sharing of
data. With just afew simple steps, anyone running a web server can aso be a DODS data
server, thereby allowing data set access to anyone with an internet connection.

Simply copying afew precompiled binariesinto the cgi-bin directory of an already config-
ure httpd server isall it takesto become aDODS server. Once the server is configured, add-
ing or removing data sets is as simple as copying them to the server data directory or
deleting them from that directory.

This ability has such immense potential that it bears extra emphasis. Imagine that within
seconds of finishing a model run, a remote colleague is able to look at your dataset with
whatever DODS client he/she desires, beit Ferret, or Matlab, etc. No need for you to pack-
age up the data or for your colleague to download and/or reformat it, it is ready to be ana-
lyzed right away.

For more detailed information on setting up a DODS server, please see the DODS home
page (http://unidata.ucar.edu/packages/dods).

DATA SET BASICS 41

http://unidata.ucar.edu/packages/dods

Chapter 3: VARIABLES AND EXPRESSIONS

1 VARIABLES

Variables are of 2 kinds:

1) filevariables (read from disk files)
2) user-defined variables (defined by the user with LET command)

Both types may be accessed identically in all commands and expressions.
Variables, regardless of kind, possess the following associated information:
1) grid—the underlying coordinate structure
2) units
3) title
4) title modifier (additional explanation of variable)
5) flag value for missing data points

Use the commands SHOW DATA and SHOW VARIABLES to examine file variables and
user-defined variables, respectively.

Thepseudo-variablesl, J, K, L, X, Y, Z, T and others may be used to refer to the underlying grid
locations and characteristics and to create abstract variables.

1.1 Variable syntax

Variablesin Ferret are referred to by names with optional qualifying information appended in
square brackets. See DEFINE VARIABLE (p. 218) for adiscussion of legal variable names.

The information that may be included in the square brackets includes

D=data_ set name or number ! indicate the data set
G=grid or variable name ! request a regridding
X=,Y=,72=,T=,1I=,J=,K=,L= ! specify region and transformation

See Chapter 4 on Regions (p. 90) for more discussion of the syntax of region qualifiers and
transformations.

Some examples of valid variable syntax are

Myvar data set and region as per current context
myvar [D=2] myvar from data set number 2 (see SHOW DATA, p. 269)
myvar

|

!
D=a dset] ! myvar from data set a dset.cdf or a dset.des
D=myfile.txt] !
G=gridname] !

myvar from file myfile.txt
myvar regridded to grid gridname

myvar
myvar

VARIABLES AND EXPRESSIONS 43

myvar [G=var2] myvar regridded to the grid of var2
which is in the same data set as myvar
myvar regridded to the grid of wvar2
which is in data set number 2

myvar regridded to a dynamic grid which
has X axis axisname

myvar regridded to a dynamic grid which
has the X axis of variable var2

myvar subsampled at every 5th point
(regridded to a subsampled axis)

myvar subsampled at every 5 degrees
(regridded to a 5-deg axis by linear interpolation)

myvar [G=var2 [D=2]]
myvar [GX=axisname]
myvar [GX=var?2]
myvar [I=1:31:5]

myvar [X=20E:50E:5]

1.2 File variables

File variables are stored in disk files. Input data files can be ASCII, binary, NetCDF, or
TMAP-formatted (see Chapter 2, Data Set Basics, p. 27). File variables are made available
with the SET DATA (alias USE) command.

In some netCDF filesthe variable names are not consistent with Ferret’srulesfor variable nam-
ing. They may be case-sensitive (for example, variables“v” and “V” defined in the samefile),
may be restricted names such asthe Ferret pseudo-variablenamesl, J, K, L, X, Y, Z, T, XBOX,
YBOX, ZBOX, or TBOX, or them may include “illegal” characters such as “+”, “-", “%”",
blanks, etc. To access such variable names in Ferret file smply enclose the name in single
guotes. For example,

yes? PLOT ‘x’
yes? CONTOUR ‘SST from MP/RF measurements’

1.3 Pseudo-variables

Pseudo-variables are variables whose val ues are coordinates or coordinate information from a
grid. Valid pseudo-variables are

X —x axiscoordinates | —x axis subscripts XBOX —size of x grid box
Y —y axiscoordinates J—y axis subscripts YBOX —sizeof y grid box
Z —zaxiscoordinates K —z axis subscripts ZBOX —size of z grid box
T —t axis coordinates L —t axis subscripts TBOX —size of t grid box

A grid box isaconcept needed for sometransformations along an axis; it isthelength along an
axisthat belongs to asingle grid point and functions as a weighting factor during integrations
and averaging transformations.

The pseudo-variables|, J, K, and L are subscripts; that is, they are a coordinate system for re-
ferring to grid locationsin which the points along an axis are regarded asintegersfrom 1 to the
number of pointson the axis. Thisisclear if you look at one of the sample data sets:

yes? USE levitus climatology
yes? SHOW DATA

44 CHAPTERS3

1> /home/el/tmap/fer dsets/descr/levitus climatology.des (default)
Levitus annual climatology (1x1 degree)
diagnostic variables: NOT available

name title I J K L
TEMP TEMPERATURE 1:360 1:180 1:20 R
... on grid GLEVITR1 X=20E:20E (380) Y=90S:90N Z=0m:5000m

SALT SALINITY 1:360 1:180 1:20

. on grid GLEVITR1 X=20E:20E (380) Y=90S:90N Z=0m:5000m

We see that there are 20 points along the z-axis (1:20 under K), for example, and that the z-axis
coordinate values range from O meters to 5000 meters. Pseudo-variables depend only on the
underlying grid, and not on the variables (in this case, temperature and salt).

Examples. Pseudo-variables
1) yes? LIST/I=1:10 I
2)yes? LET xflux = u * vbox[G=u]
1.3.1 Grids and axes of pseudo-variables
The name of a pseudo-variable, alone, ("1”, “T”, “ZBOX”, etc.) is not sufficient to determine
the underlying axis of the pseudo-variable. The underlying axis may be specified explicitly,

may be inherited from other variables used in the same expression, may be generated dynami-
cally, or may be inherited from the current default grid. The following examplesillustrate the

possibilities:
TEMP + Y ! pseudo-variable Y inherits the y axis of variable TEMP
Y [G=TEMP] ! explicit: Y refers to the y axis of variable TEMP
Y[GY=axis name] ! explicit: Y refers to axis axis name
Y[Y=0:90:2] ! v axis is dynamically generated (See “dynamic axes”>,
!
' p. 78)

In the expression

LET A =X + Y

inwhich the definition provides no explicit coaching, nor are there other variables from which
Y can inherit an axis, the axis of Y will be inherited from the current default grid. The current
default grid is specified by the SET GRID command and may be queried at any time with the
SHOW GRID command. SHOW GRID will respond with “Default grid for DEFINE
VARIABLE isgrid”.

Note that when pseudo-variables are buried within auser variable definition they do not inherit
from variables used in conjunction with the user variable. For example, contrast these expres-
sions involving pseudo-variable Y

USE coads climatology ! has variable SST

LET A =Y ! Y buried inside variable A (axis indeterminate)
LIST SST + A ! v axis inherited from current default grid
LIST SST + Y ! v axis inherited from grid of SST

VARIABLES AND EXPRESSIONS 45

LIST SST + A[G=SST] ! v axis inherited from grid of SST

1.4 User-defined variables

New variables can be defined from existing variables and from abstract mathematical quanti-
ties (such as COS(latitude)) with command DEFINE VARIABLE (alias LET).

See command DEFINE VARIABLE (p. 218) and command LET (p. 226) in the Commands
Reference.

Examples: User-defined variables

1)yes? LET/TITLE="Surface Relief x1000 (meters)" rl000=rose/1000
2)yes? LET/TITLE="Temperature Deviation" tdev=temp - temp|[Z=Qave]

1.5 Abstract variables

Ferret can be used to manipulate abstract mathematical quantities such as SIN(x) or
EXP(k*t)—quantities that are independent of file variable values. Such quantities are referred
to as abstract expressions.

Example: Abstract variables

Contour the function
COS (a*Y) /EXP (b*T) where a=0.25 and b=-0.02

over the range
Y=0:45 (degrees) and T=1:100 (hours)

with aresolution of
0.5 degreeonthe Y axisand 2 hourson the T axis.

Quick and dirty solution:
yes? CONTOUR COS(0.25*Y[Y=0:45:0.5]) /EXP(-0.2*T[T=1:100:2])

Nicer (Figure 7); plot is documented with correct units and titles):

yes? DEFINE AXIS/Y=0:45:0.5 /UNIT=DEGREES yax
yes? DEFINE AXIS/T=1:100:2 /UNIT=HOURS tax
yes? DEFINE GRID/T=tax/Y=yax my grid

yes? SET GRID my grid

yes? LET a=0.25

yes? LET b=-0.02

yes? CONTOUR/COS (a*Y) /EXP (b*T)

See Chapter 4, section “Grids’ (p. 77), for more information on grids.

46 CHAPTERS3

LETITUDE

o,

T (HOURE)

COS(A*Y) /EXP(B*T)

Figure 7.

1.6 Missing value flags

Data values that are absent or undefined for mathematical reasons (e.g., 1/0) will be repre-
sented in Ferret with amissing valueflag. In SHADE outputs amissing value flag embedded at
some pointinavariablewill result in atransparent rectangul ar hole equal to the size of the grid
cell of themissingvalue. INnaCONTOUR or FILL plot it will resultinalarger hole—extending
past the grid box edge to the coordinate location of the next adjacent non-missing point—since
contour lines cannot be interpolated between amissing value and its neighboring points. In the
output of the LIST command for cases where the/FORMAT qualifier is not used the missing
value will be represented by 4 dots (“....”). For cases where LIST/FORMAT=FORTRAN-for-
mat is used the numerical value of the missing value flag will be printed using the format pro-
vided.

1.6.1 Missing values in input files

Ferret does not impose a standard for missing value flags in input data sets; each variable in
each data set may have its own distinct missing value flag(s). The flag(s) actually in use by a
data set may be viewed with the SHOW DATA/VARIABLES command. If no missing value
flag is specified for a data set Ferret will assume a default value of —1.E+34.

For EZ input data sets, either binary or ASCII, the missing data flag may be specified with the

SET VARIABLE/BAD=command. A different value may be specified for each variableinthe
data set.

VARIABLES AND EXPRESSIONS 47

For NetCDF input data sets the missing value flag(s) isindicated by the values of the attributes
“missing_value” and“_FillValue.” If both attributes are defined to have different values both
will be recognized and used by Ferret as missing value indicators, however the occurrences of
_Fillvalue will be replaced with the value of missing_value as the data are read into Ferret’s
memory cache so that only a single missing value flag is apparent inside of Ferret. The com-
mand SET VARIABLE/BAD= can also be applied to NetCDF variables, thereby temporarily
setting a user-imposed value for _FillValue.

1.6.2 Missing values in user-defined variables

User-defined variables may in general be defined as expressions involving multiple variables.
The component variables need not in general agree in their choice of missing value flags. The
result variable will inherit the bad value flag of the first variable in the expression. If the first
component in the expression is aconstant or a pseudo-variable, then Ferret imposesits default
missing value flag of —1.E+34.

The function MISSING(variable replacement) provides a limited control over the choice of
missing valuesin user-defined variables. Note, however, that whilethe MISSING function will
replace the missing values with other valuesit will not change the missing value flag. In other
words, the replacement values will no longer be regarded as missing.

1.6.3 Missing values in output NetCDF files

Valuesflagged asmissing inside Ferret will be faithfully transferred to output files—no substi-
tution will occur asthe dataarewritten. In the case of NetCDF output files both of the attributes
missing_value, and _FillValue will be set equal to the missing value flag.

Under some circumstances it is desirable to save a user-defined variablein aNetCDF file and
then to redefine that variable and to append further output. (An example of thisisthe process of
consolidating several files of input, say, moored measurements, into a gridded output.) The
process of appending will not change any of the NetCDF attributes—neither long_name (title),
units, nor missing_value or _FillValue. If the subsequent variable definitions do not agreein
their choice of missing value flags the resulting output may contain multiple missing value
flags that will not be properly documented.

An easy “trick” that avoidsthis situation isto begin all of the variable definitionswith an addi-
tionof zero,“LET var=0+....” Theaddition of zerowill not affect the value of the output but it
will guarantee that a missing value flag of —1.E+34 will be consistently used. Of course, you
will want to use the SET VARIABLE/TITLE= command in conjunction with this approach.

48 CHAPTERS3

1.6.4 Displaying the missing value flag

If the LIST command isused, missing valuesare, by default, displayed as”....” Toexaminethe
flag as anumerical value, use LIST/FORMAT=(E) (or some other suitable format).

2 EXPRESSIONS

Throughout this manual, Ferret commands that require and manipulate data are informally
called “action” commands. These commands are:

PLOT

CONTOUR

FILL (aiasfor CONTOUR/FILL)
SHADE

VECTOR

POLY GON

WIRE

LIST

STAT

LOAD

Action commands may use any valid algebraic expression involving constants, operators
(+,—*,...), functions(SIN, MIN, INT,...), pseudo-variables (X, TBOX, ...) and other variables.

A variable name may optionally befollowed by square brackets containing region, transforma-
tion, data set, and regridding qualifiers. For example, “temp”, “salt[D=2]", “u[G=temp”],
“u[Z=0:200@AVE]".
The expressions may also contain a syntax of:

IF condition THEN expression_ 1 ELSE expression_2

Examples: Expressions

I) temp ~ 2
temperature squared

II) temp - temp[Z=@AVE]
for the range of Z in the current context, the temperature deviations from the vertical aver-
age

i) cos (v)

the cosine of the Y coordinate of the underlying grid (by default, they-axisisimplied by the
other variablesin the expression)

VARIABLES AND EXPRESSIONS 49

IV) IF (vwnd GT vwnd[D=monthly navy winds]) THEN vwnd ELSE 0
use the meridional velocity from the current data set wherever it exceeds the value in data
set monthly _navy winds, zero elsewhere.

2.1 Operators

Valid operators are

+

> T~ * |

(exponentiate)
AND

OR

GT

GE

LT

LE

EQ

NE

2.2 Multi-dimensional expressions

Operators and functions (discussed in the next section, Functions) may combine variables of
like dimensions or differing dimensions.

If the variables are of like dimension then the result of the combination is of the same
dimensionality asinputs. For example, suppose there are two time series that have dataon the
same time axis; the result of a combination will be atime series on the same time axis.

If the variables are of unlike dimensionality, then the following rules apply:

1) To combine variables together in an expression they must be “conformable” along each
axis.

2) Two variables are conformable along an axis if the number of points along the axisisthe
same, or if one of the variables has only asingle point along the axis (or, equivalently, isnor-
mal to the axis).

3) When avariable of size 1 (asingle point) iscombined with avariable of larger size, the vari-
able of size 1 is“promoted” by replicating its value to the size of the other variable.

4) If variables are the same size but have different coordinates, they are conformable, but Fer-
ret will issue amessage that the coordinates on the axisare ambiguous. Theresult of the com-

50 CHAPTERS3

bination inherits the coordinates of the FIRST variable encountered that has more than a
single point on the axis.

Examples:

Assume aregion J=50/K=1/L=1 for examples 1 and 2. Further assumethat variablesv1 and v2
share the same x-axis.

1) yes? LET newv = v1[I=1:10] + v2[I=1:10] same dimension (10)
2) yes? LET newv = v1[I=1:10] + v2[I=5] 'newv has length of vl (10)

3) Wewant to comparethe salt valuesduring thefirst half of theyear with the valuesfor the sec-
ond half. Salt_diff will be placed on thetime coordinates of thefirst variable—L=1:6. Ferret
will issue awarning about ambiguous coordinates.

yes? LET salt diff = salt[L=1:6] - salt[L=7:12]

4) In this example the variable zero will be promoted along each axis.

yes? LET zero = 0 * (i+7)
yes? LIST/I=1:5/J=1:5 zero 15X5 matrix of 0’s

5) Herewecalculatedensity; salt and temp are onthesamegrid. Thisexpressionisan XY Z vol-
ume of points (100x100x10) of density at 10 depths based on temperature and salinity val-
ues at the top layer (K=1).

yes? SET REGION/I=1:100/J=1:100
yes? LET dens = rho un (temp[K=1], salt[K=1], Z[G=temp,K=1:10]

2.3 Functions

Functions are utilized with standard mathematical notation in Ferret. The arguments to func-
tions are constants, constant arrays, pseudo-variables, and variables, possibly with associated
qualifiersin square brackets, and expressions. Thus, all of thesearevalid function references:

* EXP(-1)
* MAX(a,b)
* TAN(a/b)

® SIN(Y[g=my sst])

* DAYS1900(1989,{3,6,9},1)

A few functions also take strings as arguments. String arguments must be enclosed in double

guotes. For example, afunction to write variable “u” into afile named “my_output.v5d”, for-
matted for the VisbD program might be implemented as

VARIABLES AND EXPRESSIONS 51

* LOAD WRITE VIS5D (“my output.v5d”, a)

Valid functions are

Name #Args Description

MAX

MIN

INT

ABS

EXP

LN

LOG

SIN

COS

TAN

ASIN

52 CHAPTER3

Compares two fields and selects the point by point maximum.
MAX (temp[K=1], temp[K=2]) returnsthe maximum tempera-
ture comparing thefirst 2 z-axis levels

Compares two fields and selects the point by point minimum.
MIN(airt[L=10], airt[L=9]) givestheminimum air tempera
ture comparing two timesteps

Truncates values to integers.
INT (salt) returnsthe integer portion of variable “salt” for all
valuesin the current region

Absolute value.
aBs (U) takesthe absolute value of U for al points within the
current region

g —Exponential; argument isreal.
Exe (x) raiseseto the power X for al points within the current
region

logeX—Natural logarithm; argument isreal.
(%) takesthe natural logarithm of X for al points within the
current region

log10X—Common logarithm; argument isreal.
1oG (x) takesthe common logarithm of X for al points within
the current region

Trigonometric sine; argument isin radians and is treated modulo
2*pi.

stn(x) computes the sine of X for al points within the current
region

Trigonometric cosine; argument is in radians and is treated
modulo 2*pi.

cos (v) computesthecosineof Y for al pointswithin the current
region

Trigonometric tangent; argument is in radians and is treated
modulo 2*pi.

TAN (theta) computes the tangent of thetafor all points within
the current region

Trigonometric arcsine (-pi/2,pi/2). The result will be flagged as
missing if the absolute value of the argument is greater than 1; re-
sultisin radians.

ASTIN(value) computes the arcsine of “value” for all points
within the current region

Name

ACOS

ATAN

ATANZ2

MOD

DAY S1900

MISSING

IGNOREO

RANDU

RANDN

#Args Description

Trigonometric arccosine (O,pi). Theresult will beflagged as miss-
ing of the absol ute value of the argument greater than 1; resultisin
radians.

ACOS (value) computesthe arccosine of “value” for al points
within the current region

Trigonometric arctangent (-pi/2,pi/2); result isin radians.
ATAN (value) computes the arctangent of “value” for al points
within the current region

2-argument trigonometric arctangent of Y/X (-pi,pi); discontinu-
ousat Y=0.

ATANZ (X,Y) computesthe 2-argument arctangent of Y/X for all
points within the current region

Modulo operation (argl —arg2*[argl/arg2]). Returnsthe remain-
der when the first argument is divided by the second.

MoD (x,2) computes the remainder of X/2 for all points within
the current region

DAYS1900 (year,month, day) computesthe number of daySSI ncel
Jan 1900. This function is useful in converting dates to Julian

days.

Replaces missing valuesin the first argument (multi-dimensional
variable) with the second argument; the second argument may be
any conformable variable.

MISSTING (temp, -999) replaces missing values in temp with

—999

MISSING (sst, temp[D=coads_climatology]) replacesmlssmg
sst values with temperature from the COADS climatol ogy

Replaces zeros in a variable with the missing value flag for that
variable.
TGNOREO (salt) replaceszerosinsalt with themissing valueflag

Generates a grid of uniformly distributed [0,1] pseudo-random
values. Thefirst valid valueinthefield isused asthe random num-
ber seed. Values that are flagged as bad remain flagged as bad in
the random number field.

RANDU (temp[T=105:135,k=1:5]) generates a field of uni-
formly distributed random val ues of the same size and shape asthe
field “temp[1=105:135,K=1:5]" using temp[I=105,k=1] as the
pseudo-random number seed.

Generates a grid of normally distributed pseudo-random values.
As above, but normally distributed rather than uniformly distrib-
uted.

VARIABLES AND EXPRESSIONS 53

Name #Args Description

RHO_UN 3
THETA_FO 4
RESHAPE 2

ZAXREPLACE 3

XSEQUENCE 1
Y SEQUENCE 1

ZSEQUENCE 1

TSEQUENCE 1

54 CHAPTER3

Calculatesrho (density kg/m"3) from salt (psu), temperature (deg
C) and pressure (decibars) using the 1980 UNESCO International
Equation of State (IES80). The routine uses the high pressure
equation of statefrom Millero et al. (1980) and the oneatmosphere
equation of state from Millero and Poisson (1981) as reported in
Gill (1982). Thenotation followsMillero et al. (1980) and Millero
and Poisson (1981).

RHO UN(salt, temp, Z)

Calculateslocal potential temperature field at salt (psu), tempera-
ture (deg C), pressure (decibars) and specified reference pressure.
This calculation uses Bryden (1973) polynomial for adiabatic
lapse rate and Runge-K utta4th order integration algorithm. Refer-
ences. Bryden, H., 1973, Deep-Sea Res., 20, 401-408; Fofonoff,
N.M, 1977, Deep-Sea Res., 24, 489-491.

THETA FO(salt, temp, Z, Z reference)

The result of the RESHAPE function will be argument A
“wrapped” on the grid of argument B. A common use of thisfunc-
tionisto view multi-year time series dataas a 2-dimensional field
of 12 monthsvs. year.

RESHAPE (Tseries,MonthYear)

ZAXREPLACE (V, ZVALS, ZAX)

Convert between aternative monotonic Zaxes, where the map-
ping between the source and destination Z axes is a function of
X,Y,andor T. Typical applicationsinthefield of oceanography in-
clude converting from aZ axis of layer number to aZ axisin units
of depth (e.g., for sigma coordinate fields) and converting from a
Z axes of depth to one of density (for a stably stratified fluid).

Argument 1, V, isthe field of data values, say temperature on the
“source” Z-axis, say, layer number. The second argument,
ZVALS, contains values in units of the desired destination Z axis
(ZAX) onthe Z axisasV — for example, depth val ues associated
with each vertical layer. The third argument, ZAX, isany variable
defined on the destination Z axis, often “Z[gz=zaxis hame]” is
used.

Unravels the data from the argument into a 1-dimensiona line of
dataon an axisABSTRACT.

Unravels the data from the argument into a 1-dimensiona line of
dataon an axisABSTRACT.

Unravels the data from the argument into a 1-dimensiona line of
dataon an axisABSTRACT.

Unravels the data from the argument into a 1-dimensional line of
dataon an axisABSTRACT.

2.4 Transformations

Transformations (e.g., averaging, integrating, etc.) may be specified along the axes of avari-
able. Sometransformations (e.g., averaging) reduce arange of datato a point; others (e.g., dif-
ferentiating) retain the range.

When transformations are specified along more than one axis of a single variable the order of
execution is X axisfirst, then'Y then Z then T.

The regridding transformations are described in Chapter 4 (p. 77).
Example syntax: Teve[z=0:100e10c:20] (depth at which temp has value 20)

Valid transformations are

Default
Transform Argument Description
@DIN definite integral (weighted sum)
@IIN indefinite integral (weighted running sum)
@AVE average
@VAR unweighted variance
@MIN minimum
@MAX maximum
@SHF 1pt shift
@SBX 3pt boxcar smoothed
@SBN 3pt binomia smoothed
@SHN 3 pt Hanning smoothed
@SPZ 3pt Parzen smoothed
@SWL 3pt Welch smoothed
@DDC centered derivative
@DDF forward derivative
@DDB backward derivative
@NGD number of valid points
@NBD number of bad (invalid) points flagged
@SUM unweighted sum
@RSUM running unweighted sum
@FAV 3pt fill missing values with average
@FLN:n 1pt fill missing values by linear interpolation
@FNR:n 1pt fill missing values with nearest point
@LOC 0 coordinate of ... (e.g., depth of 20 degrees)
@WEQ “weighted equal” (integrating kernel)
@CDA closest distance above
@CDB closest distance below
@CIA closest index above
@CIB closest index below

VARIABLES AND EXPRESSIONS 55

The command SHOW TRANSFORM will produce a list of currently available transforma-
tions.

Examples. Transfor mations

average of u between 0 and 100in Z

box-car smooths sst with a 10 time point filter
tau[L=1:25@DDC] centered time derivative of tau

v [L=@TIN] indefinite (accumulated) integral of v

gflux [X=@AVE, Y=AVE] — XY area-averaged gflux

U[Z=0:100QAVE]
sst [T=@SBX:10]

2.4.1 General information about transformations

Transformations are normally computed axis by axis; if multiple axes have transformations
specified simultaneously (e.g., u[z=eavE, 1=esBx:10]) the transformations will be applied se-
guentially intheorder X thenY then Z then T. There aretwo exceptionsto this: if @DIN isap-
plied simultaneously to both the X and Y axes (in units of degrees of longitude and latitude,
respectively) the calculation will be carried out on a per-unit-area basis (as atrue double inte-
gral) instead of a per-unit-length basis, sequentially. This ensures that the COSINE(latitude)
factors will be applied correctly. The same applies to @AV E simultaneously on X and Y.

Datathat are flagged as invalid are excluded from cal culations.

When calculating integrals and derivatives (@I IN, @DIN, @DDC, @DDF, and @DDB) Fer-
ret attempts to use standardized units for the grid coordinates. If the underlying axisisin a
known unit of length Ferret converts grid box lengths to meters. If the underlying axisisin a
known unit of time Ferret converts grid box lengths to seconds. If the underlying axisis de-
grees of longitude afactor of COSINE (latitude) is applied to the grid box lengths in meters.

If the underlying axis units are unknown Ferret uses those unknown units for the grid box
lengths. (If Ferret does not recognize the units of an axis it displays a message to that effect
when the DEFINE AXIS or SET DATA command defines the axis.) See command DEFINE
AXIS/UNITS (p. 214) inthe Commands Referencein thismanual for alist of recognized units.

All integrations and averaging are accomplished by multiplying the width of each grid box by
the value of the variable in that grid box—then summing and dividing as appropriate for the
particular transformation.

If integration or averaging limits are given asworld coordinates, the grid boxes at the edges of
the region specified are weighted according to the fraction of grid box that actually lieswithin
the specified region. If the transformation limits are given as subscripts, the full box size of
each grid point along the axis is used—including the first and last subscript given. The region
information that is listed with the output reflects this.

56 CHAPTERS3

Some transformations (derivatives, shifts, smoothers) require data points from beyond the
edges of theindicated region in order to perform the calcul ation. Ferret automatically accesses
this data as needed. It flags edge points as missing values if the required beyond-edge points
are unavailable (e.g., @DDC applied on the X axis at [=1).

2.4.2 Transformations applied to irregular regions

Sincetransformations are applied along the orthogonal axes of agrid they lend themselves nat-
urally to application over “rectangular” regions (possibly in 3 or 4 dimensions). Ferret has suf-
ficient flexibility, however, to perform transformations over irregular regions.

Suppose, for example, that we wish to determine the average wind speed within anirregularly
shaped region of the globe defined by athreshold sea surface temperature value. We can do this
through the creation of a mask, asin this example:

yes? SET DATA coads climatology

yes? SET REGION/1=1/@t ! January in the Tropical Pacific
yes? LET sst28 mask = IF sst GT 28 THEN 1

yes? LET masked wind speed = wspd * sst28 mask

yes? LIST masked wind speed[X=QAVE, Y=QAVE]

The variable sst28 mask is acollection of 1's and missing values. Using it as a multiplier on
thewind speed field producesanew result that isundefined except in thedomain of interest.

When using masking be aware of these considerations:

» Use undefined values rather than zeros to avoid contaminating the calculation with zero
values.

« The masked region is composed of rectangles at the level of resolution of the gridded
variables; the mask does NOT follow smooth contour lines. To obtain a smoother mask it
may be desirable to regrid the calculation to a finer grid.

» Variables from different data sets can be used to mask one another. For example, the
ETOPOG60 bathymetry data set can be used to mask regions of land and sea.

2.4.3 General information about smoothing transformations

Ferret provides several transformations for smoothing variables (removing high frequency
variability). These transformations replace each value on the grid to which they are applied
with aweighted average of the surrounding data values along the axis specified. For example,
the expression u[T=@SPZ:3] replacesthe valueat each (1,J,K,L) grid point of the variable“u”
with the weighted average

uat t = 0.25%(u at t-1) + 0.5*(u at t) + 0.25*(u at t+1)

VARIABLES AND EXPRESSIONS 57

FERFET (ol e, 440
i e
Fab 18 1907 103050

38 — —

i — —

Cn ik — —

02 — —

Bog T T T T T T T T T
a4 a4 oo o4 ca
FS

IF X E§ 0 THEN 1 EISE 0 (Welch mmoothed by 15 pta on X}

Figure 8.

The various choices of smoothing transformations (@SBX, @SBN, @SPZ, @SHN, @SWL)
represent different shapes of weighting functions or “windows’ with which the original vari-
able is convolved. New window functions can be obtained by nesting the simple ones pro-
vided. For example, using the definitions

yes? LET ubox = u[L=@SBX:15]
yes? LET utaper = ubox[L=@SHN:7]

produces a 21-point window whose shape is a boxcar (constant weight) with COSINE
(Hanning) tapers at each end.

Ferret may be used to directly examine the shape of any smoothing window: Mathematically,
the shape of the smoothing window can be recovered asavariable by convolving it with adelta
function. In the example below we examine (PLOT) the shape of a 15-point Welch window
(Figure 8).

! define X axis as [-1,1] by 0.2
yes? GO unit square
yes? SET REGION/X=-1:1
yes? LET delta =

IF X EQ 0 THEN 1 ELSE 0
! convolve delta with Welch window
yes? PLOT delta[I=Q@SWL:15]

2.4.4 @DIN—definite integral

The transformation @DIN computes the definite integral—a single value that is the integral
between two points along an axis (compare with @IIN). It is obtained as the sum of the

58 CHAPTER3

grid_box*variable product at each grid point. Grid points at the ends of the indicated range are
weighted by the fraction of the grid box that falls within the integration interval.

If @DIN is specified simultaneously on multiple axes the calculation will be performed as a
multipleintegration rather than as sequential singleintegrations. The output will document this
fact by indicating a transformation of “ @IN4” or “XY integ.”

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@DIN]

In a latitude/longitude coordinate system X=@DIN is sensitive to the COS(latitude) correc-
tion.

2.45 @IIN—indefinite integral

Thetransformation @IIN computes the indefinite integral—at each subscript of theresultitis
thevalue of theintegral from the start value to the upper edge of that grid box. Itisobtained asa
running sum of the grid_box* variable product at each grid point. Grid points at the ends of the
indicated range are weighted by the fraction of the grid box that falls within the integration in-
terval.

Example:

yes? CONTOUR/X=160E:160W/Z=0 ul[Y=5S:5NQ@IIN]

Note 1: The indefinite integral is always computed in the increasing coordinate direction. To
compute the indefinite integral in the reverse direction use

LET reverse integral = my var[Y=1o:hi@DIN] - my var[X=lo:hiQ@IIN]

Note 2: In alatitude/longitude coordinate system X=@IIN is sensitive to the COS(latitude)
correction.

Note 3: Theresult of theindefinite integral is shifted by 1/2 of agrid cell fromits* proper” lo-
cation. Thisis because the result at each grid cell includes the integral computed to the upper
end of that cell. (Thiswasnecessary in order that var[I=lo:hi @DIN] and var[lI=lo:hi @I IN] pro-
duce consistent results.)

To illustrate, consider these commands

yes? LET one = x-x+1
yes? LIST/I=1:3 one[I=Q@din]
X-X+1
X: 0.5 to 3.5 (integrated)
3.000
yes? LIST/I=1:3 one[I=Q@iin]
X-X+1

VARIABLES AND EXPRESSIONS 59

indef. integ. on X

1 /1 1.000
2 / 2 2.000
3 /3 3.000

Thegrid cell at I=1 extendsfrom 0.5to0 1.5. Thevalue of theintegral at 1.51s 1.000 asreported
but the coordinate listed for thisvalueis 1 rather than 1.5. Two methods are availableto correct
for this 1/2 grid cell shift.

Method 1. correct the result by subtracting the /2 grid cell error

yes? LIST/I=1:3 one[I=QRiin] - one/2
ONE[I=Q@IIN] - ONE/2
1 / 1: 0.500
2 / 2: 1.500
3 / 3: 2.500

Method 2: correct the coordinates by shifting the axis 1/2 of agrid cell

yes? DEFINE AXIS/X=1.5:3.5:1 xshift
yes? LET SHIFTED INTEGRAL = one[I=@IIN]
yes? LET corrected integral = shifted integral [GX=xshift@ASN]
yes? LIST/I=1:3 corrected integral
SHIFTED INTEGRAL[GX=XSHIFTEASN]

1.5/ 1 1.000
2.5/ 2 2.000
3.5/ 3 3.000

2.4.6 @AVE—average

Thetransformation @AV E computes the average weighted by grid box size—asingle number
representing the average of the variable between two endpoints.

If @AVE is specified ssmultaneously on multiple axes the calculation will be performed as a
multipleintegration rather than as sequential singleintegrations. The output will document this
fact by showing @AV 4 or “XY ave’ asthe transformation.
Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50QAVE]
Note that the unweighted mean can be calculated using the @SUM and @NGD transforma-

tions.

2.4.7 VAR—weighted variance
The transformation @VAR computes the weighted variance of the variable with respect to the

indicated region (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press
et al., 1986).

60 CHAPTER3

As with @AVE, if @VAR is applied ssmultaneously to multiple axes the calculation is per-
formed as the variance of a block of datarather than as nested 1-dimensional variances.

2.4.8 MIN—minimum

The transformation @MIN finds the minimum value of the variable within the specified axis
range.

Example:

For fixedZ and Y

yes? PLOT/T="1-JAN-1982":"1-JAN-1983" temp [X=160E:160WEMIN]

plots a time series of the minimum temperature found between longitudes 160 east and 160
west.

2.4.9 @MAX—maximum

The transformation @MAX finds the maximum value of the variable within the specified axis
range. See also @MIN.

2.4.10 @SHF:n—shift

The transformation @SHF shifts the data up or down in subscript by the number of points
given as the argument.

Examples:

U[L=@SHF:2]
associates the value of U[L=3] with the subscript L=1.

U[L=@SHF:1]-U
givesthe forward difference of the variable U along the L axis.

2.4.11 @SBX:n—boxcar smoother

The transformation @SBX applies a boxcar window (running mean) to smooth the variable
along the indicated axis. The width of the boxcar isthe number of points given as an argument
to thetransformation. All points are weighted equally, regardless of the sizes of the grid boxes,
making this transformation best suited to axes with equally spaced points. If the number of
points specified iseven, however, @SBX weightsthe end points of the boxcar smoother as 1/2.

VARIABLES AND EXPRESSIONS 61

Example:

yes? PLOT/X=160W/Y=0 u[L=1:120Q@SBX:5]

The transformation @SBX does not reduce the number of points along the axis; it replaces
each of the original values with the average of its surrounding points. Regridding can be used
to reduce the number of points.

2.4.12 @SBN:n—binomial smoother

The transformation @SBN applies a binomia window to smooth the variable along the indi-
cated axis. Thewidth of the smoother isthe number of points given asan argument to thetrans-
formation. The weights are applied without regard to the widths of the grid boxes, making this
transformation best suited to axes with equally spaced points.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120Q@SBN:15]

The transformation @SBN does not reduce the number of points along the axis; it replaces
each of the origina values with aweighted sum of its surrounding points. Regridding can be
used to reduce the number of points. The argument specified with @SBN, the number of points
in the smoothing window, must be an odd value; an even valuewould result in an effective shift
of the dataalong its axis.

2.4.13 @SHN:n—Hanning smoother

Transformation @SHN applies a Hanning window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respectsit isidentical in function to the @SBN transformation. Note that the
Hanning window used by Ferret contains only non-zero weight values with the window width.
Someinterpretations of thiswindow function include zero weights at the end points. Use an ar-
gument of N-2 to achievethiseffect (e.g., @SBX:5isequivalent to a7-point Hanning window
which has zeros asits first and last weights).

2.4.14 @SPZ:n—Parzen smoother
Transformation @SPZ applies a Parzen window to smooth the variable along the indicated

axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respectsit isidentical in function to the @SBN transformation.

62 CHAPTER3

2.4.15 @SWL:n—Welch smoother

Transformation @SWL applies a Welch window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respectsit isidentical in function to the @SBN transformation.

2.4.16 @DDC—centered derivative

The transformation @DDC computes the derivative with respect to the indicated axisusing a
centered differencing scheme. The unitsof the underlying axisaretreated asthey arewith inte-
grations. If the points of the axis are unequally spaced, note that the calculation used is till
(Fi+1 - Fi—l) / (Xi+1 - Xi—l) :

Example:

yes? PLOT/X=160W/Y=0/72=0 u[L=1:120Q@DDC]

2.4.17 @DDF—forward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A for-
ward differencing schemeisused. The units of the underlying axis are treated as they are with
integrations.

Example:

yes? PLOT/X=160W/Y=0/2=0 u[L=1:120@DDF]

2.4.18 @DDB—backward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A back-
ward differencing schemeis used. The units of the underlying axis are treated as they are with
integrations.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDB]

2.4.19 @NGD—number of good points

Thetransformation @NGD computesthe number of good (valid) points of thevariablewithre-
spect to the indicated axis. Use @NGD in combination with @SUM to determine the number
of good points in a multi-dimensional region.

VARIABLES AND EXPRESSIONS 63

Notethat, aswith @VAR, when @NGD isapplied simultaneously to multiple axesthe calcul a-
tion is applied to the entire block of values rather than to the individual axes.

2.4.20 @NBD—number of bad points

The transformation @NBD computes the number of bad (invalid) points of the variable with
respect to theindicated axis. Use @NBD in combination with @SUM to determine the number
of bad pointsin a multi-dimensional region.

Notethat, aswith @VAR, when @NBD isapplied simultaneously to multiple axesthe calcul a-
tion is applied to the entire block of values rather than to the individual axes.

2.4.21 @SUM—unweighted sum

The transformation @SUM computes the unweighted sum (arithmetic sum) of the variable
with respect to theindicated axis. Thistransformation ismost appropriate for regions specified
by subscript. If the region is specified in world coordinates, the edge points are not
weighted—they are wholly included in or excluded from the cal culation, depending on the lo-
cation of the grid points with respect to the specified limits.

2.4.22 @RSUM—running unweighted sum

The transformation @RSUM computes the running unweighted sum of the variable with re-
spect to theindicated axis. @RSUM isto @IIN as @SUM isto @DIN. Thetreatment of edge
pointsisidentical to @SUM.

2.4.23 @FAV:n—averaging filler

The transformation @FAV fills holes (values flagged asinvalid) in variables with the average
value of the surrounding grid points along the indicated axis. The width of the averaging win-
dow isthe number of points given asan argument to the transformation. All of the surrounding
points are weighted equally, regardless of the sizes of the grid boxes, making this transforma-
tion best suited to axes with equally spaced points. If the number of points specified is even,
however, @FAV weights the end points of the filling region by 1/2. If any of the surrounding
points are invalid they are omitted from the calculation. If al of the surrounding pointsarein-
valid the holeis not filled.

Example:

yes? CONTOUR/X=160W:160E/Y=5S5:0 u[X=@FAV:5]

64 CHAPTER3

2.4.24 @FLN:n—Ilinear interpolation filler

Thetransformation @FLN:n fillsholesin variableswith alinear interpol ation from the nearest
non-missing surrounding point. n specifies the number of points beyond the edge of the indi-
cated axislimitsto includein the search for interpolants (default n = 1). Unlike @FAV, @FLN
issensitive to unevenly spaced points and computesits linear interpolation based on the world
coordinate locations of grid points.

2.4.25 @FNR:n—nearest neighbor filler

Thetransformation @FNR:nissimilar to @FLN:n, except that it replicatesthe nearest point to
the missing value. In the case of points being equally spaced around the missing point, the
mean valueis used.

2.4.26 @LOC—Iocation of

The transformation @L OC accepts an argument value—the default value is zero if no argu-
ment is specified. The transformation @LOC finds the single location at which the variable
first assumesthe value of the argument. The result isin units of the underlying axis. Linear in-
terpolation is used to compute locations between grid points. If the variable does not assume
the value of the argument within the specified region the @L OC transformation returns an in-
valid data flag.

For example, temp[Z=0:200@L OC:18] finds the location along the Z axis (often depth in me-
ters) at which the variable “temp” (often temperature) first assumes the value 18, starting at
Z=0 and searching to Z=200.

yes? CONTOUR/X=160E:160W/Y=10S:10N temp [2=0:200@LOC:18]

produces amap of the depth of the 18-degreeisotherm. See also the General |nformation about
transformations section in this chapter (p. 56).

Note that the transformation @L OC can be used to |ocate non-constant val ues, too, as the fol-
lowing example illustrates:

Example: locating non-constant values

Determine the depth of maximum salinity.

yes? LET max salt = salt[Z=@MAX]
yes? LET zero at max = salt - max salt
yes? LET depth of max = zero at max[Z=@LOC:0]

VARIABLES AND EXPRESSIONS 65

2.4.27 @WEQ—weighted equal; integration kernel

The @WEQ (“weighted equal”) transformation is the subtlest and arguably the most powerful
transformation within Ferret. It isageneralized version of @LOC; @LOC aways determines
the value of the axis coordinate (thevariable X, Y, Z, or T) at the pointswhere the gridded field
has aparticular value. More generally, @WEQ can be used to determine the value of any vari-
able at those points.

Like @L OC, thetransformation @WEQ findsthelocation along agiven axisat which the vari-
ableisequal to the given (or default) argument. For example, V1[Z=@WEQ:5] findsthe Z lo-
cations at which V1 equals “5”. But whereas @LOC returns a single value (the linearly
interpolated axis coordinate values at the locations of equality) @WEQ returnsinstead afield
of the same size asthe original variable. For those two grid pointsthat immediately bracket the
location of the argument, @WEQ returns interpolation coefficients. For all other pointsit re-
turnsmissing valueflags. If thevalueisfoundto lieidentically ontop of agrid point aninterpo-
lation coefficient of 1 isreturned for that point alone. The default argument value is 0.0 if no
argument is specified.

Example 1

yes? LET vl = X/4
yes? LIST/X=1:6 vl, v1[X=@WEQ:1], v1[X=@WEQ:1.2]

X vl QWEQ:1 @WEQ:1.2

.250
.500
.750 cee e
.000 1.000 0.2000
.250 cee 0.8000
.500 cee e

oUW
PFRPR PR OOO

Theresulting field can be used as an “integrating kernel,” aweighting function that when mul-
tiplied by another field and integrated will give the value of that new field at the desired loca
tion.

Example 2
Using variable v1 from the previous example, suppose we wish to know the value of the func-

tion X2 (X sgquared) at thelocation where variable vl hasthevalue 1.2. We can determineit as
follows:

yes? LET X squared = X"2
yes? LET integrand = x squared * v1[X=Q@WEQ:1.2]
yes? LIST/X=1:6 integrand[X=@SUM] !Ferret output below

X_SQUARED * V1 [X=Q@WEQ:1.2]
X: 1 to 6 (summed)
23.20

Notice that 23.20 = 0.8 * (5"2) + 0.2 * (4°2)

66 CHAPTER3

FERFET (U e, 440
T T
Fab 16 1607 102830

DEPTH {m) £ © te 5000 (summed) DATE SET: levitus_climatclogy
Levitus annual climatology (1x1 degres}

LATITUDE

T T T T T T
120°E 180°E 1B 120°W BO™W
LONGTUDE

Salinity on the 20 degree isotherm

Figure9.

FERFET (U e, 440
Tl T
Fab 161607 10271

TIME : J&N te DEC (summed) DATA SET: coada_climatalogy
COADS Monthly Climatolegy (1946—1983)

LATITUDE

T
100°W BOAW

T
140°%
LONGTUDE

I T
100°E 140°E 180°

Month of warmest SST

Figure 10.
Below are two “real world” examples that produce fully labeled plots.
Example 3: salinity on an isotherm

Use the Levitus climatology to contour the salinity of the Pacific Ocean along the 20-degree
isotherm (Figure 9).

yes? SET DATA levitus climatology ! annual sub-surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? LET isotherm 20 = temp[Z=QWEQ:20] ! depth kernel for 20 degrees

VARIABLES AND EXPRESSIONS 67

yes? LET integrand 20 = salt * isotherm 20
yes? SET VARIABLE/TITLE="Salinity on the 20 degree isotherm" integrand 20

yes? PPL CONSET .12 lcontour label size (def. .08)
yes? CONTOUR/LEV=(33,37,.2) integrand 20[Z=QSUM]
yes? GO fland !continental fill

Example 4: month with war mest sea surface temperatures

Usethe COADS data set to determinethe month in which the SST iswarmest acrossthe Pecific
Ocean. In this example we use the same principles as above to create an integrating kernel on
thetimeaxis. Using thiskernel we determinethe value of thetime step index (whichisalso the
month number, 1-12) at the time of maximum SST (Figure 10).

yes? SET DATA coads climatology ! monthly surface climatology

yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean

yes? SET MODE CAL:MONTH

yes? LET zero_ at warmest = sst - sst[l=(@max]

yes? LET integrand = L[G=sst] * zero at warmest[L=Q@WEQ] ' "I is 1 to 12

yes? SET VARIABLE/TITLE="Month of warmest SST" integrand
yes? SHADE/L=1:12/PAL=inverse grayscale integrand[L=Q@SUM]

2.4.28 @ITP—interpolate

The @I TP transformation provides the same linear interpolation calculation that is turned on
modally with SET MODE INTERPOLATE but with ahigher level of control, as @I TP can be
applied selectively to each axis. @I TP may be applied only to point locations along an axis.
The result is the linear interpolation based on the adjoining values. For example, for aZ axis
with points at Z=0, 10, 20, ...

V[Z=4@ITP] will compute 0.6 * V[z=0] + 0.4 * V[2=10]

2.4.29 @CDA—closest distance above

The transformation @CDA will compute at each grid point how far it is to the closest valid
point above this coordinate position on the indicated axis. The distance will be reported in the
units of the axis. If agiven grid point isvalid (not missing) then the result of @CDA for that
point will be 0.0. See the example for @CDB below. Theresult’sunits are now axisunits, e.g.,
degrees of longitude to the next valid point above.

2.4.30 @CDB—closest distance below

The transformation @CDB will compute at each grid point how far it is to the closest valid
point below this coordinate position on the indicated axis. The distance will be reported in the
units of the axis. If agiven grid point isvalid (not missing) then the result of @CDB for that
point will be 0.0. The result’s units are now axis units, e.g., degrees of longitude to the next
valid point below.

68 CHAPTER3

Example:

yes? USE coads climatology

yes? SET REGION/x=125w:109w/y=55s/1=1

yes? LIST sst, sst[x=@cdal,

Column
Column
above on
Column
below on

125w
123w
121w
119w
117w
115w
113w
111w
109w

N N N N

1
2
X
3
X

108:
109:
110:
111:
112:
113:
114:
115:
116:

sst [x=Qcdb]

! results below

SST is SEA SURFACE TEMPERATURE (Deg C)
SST[X=@CDA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

)
-)

SST SST

6.700 0.000
e 8.000

6.000

4.000

e 2.000

7.800 0.000
7.800 0.000
e 2.000

8.300 0.000

2.4.31 @ClA—closest index above

SST

.000
.000
.000
.000
.000
.000
.000
.000
.000

ONOO 0o BNO

: SST[X=@CDB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

Thetransformation @CIA will compute at each grid point how far it isto the closest valid point
above this coordinate position on the indicated axis. The distance will be reported in terms of
the number of points (distance in index space). If agiven grid point isvalid (not missing) then
theresult of @CIA for that point will be 0.0. Seethe examplefor @CIB below. The units of the
result are grid indices; integer number of grid units to the next valid point above.

2.4.32 @CIB—-closest index below

Thetransformation @CIB will compute at each grid point how far it isto the closest valid point
below this coordinate position on the indicated axis. The distance will be reported in terms of
the number of points (distance in index space). If agiven grid point isvalid (not missing) then
the result of @CIB for that point will be 0.0. The units of the result are grid indices, integer

number of grid units to the next valid point below.

Example:

yes? USE coads climatology

yes? SET REGION/x=125w:109w/y=55s/1=1

yes? LIST sst, sst[x=Qcial,

Column
Column
above on
Column
below on

125W /
123w /
121w /

1
2
X
3
X

108
109
110

sst[x=Qcib]

! results below

SST is SEA SURFACE TEMPERATURE (Deg C)
SST[X=@CIA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

)
-)

SST SST
: 6.700 0.000
: e 4.000
: e 3.000

SST
0.000
1.000
2.000

: SST[X=@CIB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist

VARIABLES AND EXPRESSIONS 69

2.5

2.6

70

119w / 111: 2.000 3.000
117w / 112: e 1.000 4.000
115w / 113: 7.800 0.000 0.000
113w / 114: 7.800 0.000 0.000
111w / 115: e 1.000 1.000
109w / 116: 8.300 0.000 0.000

IF-THEN logic (“masking”)

Ferret expressions can contain embedded |F-THEN-EL SE logic. The syntax of the IF-THEN
logic issimply (by example)

LET a = IF al GT b THEN al ELSE a2

(read as“if al is greater than b then al else a2”).

Thissyntax isespecially useful in creating masksthat can be used to perform cal cul ations over
regions of arbitrary shape. For example, we can compute the average air-sea temperature dif-
ference in regions of high wind speed using thislogic:

SET DATA coads climatology

SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst

LET fast tdiff = tdiff * fast wind

The user may find it clearer to think of thislogic as WHERE-THEN-EL SE to aviod confusion
with the IF used to control conditional execution of commands.

Lists of constants (“constant arrays™)

The syntax {vall, val2, val3} isaquick way to enter alist of constants. For example

yes? LIST {1,3,5}, {1,,5}
X: 0.5 to 3.5
Column 1: {1,3,5}
Column 2: {1,,5}

{1,3,5} {1,,5}

1 / 1: 1.000 1.000
2 / 2 3.000 e
3 / 3: 5.000 5.000

Note that aconstant variableisaways an array oriented in the X direction To create a constant
aray oriented in, say, the Y direction use Y SEQUENCE

yes? STAT/BRIEF YSEQUENCE ({1,3,5})

Total # of data points: 3 (1*3*1*1)

flagged as bad data: 0

Minimum value: 1

Maximum value: 5

Mean value: 3 (unweighted average)

CHAPTER 3

Below are two examplesillustrating uses of constant arrays

Ex. 1) plot atriangle (or multiple triangles)

{0,.5,1}
{0,1,0}

LET xtriangle
LET ytriangle

o
F
3
i

¥:0.510 35
¥:0.5 10 35 v 05te 205

Al all
4 A e
E L a A O
H £
-l A Al
A 4 ;
fo.5.4% PTG TRIANGLE
10 J[I=1:20]

Ex. 2) Sample Jan, June, and December from sst in coads_climatology

USE coads_climatology
LET my sst months = SAMPLEL({1,6,12}, sst)
STAT/BRIEF my sst months

yes? STAT/BRIEF my sst months

Total # of data points: 48600 (180*90*1*3)
flagged as bad data: 21831

Minimum value: -2.6

Maximum value: 31.637

Mean value: 17.571 (unweighted average)

3 EMBEDDED EXPRESSIONS

Ferret supports “immediate mode” mathematical expressions—that is, numerical expressions
that may be embedded anywhere within acommand line. These expressions are evaluated im-
mediately by Ferret—before the command itself is parsed and executed. |mmediate mode ex-
pressions are enclosed in grave accents, the same syntax used by the Unix C shell. Prior to
parsing and executing the command Ferret will replace the full grave accent expression, in-
cluding the accent marks, with an ASCI| string representing the numerical value. For example,
if the given command is

CONTOUR/Z="temp [X=180,Y=0,Z=QLOC:15] " salt

Ferret will evaluate the expression “temp[X=180,Y =0,Z=@L OC:15]” (the depth of the 15-de-
greeisotherm at the equator/dateline—say, it is234.5 meters). Ferret will generate and execute
the command

VARIABLES AND EXPRESSIONS 71

3.1

72

CONTOUR/Z=234.5 salt
Embedded expressions:

Embedded expressions: the expression must evaluate to asingle number, ascalar, or Ferret will

respond that the command contains an error if the result isinvalid the numerical string will be
“bad” (see BAD= in following section, p. 73). Region qualifiers that begin a command con-
taining an embedded expression will be used in the evaluation of the expression. If multiple
embedded expressions are used in a single command they will be evaluated from left to right
within the command. This means that embedded expressions used to specify region informa-
tion (e.g., the above example) may influence the evaluation of other embedded expressionsto
the right. When embedded expressions are used within commands that are arguments of a
REPEAT command their evaluation is deferred until the commands are actually executed.

Thusthe embedded expressions are re-eval uated at each |oop index of the REPEAT command.

Grave accents have ahigher priority than any other syntax character. Thusgrave accent expres-
sions will be evaluated even if they are enclosed within quotation marks, parentheses, square
brackets, etc. Substitutions based on dollar-signs (command script arguments and symbols)
will be made before embedded expressions are evaluated. A double grave accent will be trans-
lated to asingle grave accent and not actually evaluated. Thus double grave accents provide a
mechanism to defer evaluation so that grave accent expressions may be passed to the Unix
command line with the SPAWN command or may be passed as arguments to GO scripts (to be
evaluated INSIDE the script). The state of MODE VERIFY will determineif the evaluation of
the embedded expression is echoed at the command line—similar to REPEAT loops.

Special calculations using embedded expressions

By default Ferret formats the results of embedded expressions using 5 significant digits. If the
result of theexpressionisinvalid (e.g., 1/0) theresult by default isthe string “bad”. Controlsal-
low you to specify the formatting of embedded expression results in both valid and invalid
cases and to query the size and shape of the result.

The syntax to achieve this control isKEY WORD=VALUE pairsinside the grave accents, fol-
lowing the expression and set off by commas. The recognized keywords are “BAD=",
“PRECISION=", and “RETURN=". Only the first character of the keyword is significant, so
they may be abbreviated as“B=", “P=", and “R=".

PRECISION=, BAD=, and RETURN= may be specified simultaneously, in any order, sepa-
rated by commas. If RETURN= isincluded, however, the other keywords will be ignored.

PRECI SION=#digits
can be used to control the number of significant digits displayed, up to amaximum of 10 (actu-

ally at most 7 digitsare significant since Ferret calculations are performed in single precision).
Ferret will, however, truncate terminating zeros following the decimal place. Thus

CHAPTER 3

SAY "3/10,PRECISION=7"

will resultin

0.3
instead of 0.3000000.

If the value specified for #digitsis negative Ferret will interpret this as the desired number of
decimal places rather than the number of significant digits. Thus

SAY '35501/100,pP=-2"

will resultin

355.01
instead of 355.

In the case of anegative precision value, Ferret will again drop terminating zerosto theright of
the decimal point.

BAD=string

can be used to control the text which is produced when the result of the immediate mode ex-
pression isinvalid. Thus

SAY "1/0,BAD=missing"
will result in

missing
or

SAY 1/0,B=-999°
will result in

-999

RETURN=

Thekeyword RETURN= can reveal the size and shape of theresult. RETURN= may take argu-
ments

+ SHAPE
* ISTART, JSTART, KSTART, or LSTART,

VARIABLES AND EXPRESSIONS 73

* |IEND, JEND, KEND, or LEND
RETURN=SHAPE

returns the 4-dimensional shape of the result—i.e., alist of those axes along which the result
comprises more than a single point. For example, a globa sea surface temperature field at a
single point in time:

SAY "SST[T=1-JAN-1983],RETURN=SHAPE"

will result in

XY

See Symbol Substitutionsin Chapter 7 (p. 136) for examples showing the special utility of this
feature.

RETURN=ISTART (and similarly JSTART, KSTART, and LSTART)

returns the starting index of the result along the indicated axis: I, J, K, or L. For example, if
CAST is a vertical profile with points every 10 meters of depth starting at 10 meters then
Z=100 isthe 10th vertical point, so

SAY "CAST[Z=100:200],RETURN=KSTART "

will resultin

10
RETURN=IEND (and similarly JEND, KEND, and LEND)

returns the ending index of the result along the indicated axis: I, J, K, or L. In the example
above

SAY "CAST[Z=100:200], RETURN=KEND"

will resultin

20

The size and shape information revealed by RESULT= is useful in creating sophisticated
scripts. For example, these lines could be used to verify that the user has passed a 1-dimen-
sional field asthe first argument to a script

LET my expr = $1
DEFINE SYMBOL SHAPE ‘my expr, RESULT=SHAPE"
QUERY/IGNORE ($SHAPES|X|Y|Z|T|<Expression must be l-dimensional%)

74 CHAPTER3

4 DEFINING NEW VARIABLES

The ability to define new variableslies at the heart of the computational power that Ferret pro-
vides. Complex analysesin Ferret generally proceed as hierarchies of simple variable defini-
tions. As a simple example, suppose we wish to calculate the root mean squared value of
variable, V, over 100 time steps. We could achieve thiswith the simplehierarchy of definitions:

LET v_rms v_mean sq "~ 0.5
LET v_mean sq v_squared[L=QAVE]
LET v _squared v o* v

SET VARIABLE/TITLE="RMS V" vV_rms

LIST/L=1:100 v_rms

(listed output not included)

Asthe example shows, the variables can be defined in any order and without knowledgein ad-
vance of the domain over which they will be evaluated. As variable definitions are given to
Ferret with the LET (aliasfor DEFINE VARIABLE) command the expressions are parsed but
not evaluated. Evaluation occurs only when an actual request for datais made. In the preceding
examplethisisthepoint at whichthe LIST command isgiven. At that point Ferret usesthe cur-
rent context (SET REGION and SET DATA_SET) and the command qudlifiers (e.g.,
“L=1:100") to determine the domain for evaluation. Ferret achieves great efficiency by evalu-
ating only the minimum subset of data required to satisfy the request.

One consequence of this approach is that definitions such as

LET a = a + 1 ! nonsense

are nonsense within Ferret. The value(s) of variable “a’ come into existence only as they are
calledfor, thusit isnonsensefor them to appear simultaneously on theleft and right of an equal
sign.

Variable names can be 1 to 24 charactersin length and begin with aletter. Seethe command ref-
erence DEFINE VARIABLE (p. 218) for the available qualifiers.

4.1 Global, local, and default variable definitions

All of the above definitions are examples of “global variable definitions.” A global variable
definition applies to all data sets. In the above example the expression “v_rmgD=dset _1]”
would be based on the values and domain of the variable V from data set dset 1 and
“v_rmg[D=dset_2]” would similarly be drawn from data set dset_2. The domain of v_rms, its
size, shape, and resolution, will depend on the particular data set in which it is evaluated.

Although global variables are ssmple to use they can lead to ambiguities. Suppose, for exam-
ple, that data sets dset_1 and dset_2 contain the following variables:

VARIABLES AND EXPRESSIONS 75

If wewould liketo compare speeds from the two data sets we might be tempted to define anew
variable, speed, as

LET speed = (u*u + v*v)”"0.5

In doing so, however, we create an ambiguity of interpretation for the expression
“speed[d=dset_1]".

To avoid thisambiguity we need to create avariable definition, “ speed,” that islocal to data set
dset 2. The qualifier /D= used as follows

LET/D=dset 2 speed = (u*u + v*v)"0.5 ! in dset 2, only

providesthis capability. The use of /D=dset_2 indicates that this new definition of “ speed” ap-
plies only to data set dset_2.

A convenient shortcut isoften to definea* default variable.” A default variableisdefined using
the /D qualifier with no argument

LET/D speed = (u*u + v*v)”"0.5 ! where “speed’ doesn’t already exist

Asadefault variable* speed” isadefinition that applies only to data sets that would otherwise
not posses a variable named speed. In this senseit is afallback default.

5 DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

A complex analysis generally proceeds within Ferret as a complex hierarchy of expressions:
variablesdefined in terms of other variables defined in terms of other variables, etc., often con-
taining many levels of transformation. When an error message such as “can only contour or
vector a 2D region” occursit may appear difficult to locate the reason for this message.

A simple strategy to locate the source of such problems s to use the command STAT which
shows the size and shape of variables and expressions (simply edit the offending command
line, replacing the PLOT, CONTOUR, VECTOR, etc. command with STAT and eliminating
qualifiersif necessary) and use SHOW VARIABLE to see the variable definitions. By repeat-
edly using STAT to examine the component variables of definitions one can quickly locate the
source of the problem.

76 CHAPTER3

FEFRET (08 v 440
LN
DATA SET: snoopy.dat

1
3

LATITUDE

080

| | | |
j
% %
: %
ig
T T ﬁ T
10°E 20°E 30°E 40°E

LONGITUDE

MY_2D_ VAR

Figure 11.

Chapter 4. GRIDS AND REGIONS

1 OVERVIEW

Information describing aregion in space/time, adataset, and agridiscollectively referred to as
the “context.” The current context may be examined with the commands SHOW DATA_SET,
SHOW REGION, and SHOW GRID. The context may be set explicitly with the commands
SET DATA_SET, SET REGION, and SET GRID.

The context may be modified for the duration of asingle command with qualifiersto the com-
mand name (separated by slashes). The same qualifiersin square brackets may also modify sin-
gle variables, changing the context only of that variable:

yes? PLOT/D=levitus climatology temp, salt

yes? CONTOUR rose[D=etopo20]

yes? FILL/Z=0 temp[L=2] - temp[L=1]

2 GRIDS

Every variable has an underlying grid which defines a coordinate space. All gridsarein asense
4dimensional (X, Y, Z,and T) but axesnormal to the dataare represented as“normal” (suchas
the Z axis of the surface wind stress).

GRIDS AND REGIONS 77

2.1

2.2

78

Grids can be viewed, specified and created using SHOW GRID, SET GRID, DEFINE AXIS,
and DEFINE GRID. These commands are all in the Commands Reference section of this man-
ual. Data can be regridded by the G= modifier. (See Chapter 4, section “Regridding,” p. 82)

Defining grids

Axes and grids can be explicitly created by DEFINE AXIS and DEFINE GRID. NetCDF and
TMAP-formatted data set variables have al of the necessary grid and axis definitions embed-
ded inthe data set files, but if you are reading datafrom an ASCII or binary file, you must tell
Ferret about the underlying grid of your data.

If you are creating abstract expressionsentirely from pseudo-variables, you may want to define
agridin order to define the coordinate space of your calculation. Thiswill also help produce a
nicely labeled plot. (See Chapter 3, “ Grids and axes of pseudo-variables’ (p. 44) and the exam-
plein the section on “Abstract Variables,” p. 46.)

Example

This example is taken from the demonstration script “file_reading_demo.jnl”. An ASCI|I file
containsagrid of numbers, 50 rowsby 6 columns. Supposethedataare ona2D grid of 6 longi-
tudes by 50 latitudes (Figure 11).

yes? DEFINE AXIS/X=10E:60E:10/UNIT=DEGREE xlong

yes? DEFINE AXIS/Y=0:49N:1/UNIT=DEGREE ylat

yes? DEFINE GRID/X=xlong/Y=ylat gsnoopy2d

! By default only 1 column is read, /COLUMNS= specifies 6 columns
yes? FILE/VAR=my 2D var/COL=6/GRID=gsnoopy2d snoopy.dat

yes? CONTOUR my 2D var

Dynamic grids and axes

Thecommands DEFINE AXISand DEFINE GRID, described in the preceding section, should
be used when the grid or axis will be referenced more than once and/or shared among severa
variables. In many casesit ismore convenient to usedynamic (a.k.a. “implicit”) gridsand axes.
Two quick examples:

PLOT SIN(X[X=0:3.14:.11)
— dynamically creates an axisfrom 0 to 3.14 by 0.1

SHADE SST[X=140E:160W:5, D=coads climatology]

— dynamically createsalongitude axis extending from 140E to 160W by 5 degrees,
dynamically createsagrid which islike the grid upon which the variable SST is
defined but with the X axisreplaced by the new dynamic axis, and automatically
regridsto this new grid.

CHAPTER 4

2.2.1 Dynamic grids
It isoften possibleto avoid explicitly defining grids. Thisisuseful intwo common situations:
« Stuation 1
Regridding to specified axes without the need for defining the destination grid.

Syntax: cx=name@transform

where
* — The orientation of the axisto beregridded: “X,” “Y,” “Z,” or “T”
name — The name of an axis or of another variable defined on the desired axis

@transform — The (optional) name of aregridding transform

Example:

sst [GX=x10deqg]

Suppose the variable SST is defined on a 2x2 degree grid in latitude/longitude (e.g., SET
DATA coads _climatology). If we wish to regrid to 10-degree spacing in longitude over a
range from 175W to 75W we could use the commands

DEFINE AXIS/X=175w:75w:10/UNITS=degrees x10deg
LET sstl0 = sst[GX=x10deqg]

Ferret will dynamically create agrid equivalent to new_gridin

DEFINE GRID/LIKE=sst/X=x10deg new grid.

Figure 12 shows the effects of regridding the 2x2 degree COADS data to a 10-degree spac-
ing in longitude using (default) linear interpolation.

The command SHOW GRID SST10 will show the dynamically created grid. The names of
dynamic grids and axes will always be displayed in parentheses.

Notethat the transformation method to be used for regridding may also be specified, soLET
SST10=SST[GX=x10deg@ave] would create a 10-degree spaced result in which each grid
point was computed as the weighted sum of the source points that fell within its grid
box. The default method for regridding is linear interpolation.

» Situation 2

Automatic reconciliation of incompatible grid shapes

GRIDS AND REGIONS 79

TME & JaN DATA SET: coads_climatalogy
COLDS Monthly Climatology (1948—1883)

+0°N
30°N
Ll 20°N

a
E 1w
3 e
1085
0°8

30°W
LOMGITUDE

Original 2¥2 degree 33T

TIME & JAN DATA SET: coads_climatalogy
COLDS Monthly Ciimatology (1948—1983)

40N

300N
E Z0°N 22
E 1090 p
3 o

10

20°8

1767 150°W

130°
LONGITUDE

Regridded to 10 degree spacing in X

Figure 12.
Syntax: c=name@transform
where
Name — The name of agrid or of another variable defined on the desired grid
@transform — The (optional) name of aregridding transform
Example:

VAR1 [g=VAR2]

If two variables are defined on grids that are mutually non-conformable because axes exist
in one grid but do not exist (are NORMAL) in another, Ferret will now create a dynamic
grid to resolve the non-conformabilities. This means that an expression of the form
VAR1[G=VARZ2] will be meaningful aslong as the grid domains overlap.

For example, TEMP[d=levitus_climatology] isdefined onan XY Z (time-independent) grid
whereas SST[d=coads_climatology] is defined on an XY T grid. So to evaluate the expres-
sion SST[d=coads_climatology, G=TEMP[d=levitus_climatology]] Ferret will create a dy-
namic intermediate grid equivalent to

DEFINE GRID/LIKE=sst[D=coads_climatology]/X=temp/Y=temp

so that regridding occurs on the X and Y axes but the original grid structure is maintained
with respect to depth and time.

80 CHAPTER4

The command SHOW GRID will reveal the resulting dynamically created grid structure.

2.2.2 Dynamic axes

Thesyntax “ GX=lo:hi:delta’ can be used in square brackets modifying avariable nametoindi-
cate the dynamic creation of an axis with the indicated range and spacing and the immediate
regridding of the variable to a grid containing that axis. For example,
SST[GX=175W:75W:10] will create a dynamic axis of 10-degree regular point spacing, will
create adynamic grid incorporating thisaxis (see previous section), and will regrid thevariable
SST to thisgrid.

Similarly, by referring to the grid indices rather than their world coordinates, the expression
SST[GI=1:100:5] will create a dynamic axis that subsamples every 5th longitude point from
SST. In this case the points of the resulting axis may be irregularly spaced if the points of the
original axiswere also irregular.

Aswith the dynamic regridding described above, transformations can be specified to indicate
the regridding technique. Thus SST[GI=1:100:5@AV E] will use averaging instead of the de-
fault linear interpolation to perform the regridding.

As anotational convenience the “G” may be dropped when referring to dynamic axes. Thus
SST[X=175W:75W:10] isequivalent to SST[GX=175W:75W:10] and SST[I=1:100:5@AV E]
is equivalent to SST[GI=1:100:5@AVE]. When using this notational convenience keep in
mind that a regridding is taking place, so the transformation applied (if any) must be a
regridding transformation (see SHOW TRANSFORMS in the command reference section, p.
275).

The lower plot of Figure 12 illustrates the effect of dynamic axesin the command

SHADE SST[GX=175W:75W:10]

2.2.3 Dynamic pseudo-variables

The same notation used for dynamic axes may also be applied to pseudo-variables providing a
simple means for creating arrays of values. For example, X[GX=0.2:1:0.2] is a vector of 5
pointsfrom 0.2to 1 at aregular spacing of 0.2 units. Thevector isorientedinthe X direction.

An example of using such avector is (Figure 13)

PLOT SIN(X[GX=0:3.14:.11)

Note that when the lo:high:delta notation is applied to T or L expressed as calendar dates the
unitsof thedeltavaluewill behours. For example, L[GT=1-jan-1980:1-feb-1980:24] isthein-
tegers 1 to 32 defined on an axis of 32 days, 24 hours apart.

GRIDS AND REGIONS 81

R

E 2 5 & 3
A

%
SIN(X[GX=0:3.14:.1])

Figure 13.

Asanotational conveniencethe“G” may be dropped when referring to dynamic pseudo-vari-
ables. Thus X[X=0.2:1:0.2] is equivalent to X[GX=0.2:1:0.2].

See also the discussion of grids for pseudo-variables in section 3.1.3, p. 44.

2.3 Regridding

Syntax:
var [G=name] for (default) linear interpolation to new grid
or
var [G=name@trn] toregrid all axesusing transform “trn” (see below)
or
var [G=name, GX=@TRN, GY=@TRN, . ..] 10 control regridding transformations along each axis
separately
where
var isthe name of the variable to be regridded (e.g., temp, u, tau, ...)
name is the name of a variable (e.g., temp[G=u]) or the name of a grid (e.g.,
temp[G=gu01])
trn is the name of a special transformation (e.g., @AVE, @ASN, @LIN)

Notethat if “name’ invar [c=name] iSthe name of avariable, rather than of agrid, that variable
should be afile variable. If the variable is a user-defined variable, the operation may fail be-
cause the grid of the user-defined variable is unknown to Ferret at the time of the regridding.
Typically, the name of the grid, itself, for that user variable can be used. Often if one precedes
the regridding with the LOAD command the regridding becomes acceptable:

LOAD my user variable
CONTOUR V[g=my user var]

The Ferret distribution provides a demonstration of many regridding techniques:

yes? GO regridding demo

82 CHAPTER 4

Regridding is essential for algebraic operations that combine variables on incompatible grids.
Ferret providesthe commands DEFINE AX1Sand DEFINE GRID to assist with the creation of
arbitrary grids.

Theresult grid of aregridding operation does not necessarily match exactly the destination grid
requested. For example, suppose the native grid of variable TEMP3D (Ocean Temperature) is
1 degreeresolutionin X and Y and 50 meter spacingin Z. If the syntax “[G=sst]” isused to re-
guest regridding to the grid of variable SST (Sea Surface Temperature), which is 2 degree reso-
[ution in X and Y, but normal to Z, then the resulting grid will be generated dynamically—
inheriting X and Y axes from SST as requested, but retaining the Z axis of TEMP3D.

Examples

1) Suppose the variables u and temp are on staggered X, Y, and Z axes but sharethe same T
axis. Then thetwo variables can be multiplied together on the axes (grid) of theu variable as
follows:

yes? CONTOUR u * temp[G=u]

Thiswill regrid temp onto the u grid by multi-axis linear interpolation before performing
the multiplication.

2) Two variables, v1 and v2, are defined on distinct 4-dimensional grids (X, Y, Z, and T axes).
The T axesof thetwo gridsareidentical but the X, Y, and Z axesal differ between thetwo
variables. (Thisis often the case in numerical model outputs.)

Toobtainthevariablevl onitsorigina Z (depth) locations but regridded inthe XY planeto
the grid locations of the variablev2, define anew grid (say, named “new_grid”) that hasthe
X and Y axes of v2 but the Z axis of v1.

yes? DEFINE GRID/LIKE=v2/Z=vl new grid !define new grid
yes? LIST/X=160E:140W/Y=5S5:5N v1[G=new grid] !request regridding

3) Inthisexample welook at temperature data from two data sets. levitus_climatology, an an-
nual climatology, has the variable “temp” on an XY Z grid which is 1x1 degreein XY, and
coads_climatology, amonthly climatology, has the variable “sst” on an XY T grid whichis
2x2 degreesin XY. Suppose we wish to look at the sea surface temperatures in January at
the higher XY resolution of the Levitus data.

yes? SET DATA levitus climatology

yes? SET DATA coads_climatology

yes? SET REGION/L=1/Z=0

yes? !get the name of the grid on which temp is defined

yes? SHOW GRID temp[D=levitus climatology] ! —> “Glevitrl"
yes? DEFINE GRID/X=glevitrl/Y=glevitrl/Z=sst/L=sst glevitus xy
yes? LIST/X=150E:155E/Y=0:5N sst[G=glevitus_xy]

GRIDS AND REGIONS 83

2.3.1 Regridding transformations

Ferret version 4.4 supports several regridding transformations. Use the SHOW
TRANSFORMATIONS command to obtain alist of the supported transformations from Fer-
ret. The choice of regridding transformation determines the computation by which data from
the source grid determine the values on the destination grid.

@LIN—Iinear interpolation (the default if no transform is specified)
Performs regridding by multi-axis linear interpolation.

@AV E—averaging
Computesthe length-weighted average of all pointson the sourcegridthat lie partly or com-
pletely within each grid cell of the destination grid.

Note: When @AV E isapplied simultaneously tothe X and Y axes, where X and Y arelongi-
tude and latitude, respectively, an area-weighted average (weighted by cos(latitude)) is
used. The @AVE transformation is unique in this respect. In multiple axis applications
other than X and Y @AV E will be applied sequentially to the axes, computing the “average
of the average.” This may not be the desired weighting scheme in some cases. See @VAR
below for an example.

@A SN—(blind) association
Associates by subscript (blindly) the points from the source grid onto destination coordi-
nates.

@VAR
Computes the variance of the points from the source grid that fall within each destination
grid cell. Thisis alength-weighted computation like the @AV E transformation.

Note: Thistransformation is suitable for regridding only in asingle axis. When applied si-
multaneously to two axes, for example, it will compute the variance of the variance. For ex-
ample, V[gx=130E:80W:10@VAR, gy=205:20W:10@VAR] is equivaent to
tmp[X=130E:80W:10@VAR] where tmp=V[y=20S:20N:10@VAR].

@NGD
Compute the number of points from the source grid that fall within each destination grid
cell. Note that the results of this cal culation need not be integers—thisis alength-weighted
computation like the @AV E transformation. It is common for agrid cell on the source grid
to span the boundary between grid cells on the destination grid, thereby contributing afrac-
tion of its weight to multiple destination grid cells.

Note: Thistransformation issuitable only for regridding on asingle axis. When applied si-

multaneously to two axes, for example, it will compute a constant. See @VAR for an exam-
ple.

84 CHAPTER 4

@SUM
Computes the length-weighted sum of the points from the source grid that fall within each
destination grid cell. Thisisalength-wei ghted computation likethe @AV E transformation.

@MIN
Finds the minimum value of those points from the source grid that lie within each destina-
tion grid cell. Note that thisis NOT a weighted calculation; the destination grid cell that
“owns’ a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

@MAX
Finds the minimum value of those points from the source grid that lie within each destina-
tion grid cell. Note that thisis NOT a weighted calculation; the destination grid cell that
“owns’ a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

Regridding transformations provide a means to perform a given calculation over alimited
gpan of coordinates and repeat that calculation for a series of contiguous spans. For exam-
ple, if wewish to compute the variance of the variable SST over 10-degree longitude range
from 180 to 170W we could usethe syntax sst [x=180:170wevar]. Now, if wewish to per-
form the same operation 10 times in 10-degree wide bands from 180 to 80W we could in-
stead use c=evar regridding as in (see Dynamic Grids, p. 78, for an explanation of the
“GX=" syntax):

DEFINE AXIS/X=175w:85w:10/UNITS=degrees x10deg
LET sstl0 = sst[GX=x10deg@VAR]

@XACT
Regridding with G=@XACT (or GX=@XACT, etc.) isarequest to transfer values from a
source grid to a destination grid only at those positions where there is an exact coordinate
match between the source and destination axis points on the axisin question. Other destina-
tion pointswill be set to“missing”. Thistransformation isespecially useful for taking multi-
plein-situ data profiles, such as oceanographic cast data, and regridding them onto aregular
(sparse) grid. For example: grep

yes? LET xcoarse = sin(x[x=0:20:107)
yes? LIST xcoarse
SIN(X[X=0:20:1017)
0 / 1: 0.0000
10 / 2: -0.5440
20 / 3: 0.9129
yes? DEFINE AXIS/X=0:20:5 xfine
yes? LIST xcoarse[gx=xfine@XACT]
SIN(X[X=0:20:10])
regrid: 5 delta on X@XACT

0 / 1: 0.0000
5 / 2: e
10 / 3: -0.5440
15 / 4: e
20 / 5: 0.9129

GRIDS AND REGIONS 85

FEFET (v, 440
TR
FiiEse

b 1
LONGTUDE ; 179.5E
LATTUDE : O.5S DATA 3ET: levitus_climatology

Lewitus annual climatelogy (1%1 degree}
o 1 1 1 1 1 1 1 1 1 1 1 1 1 |

BEFTH (m)

[+14) 4.0 B0 1240 18.0 200 240 280
— TEF{pmcriLsE o Tk DEG ©

TEMPERATURE (DEG C)
Figure 14.
@MOD

Creates climatologies from time series by regridding to a time series axis with a modulo
regridding transformation. See section Modulo Regridding (p. 87) for details.

Examples

1) Let variable temp be defined on a grid with points spaced regularly at 1-degreeintervalsin
both longitude and latitude (X and Y). Let grid “g10” possess points spaced regularly at
10-degree intervalsin both X and Y.

yes? PLOT temp[G=glO0] ! uses linear interpolation (QLIN)

yes? PLOT temp[G=glO@AVE] ! area-averages 10x10 degrees of source\
points into each destination point.

yes? PLOT temp[G=gl0, GX=QAVE] ! averages 10 degrees of longitude but\

interpolates (QLIN) in Y.

2) @ASN hastheeffect of bypassing Ferret’s protections against misrepresenting data (Figure
14).

yes? SET DATA levitus climatology

yes? SET REGION/X=180/Y=0 ! true profile

yes? PLOT/Z=0:5000 temp

yes? DEFINE AXIS/DEPTH /z=100:2000:100 =zfalse

yes? DEFINE GRID/LIKE=temp /Z=zfalse gfalse ! false profile
yes? PLOT/Z=0:5000/0VER temp[G=gfalse@ASN]

86 CHAPTER 4

LONGITUDE , 404
LETMTUCE = 40N DATA SET: menthly_navy_sinds
FHOC 2.5 Dagree 1 Month verags Warld—wide Wind Flald

L L

Wis
EEEEEE
INNNNN NN NN
;

T T T T T T T
DMJdSOMISOHISOM oW DMJSDHJS
3

286 1887 1988 158; 159% 1951 1952
ZONAL WIND (M/S}

LONGITUDE 80w
LATMUGE 3 40N DWTA SET: monthly_nawy_winds
FHOG 2.5 Dagree 1 Month Average World—wide Wind Fiskd

&
1
TTT T

UWND[GT=MONTH_REG@MOD]

LONGTUDE : 40%
LATITUE + 40N DATA SET: monthiy_nvy_winde

FHOL 2.5 Dagres 1 Manth Avarage Worki—wids Wind Fleld

Wis

R R R S B R A R A A R R
1982 1963 1984 1985 1986 1957 1988 1986 . 18990 1981 1992
UMD

UWHD_GLIM

Figure 15.

2.4 Modulo regridding

Ferret can create climatologies from time series simply by regridding to a climatological axis
with a modulo regridding transformation. For example, if the axis named month_reg is a
12-point monthly climatological (modulo) axis then the expression

LET sst climatology = sst[D=coads,GT=month reg@MOD]

is a 12-month climatology computed by averaging the full time domain of the input variable
(576 points for coads) modulo fashion into the 12 points of the climatological axis.

Ferret has three pre-defined climatological axes. seasona reg (Feb, May, Aug, Nov),
month_reg (middle of every month), and month_irreg (15th of every month).

yes? USE climatological axes

**% NOTE: regarding ... climatological axes.cdf
*** NOTE: Climatological axes SEASONAL REG, MONTH REG, and MONTH IRREG
defined

yes? CANCEL DATA climatological axes ! the axes are still defined

To generate aclimatology based on arestricted range of input data simply define an intermedi-
ate variable with the desired points. For example, amonthly climatological time series based
on data from the 1960s could be computed using

LET sst 1960s = sst[D=coads,T=1-jan-1960:31-dec-1969]
PLOT sst 1960s[GT=month reg@MOD]

In asimilar fashion intermediate variables can be defined that mask out certain input points.

GRIDS AND REGIONS 87

0.80 o

0,40

0.00 |

_o.40 -

=080 —

JOF M A M J J A S N D JF M A M J J a 5 0N D J
1970 1271
TEST_AR[gt=MONTH_REGBmad]

TEST_vAR

.80 —|

040

0.00 —

_n.40

—0.80 —

UF M A M U d A S DN DM F M AN L &S BN D
1970 1871
TEST_YaAR_CENTERED[gt=MONTH_REG®mad]

Figure 16.

This example shows the entire sequence necessary to generate a plot of climatological SST at
40N, 40W based on the January 1982 to December 1992 Fleet Numerical wind dataset. Figure
15 shows the output of these calculations.

! use the predefined climatological axes
USE climatological axes
CANCEL DATA climatological axes

! use the Fleet Numerical winds
SET DATA monthly navy winds

! plot the raw data (top figure)
SET REGION/X=40w/Y=40n
plot uwnd

! plot the 12 month climatology (middle figure)
LET uwnd clim = uwnd[GT=month reg@MOD]
PLOT uwnd clim

! since uwnd clim is on a climatological axis
! Ferret can also plot it on the calendar axis with the raw data
PLOT/T=16-jan-1982:17-dec-1992 uwnd,uwnd clim

In many cases the volume of input data needed to perform climatological calculationsis very
large. In the exampl e above the command

CONTOUR/X=0:360/Y=90s:90n sst climatology[L=1]

to plot January from the climatology would require Nx* Ny* Nt=72* 72* 576=3 M egawords of
data. Such calculations may be too large to fit into memory. However, if the region is fully
specified (as shown for the X and Y limitsin the example) Ferret’s internal memory manager
will break up the cal culation as needed to produce the result. (See Memory Usein Chapter 9, p.
153, for further details.)

88 CHAPTER 4

Unlike other transformations and regridding, modulo regridding is performed as an unweight-
ed average: each non-missing source point contributes 100% of its weight to the destination
grid box within which it falls. If the source and destination axes are not properly aligned this
can lead to apparent shiftsin the data. For example, if amonthly time series has data points at
the first of each month and a climatological axis is defined at midmonths, then unweighted
modulo averaging will lead to an apparent 1/2-month shift. To avoid situations of thistypesim-
ply regridto the climatological axisusing linear interpolation prior to the modulo regridding.

Hereis an example that illustrates the situation and the use of linear interpolation to repair it.
Figure 16 shows the output of these calculations.

! define test var, an illustrative variable with 1 year periodicity
! Note: test var points are at the **beginnings** of months

DEFINE AXIS/T=1-jan-1970:1-jan-1974:°365.25/12" /UNITS=days tl0years
DEFINE GRID/T=tl0years gg

LET test var = SIN(L[G=gg]*2*3.14/12)

! plot 4 years of the cycle
PLOT test var

! define climatological axes at the midpoints of months
USE climatological axes
CANC DATA climatological axes

! notice that modulo regridding appears to shift the data
! (due to mis-aligned source and destination axes) (top figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test var[GT=month reg@MOD]

! to avoid the shift we can first regrid test var to mid-month

! points using linear interpolation (the default regridding method)
! notice that the function test var is largely unchanged by this
LET test var centered = test var[GT=month reg]
PLOT/OVER/T=1-jan-1970:1-jan-1974 test var centered

! finally perform a modulo regridding on well-aligned data

! notice that the shift is gone (bottom figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test var centered[GT=month reg]

2.4.1 Modulo regridding statistics

In addition to the modulo averaging calculation performed by @MOD Ferret provides other
statisticsof theregridding. All modulo regridding cal cul ations are unweighted as di scussed un-
der @MOD.

@MODVAR
the variance of source pointswithin each destination grid box (SUM (var-varbar)"2)/(n-1))

@MODSUM
the sum of the source points within each destination grid box

@MODNGD
the number of source points contributing to each destination grid box

GRIDS AND REGIONS 89

@MODMIN
the minimum value of the source points contributing to each destination grid box

@MODMAX
the maximum value of the source points contributing to each destination grid box

3 REGIONS

The region in space and time where expressions are evaluated may be specified in 3 different
ways:

1) with the command SET REGION
2) with qualifiers to the command name (slash-delimited)
3) with qualifiersto variable names (in square brackets, comma-delimited)

If SET REGION is used, Ferret remembers the region as the default context for future com-
mands, whereas a qualifier to a command name specifies the region for that command only,
and a qualifier to a variable name specifies the region for that variable and command only.

Regions may be manipulated using DEFINE REGION, SET REGION, @ notation, and
CANCEL REGION. The Commands Reference section of this manual coversall of these top-
ics.

Region information is normally specified in the following form:

QUAL=val Or

QUAL=lo val:hi val Or

ounl=valetransform (@savariablequalifier only) or

OUAL=10 val:hi val@transform (@Savariable qualifier only)
When theregion for an axisis specified asasingle value (instead of arange) Ferret, by default,
selects the grid point of the grid box containing this value. The Ferret mode “interpolate” can

control thisbehavior. See command SET MODE INTERPOL ATE in Commands Reference, p.
255.

Examples. Regions
Examples of valid region specifications.

1) Fully specify theregionin an XY plane with thefirst vertical (Z) level and time 27739.

yes? SET REGION/X=140E:160W/Y=10S:20N/K=1/T=27739

2) Contour vertical heat advection within whatever regionisthe current default (previously set
with SET REGION).

90 CHAPTER 4

3.1

3.2

yes? CONTOUR gadz

3) Define, modify and set a named region and then modify with delta notation.

yes? DEFINE/REGION/Y=5S:5N YT !define region YT to be 5S:5N
yes? DEFINE REGION/DY=-1:+1 YT 'modify region YT to be 6S:6N
yes? SET REGION/QYT !set current region to YT

yes? SET REGION/DY=-1:+1 'modify current region to 7S:7N

4) List meridional currents calculated by averaging val ues between the surface and a depth of
50 m.

yes? LIST v[Z=0:50Q@AVE]

5) Equivalenttov(z=10] - viz=0:100eave], theanomaly at z=10 between v and the 0 to 100
meter depth average of v.

yes? LIST/Z=10 v - v[Z=0:100QAVE]

Latitude

Specify latitude or alatitude range with the qualifier Y or J. Specifications using J are integers
between 1 and the number of pointsontheY axis. Specificationsusing Y arein the units of the
Y axis.

The units may be examined with SHOW GRID/Y. If the Y axis units are degrees of |atitude
then the Y positions may be specified as numbers followed by the letters “N” or “S".

Examples

yes? CONTOUR temp[Y=155:10N]
yes? LIST/J=50 u

Longitude

Specify longitude or alongitude range with the qualifier X or I. Specificationsusing | areinte-
gershbetween 1 and the number of pointson the X axis. Specificationsusing X areinthe units of
the X axis.

The units may be examined with SHOW GRID/X. If the units are degrees, then X values may
be given as numbersfollowed by “W” or “E” (e.g., 160E, 110.5W) or as values between 0 and
360 with Greenwich at O increasing eastward. Note: If the X axisis“modulo” then it is some-
times desirable to use X greater than 360.

Examples

GRIDS AND REGIONS 91

yes? CONTOUR temp[Y=160E:140W]
yes? LIST/I=100 u
yes? SHADE/X=100:460 temp 1360 degrees centered at 100W

See Chapter 4, section “Modulo Axes” (p. 94), for help with globe-encircling axes.

3.3 Depth

Specify depth or adepth rangewith the qualifier Z or K. Specificationsusing K areintegers be-
tween 1 and the number of points on the Z axis. Specificationsusing Z are in the units of the Z
axis.

The units may be examined with SHOW GRID/Z.

Examples

yes? CONTOUR temp[Z=0:100]
yes? LIST/K=3 u

3.4 Time

Specify time or atime range with the qualifier T or L. Specifications using L are integers be-
tween 1 and the number of pointson the T axis. Specifications using T may refer to calendar
dates or to the time step unitsin which the time axis of the data set is defined.

Calendar date/time values are entered in the format dd-mmm-yyyy:hh:mm:ss, for example
14-FEB-1988:12:30:00. At a minimum the string must contain day, month, and year. If the
string contains any colons it must be enclosed in quotation marks to differentiate from colons
used to designate arange. If atime increment is specified with the repeat command given in
calendar format (e.g., REPEAT/T="1-JAN-1982":"15-JAN-1982":6) it isinterpreted as hours
always. Calendar dates in the years 0000 and 0001 are regarded as year-independent dates
(suitable for climatological data).

SHOW GRID/T can be used to display time step values. (Units may vary between data sets.)
The commands SET MODE CALENDAR and CANCEL MODE CALENDAR can be used to
view date strings or time steps, respectively.

Examples

yes? LIST/T="1-JAN-1982:13:50":"15-FEB-1982" density
yes? CONTOUR temp[T=27740:30000]
yes? LIST/L=90 u

See Chapter 4, section “Modulo Axes” (p. 94) for help with climatological axes.

92 CHAPTER 4

3.5 Delta

The notation g=lo:hi:delta(e.g., Y=20S:20N:5) specifiesthat the datain the requested rangeis
regularly subsampled at interval “delta.”

Thisnotationisvalid only for the REPEAT, SHOW GRID, and DEFINE AX1S commands, and
the qualifiers/XLIMITS and /YLIMITS used in action commands with graphical outpuit.

@ notation

Regions may be named and referred to using the syntax “ @name”. Some commonly used re-
gions are predefined. See commands SET REGION (p. 261) and DEFINE REGION (p. 217)
in the Commands Reference section for further information.

If aregionis specified using acombination of “@" notation and explicit axislimitsthe explicit
axislimitswill be evaluated after the* @” specification, possibly superseding the“ @” limits.

Note: Itisnot advised to usethe @notation inside of variable definitions, asredefinitions of the
named region can cause code errors that |ead to wrong results.

Using the @ notation only setg/alters the axis limits specified in the named region. For exam-
ple, suppose that region “XY” is defined for the X and Y axes, but not for the Z and T axes.
Then

yes? SET REGION/@XY

modifiesonly X and Y limits. BUT,

yes? SET REGION XY

modifies al axes—X and Y to the limits specified by XY, and Z and T to unspecified (even if
they were previously specified).

Examples

1) Contour the 25th time step of temperature dataat depth 10 withinregion T, the“ Tropical Pa-
cific.”

yes? CONTOUR/QT/Z=10/L=25 temp

2) Produce acontour plot over region W, the “Whole Pacific Ocean,” inthe XY plane (the vari-
ableto be contoured aswell asthe depth and timewill beinferred fromthe current context).

yes? CONTOUR/QW varl

3) Set the default regionto “T”, the Tropical Pacific Ocean (latitude 23.5S to 23.5N).

GRIDS AND REGIONS 93

yes? SET REGION/QT

4) Define aregion and then supersede with an axis limit specification.

yes? DEFINE REGION/X=180:140W/Y=2S:2N/Z=5 BOX1
yes? SET REGION/@BOX1/Z=15 'replace %

Pre-defined regions

As a convenience in the analysis of the Tropical Pacific Ocean the following regions are
pre-defined:

Name Region L atitude Longitude
T Tropical Pacific 23.5S:23.5N 130E:70W
N Narrow Pacific 10.0S:10.0N 130E:70W
W Whole Pecific 30.0S:50.0N 130E:70W

These may be redefined by the user for the duration of a Ferret session or until the definitions
are canceled.

3.6 Modulo axes

Some axes areinherently “modulo,” indicating that the axis wraps around—the first point im-
mediately following the last.

To determineif an axisis modulo use SHOW AXIS or SHOW GRID. A letter “m” following
the number of pointsin the axisindicatesamodul o axis. The command SHOW GRID qualified
by the appropriate axislimits can be used to examine any part of the axis—including points be-
yond the nominal length of the axis. The commands SET AXIS/MODULO and CANCEL
AXIS/IMODULO can be used to control this feature on an axis-by-axis basis.

Example

yes? SET DATA coads climatology
yes? SHOW GRID/I=180:183 sst !range request beyond last point
GRID COADS1
name axis # pts start end
COADSX LONGITUDE 180mr 21E 19E(379)
[text omitted]
I X BOX SIz
180> 19E (379
181> 21E (381
182> 23E (383
(

NN NN

)
)
)
183> 25E(385)

94 CHAPTER 4

The most common uses of modulo axes are:

1) Aslongitude axesfor globe-encircling data sets. Thisallows any starting and any ending
longitudesto be used, for example, X=140E:140E indicates the entire earth with data be-
ginning and ending at 140E.

2) Astimeaxesfor climatological data. By thisdevice the time axis appearsto extend from
Otoinfinity and the climatol ogical data can bereferred to at any point in time. Thisfacili-
tates comparisons with data sets at fixed times.

3.7 Region Conflicts

Conflicting region information can be given to Ferret in obvious ways such as

LIST/I=1:3 I[I=1:10]

inwhichitisnot clear if therequest isfor 10 points or for 3, or in subtler, disguised ways such
as

LET A = I[I=1:10] LIST/I=1:3 A
In both examples Ferret would resolve the conflict by listing just the three values [=1:3.

Internally, Ferret uses the region closest to the variable to perform the calculation. Thus, in
both of the examples above Ferret will perform the calculation on 1=1:10, since the “[1=1:10]"
directly modifiesthe variable name. If Ferret sees conflicting regionsit attemptsto use the re-
gions further from the variable to clip the calculation. Thus 10 points are clipped to 3 in the
above examples.

Unresolvable conflicts such as

LIST/I=11:13 I[I=1:10]

will result in awarning message that invalid limits have been ignored.

GRIDS AND REGIONS 95

Chapter 5: ANIMATIONS AND GIF IMAGES

1 OVERVIEW

A sequence of Ferret plots can be stored and then animated. Each plot isstored asoneframeina
moviefile. Ferret stores movie framesin Hierarchical Data Format (HDF), aformat designed
by the National Center for Supercomputing Applications (NCSA). A movie file can then be
displayed as an animated sequence of frameswith NCSA’'s xds—X Data Slice (not distributed
with Ferret; see Chapter 5, section “ Displaying an HDF movie” (p. 98), for details).

2 CREATING AN HDF MOVIE

Creating amovie requires two steps:

1) designate an output file with SET MOVIE
2) generate a sequence of frames with REPEAT and FRAME

See commands SET MOV IE (p. 260), CANCEL MOVIE (p. 206), SHOW MOV IE (p. 274),
FRAME (p. 222), and REPEAT (p. 240) in the Commands Reference section of this manual.

Example: basic movie

yes? SET DATA coads climatology !specify data set

yes? SET REGION/Q@W !'specify Pacific Ocean

yes? LET/TITLE="SST Anomaly" SST ANOM = SST - SST[L=1:12@AVE]

yes? REPEAT/L=1:12 (FILL sst anom; FRAME/FILE=my movie.mgm)
!filled contour of sea surface\
temp anomaly captured and\
written to HDF file

Optionally, “.mgm” will be assigned to the moviefile.
REPEAT executes its argument (in the above example, FILL) successively for each timestep
specified. REPEAT can have multiple arguments separated by semi-colonsand enclosed in pa-

rentheses.

FRAME is a stand-alone command, but also a qualifier for the graphical output commands
PLOT, CONTOUR, FILL (aliasfor CONTOUR/FILL), SHADE, VECTOR and WIRE.

The saved animation frames are exactly the size and shape of the window from which they are
created. Thus a large window results in a larger, slower animation that demands more disk
space and memory to play back. The SET WINDOW/SIZE= command is generally used to
specify minimally acceptable frame size.

See Chapter 5, section “Advanced Movie-making” (p. 98), for more examples.

ANIMATIONS AND GIF IMAGES 97

3 DISPLAYING AN HDF MOVIE

Viewing amovie requires software which is not included with the Ferret distribution (although
in some cases we have made the binary available in Ferret’s anonymous ftp area). NCSA's X
Data Slice reads HDF files and is available via anonymous ftp from NCSA. It requires about
1.7Mb of disk space. NCSA's ftp server is

ftp.ncsa.uiuc.edu loginidis*“anonymous’, give your e-mail address as the password

Consult the README files you will find there for instructions on obtaining X Data Slice.
Other utilities from NCSA can also be used for animations.

4 ADVANCED MOVIE-MAKING

41 REPEAT command

The REPEAT command is quiteflexible. It allows you to repeat a sequence of commands, not
just asingle command as in the basic example above. You can give the GO command as an ar-
gument to REPEAT. The following examples demonstrate these techniques.

Note: MODE VERIFY must be SET (thisisthe default state) for loop counting to work.
Example 1

Herewe give multiple argumentsto REPEAT; note the semi-colon separation and the parenthe-
ses. Note that FRAME, in this example, is used as a stand-alone command.

yes? REPEAT/L=1:12 (FILL SST; GO fland; FRAME/file=my movie.mgm)
Example 2

In this example we use the REPEAT command to pan and zoom over a sea surface temperature
field.

SET DATA coads climatology

SET REGION/L=1

SET REGION/X=120E:60W/Y=45S:45N
SHADE sst; GO fland

! ZOOM
REPEAT/K=1:5 (SET REGION/DX=+8:-8/DY=+8:-8; SHADE sst; GO fland; FRAME)

! PAN
REPEAT/K=1:5 (SET REGION/DX=+5; SHADE/LEV=(20,30,.5) sst; FRAME)

98 CHAPTERS

Example 3

In this example the user calls setup_moviejnl (text included below), title.jnl, which creates a
title frame, then repeats main_moviejnl (text included below) for each time step desired.
Finally, the user adds aframe of credits at the end of the movie. Each of the scripts would end
with the FRAME command (except setup_movie). Using GO scripts as argumentsto REPEAT
allows you to customize the plot with many commands before finally issuing FRAME, asthe
text of main_movie.jnl below demonstrates.

yes? ! make the movie

yes? GO setup movie

yes? GO title

yes? REPEAT/L=1:12 GO main movie
yes? GO credits

! Setup movie.jnl

SET WINDOW/SIZE=.45/ASPECT=0.7
SET MOVIE/file=my movie.mgm
SET DATA coads climatology

SET REGION/X=130E:75W/Y=8S:8N
SET MODE CALENDAR:months

GO bold

PPL SHAKEY ,,.15,.2

PPL AXLEN 8.8,4.8

! Main movie.jnl

FILL/SET UP/LEVELS=(16,31,1) sst

PPL LABS; PPL TITLE

PPL FILL

LABEL 210,9.5,0,0,.22 @TRCOADS MONTHLY CLIMATOLOGY (1946-1989)
LABEL 210,-12,0,0, .22 Q@TRSEA SURFACE TEMPERATURE (DEG C)

LABEL 130,11,-1,0,.22 QTR’LAB4’

FRAME

Note: If you usethe FILL command, we suggest that you use SHADE while customizing and
fine-tuning your movie, then use FILL for the final run. SHADE is much faster.

4.1.1 Initializing the color table

If you create amovie with atitle frame, or afirst frame which otherwise uses different colors
than the rest of the movie, you should be aware of an HDF peculiarity: all the colors that you
planto useinyour movie must beinthefirst frame, or else color behavior will be unpredictable
when you animate.

To “reserve’ the colorsyou need, use overlapping full-window viewports. Make arepresenta-
tive plot in thetitle frame, then cover over it with either a black or white rectangle and finally
writethetitletext. Hereisascript whichinitializesthe color tablewhile creating atitleframe.

! define 3 identical full-frame viewports
DEFINE VIEW fulll; DEFINE VIEW full2; DEFINE VIEW full3

! draw frame one of the movie in full color

SET VIEW fulll

SET DATA coads climatology

SHADE/LEVELS=(16,31,1) /L=1 sst ! dummy frame

ANIMATIONS AND GIF IMAGES 99

! white-out over the picture

SET VIEW full2

GO setup text
SHADE/PALETTE=white/NOLAB/NOKEY/i=1:2/3=1:2 (i+7j)*0

'put on title frame labels (using [0,1] coordinate space)
SET VIEW full3

GO setup text

PPL PLOT

LABEL .5,.7,0,0,.3 @TRMy Title

PPL ALINE 1,.2,.55,.8,.55

PPL ALINE 1,.2,.53,.8,.53

LABEL .5,.4,0,0,.2 QCRBy me

!capture the title frame and clean up
FRAME
GO cleanup text

4.1.2 Making movies in batch mode

Ferret, like other Unix applications, can be run in “batch” mode by redirecting standard input
and output. Thus

ferret -unmapped <movie commands.jnl >&movie.logé&

will make a movie running in background mode based on the commands in file movie_com-
mands.jnl logging standard output and standard error in file movie.log.

Note, however, that when used in this mode to make a movie Ferret will still require accessto
an X windowsdisplay (asin*“setenv DISPLAY node:0”). To eliminate thisrequirement werec-
ommend the use of the X11R6 “virtual frame buffer” (Xvfb). This application permits the
movie framesto be generated in the absence of any physical display device. Consult your sys-
tem manager for the availability of X11R6 for your system.

5 CREATING GIF IMAGES

GIF isahighly compressed format suitable for single images. (Ferret will not directly create
GIF89 animations.) The procedure for creating a GIF image is nearly identical to the creation
of asingleframeof an HDFfile. Themodificationisgenerally just to select afilenamewith the
“.gif” extension; Ferret will automatically sensethisasarequest to create a Gl F-formatted im-
agefile. Alternatively, any file name can be used if the GIF format isspecified explicitly using

FRAME/FORMAT=GIF
If a number of GIF images are created using the same file name Ferret will automatically re-

name subsequent versions with a version number. Thus arepeat |oop can be used to generate
many GIF images.

100 CHAPTERS

Example:

REPEAT/L=1:12(FILL sst; GO fland; FRAME/file=myimage.gif)

Note: Inthismode of grabbing animage, Ferret createsa Gl F file by requesting theimage back
from your screen (your X server). That meansthat the X server normally hasto be configured
as pseudo-color.

An alternative approach to creating GIF's (which does not share this restriction) is to invoke
Ferret with the -gif command line switch “ferret -gif” (p. 6).

CREATING MPEG ANIMATIONS

MPEG animations can be created from the outputs of the FRAM E command—either HDF ani-
mation files or a sequence of GIF images. Various public domain utilities are available to per-
form the conversion from Ferret's output formats into MPEG animations. The routine
hdf2mpeg (availablein 1995 from ftp.ncsa.uiuc.edu in HDF/contrib/NCSA/HDF2MPEG) can
be used to convert HDF files into MPEG animations; mpeg_encode (available from
mm-ftp.CS.Berkeley.EDU in /pub/multimedia/mpeg/encode) can be used to convert se-
guences of GIFfiles. New and improved routines may have become available since the time of
this writing. See further documentation on this topic in the FAQ file from the Ferret WWW
home page.

ANIMATIONS AND GIF IMAGES 101

Chapter 6: CUSTOMIZING PLOTS

1 OVERVIEW

Detailed control is possible over most aspects of Ferret graphical outputs. A custom modifica-
tionwill requirethe user to either add aqualifier to aFerret command or communicate directly
with the graphical package PPLUS, which is contained inside of Ferret. The most commonly
used PPLUS commands are listed in the following sections of this chapter. Consult the PLOT
PLUSfor Ferret manual for complete command lists and the specifics of command syntax.

Ferret communicates with PPLUS by sending a sequence of commandsto PPLUS (the com-
mand PPL ECHO ON causes the sequence of commands that Ferret sends to PPLUS to be
logged in the file fort.40.). The user can give further commands to PPLUS directly using the
Ferret command PPL (e.g., ves? prpL axieEN 10,7). Some results can be attained in two
ways—with either Ferret or PPLUS commands. However, the interaction of the two is com-
plex and the inexperienced user may get unexpected results, so when possible, use only Ferret
commands.’

PPLUS uses a deferred mode of output—various commands are given to PPLUS which de-
scribe the plot state but produce no immediate output; the entire plot is then rendered by asin-
gle command. Some plot states (e.g., axislabels) are set by Ferret with every plotted output; to
customize these states it is necessary to use the /SET_UP qualifier (which sets up the plot in-
side of PPLUS) and then modify the state with direct PPL commands. Other plot states are
never set by Ferret and, if modified at any time, remain in their specified state for all subse-
guent plots. Still other statesare modified by Ferret only under special circumstances. Hereisa
very simple customization (Figure 17):

= 50

My SIN Plot

Figure 17.

" Note that throughout this discussion a distinction has been made between Ferret commands and
PPLUS commands. In reality, the user issues Ferret commands only. “PPLUS commands’ in this context
refersto PPLUS commands issued via the Ferret command PPL.

CUSTOMIZING PLOTS 103

yes? PLOT/X=1:100/TITLE="My SIN Plot"/SET UP sin(x/6) !use /SET_UP
yes? PPL YLAB “SIN value”
yes? PPL PLOT

The examplesthroughout this chapter show how the/SET_UPqualifier on graphics commands
can be used to delay rendering of a plot while the user modifies plot appearance with PPLUS
commands.

Below isalist of PPLUS commands which are reset by Ferret:

PPLUS command when reset by Ferret

XFOR, YFOR reset for every plot

XLAB, YLAB reset for every plot

XAXIS, YAXIS reset for every plot

LABS reset for every plot

ALINE reset for every plot

TAXIS OFF reset for every plot

TITLE reset for every plot

TICS reset for every plot (small tic size, only)

WINDOW ON reset for every plot

PEN 1,n reset for every plot

LIMITS reset for every plot

ORIGIN reset by SET WINDOW/ASPECT and SET VIEWPORT; Y origin
may be shifted to accommodate many line style keys

AXLEN modified by SET WINDOW/ASPECT and SET VIEWPORT

VIEWPORT modified by WIRE/VIEW

LEV modified by CONTOUR and SHADE unless /LEVELS SAME
given

VECSET modified by VECTOR unless/LENGTH_SAME given

WINDOW modified for “fresh” plots but not for overlay plots

2 GRAPHICAL OUTPUT

2.1 Ferret graphical output controls

Ferret command Function

CONTOUR produces a contour plot of asinglefield

FILL aliasfor CONTOUR/FILL; produces color-filled contour plot
PLOT produces aline or symbol plot of one or more arrays

SHADE produces a shaded representation (rectangular cells)
VECTOR produces a vector arrow plot

WIRE produces a 3D wire frame plot

104 CHAPTER®6

2.2

3.1

Ferret command Function

SET WINDOW mani pul ates graphics windows
SET VIEWPORT places graphics output into a sub-window (pane)

PPLUS graphical output commands

Whenever aplot iscustomized using /SET_UPto delay display, the plot will ultimately beren-
dered using a PPLUS graphical output command (not the Ferret counterpart). A customized
contour or filled-contour plot is rendered with PPL CONTOUR, a wire frame plot with PPL
VIEW and so on.

Command Function

CONTOUR makes a contour plot

PLOT plots x-y pairsfor al lines of data
PLOTUV makes a stick plot of vector data
SHADE makes a shaded representation
VIEW makes awire frame plot
VECTOR makes a plot of avector field

The graphical output command PLOTUYV can be used to make stick plots easily, asthe follow-
ing time series example shows.

yes? SET DATA coads; SET REGION/X=180/Y=0/L=400:500
yes? PLOT/SET uwnd, vwnd
yes? PPL PLOTUV

AXES

By default, Ferret displays X- and Y-axes with tics and numeric labels at reasonable intervals
and alabel for each axis. Time axes are al so automatically formatted and used as needed. These
axis features can be modified or suppressed using the following Ferret direct controls and
PPLUS commands.

Ferret axis controls

Thefollowing qualifiersare used with graphical output commands PLOT, VECTOR, SHADE,
and CONTOUR to specify axislimits, tic spacing, and possible axis reversal:

CUSTOMIZING PLOTS 105

Ferret qualifers
IXLIMITS, /YLIMITS, /INOAXIS

The/XLIMITSand /YLIMITS qualifiersuse the syntax /XLIMITS=lo:hi:delta. Tic marksare
placed every “delta’ units, starting at “10” and ending at “hi”. Every other tic mark is labeled.
“delta” may be negative, in which case the axisis reversed.

The /NOAXIS qualifier removes both X and Y axes from the plot. Thisis particularly useful
for plots using curvilinear coordinates (map projections) where the final axis values represent
transformed axis values rather than world coordinates.

Thefollowing argumentsto SET MODE and CANCEL MODE determineaxisstyle (e.g., SET
MODE CALENDAR:days) :

Ferret arguments

CALENDAR
LATIT LABEL
LONG_LABEL

See the Commands Reference section of this manual (p. 203) for more information.

3.2 PPLUS axis commands

Command Function

XAXIS* controls numeric labeling and tics on the X axis (redundant with /XLIMITYS)
YAXIS* controls numeric labeling and ticson the Y axis (redundant with /YLIMITS)
AXATIC sets number of large tics automatically for X and Y

AXLABP locates or omits axis labels at top/bottom or left/right of plot

AXLEN** setsaxislengths

AXLINT sets numeric label interval for axes every nth largetic

AXLSZE setsaxislabel heights

AXNMTC setsnumber of small tics between large tics on axes

AXNSIG sets number of significant digitsin numeric axis labels

AXSET allows omission of plotting of any axis

AXTYPE setsaxistype (linear, log, inv. log) for x- and y-axis

TICS sets axistic size and placement inside or outside axes

XFOR* sets format of x-axis numeric labels

Y FOR* sets format of y-axis numeric labels

XLAB* sets label of x-axis

YLAB* sets label of y-axis

TXLABP establishestime axis label position (or absence)

106 CHAPTER6

Command Function

TXTYPE* setsthe style of thetime axis

TXLINT* specifieswhich time axistics will be labeled

TXLSZE sets height of time axis labels

TXNMTC setsnumber of small tics between large tics on time axis
* issued by Ferret with every relevant plot

** jssued by Ferret upon SET WINDOW/ASPECT or SET VIEWPORT

Examples

1) Plot with no axis labels (character or numeric) and no tics (Figure 18). (Equivalent to yes»
GO box plot PLOT/I=1:10/NOLABEL 1/i)

yes? PLOT/i=1:30/NOLABEL/SET 1/i

yes? PPL AXLABP 0,0 'turn off numeric labels

yes? PPL TICS 0,0,0,0 !'suppress small and large tics
yes? PPL PLOT !render plot

yes? PPL TICS .125,.25,.125,.25 lreset tics to default

yes? PPL AXLABP -1,-1 !reset numeric labels

2) customize x-axislabel (Figure 19); XLAB aways reset by Ferret)

yes? PLOT/SET/i=1:100 sin(x/6)
yes? PPL XLAB My Custom Axis Label
yes? PPL PLOT

E3 EY
My Custom Axis Label

SIN(X/6)

Figure 18. Figure 19.

3) specify tic frequency for y axis

yes? PLOT/i=1:30/YLIM=0:1:.2 1/i

CUSTOMIZING PLOTS 107

4 LABELS

Ferret, by default, produces|abeled axes, aplot title, documentation about the plot axes normal
to the plot, and a signature (current date and Ferret version number) when a plot is rendered.
The/NOLABELS qualifier suppresses the plot title, the documentation and signature, but not
the axislabels of independent axes, PPLUS commands XLAB, YLAB, and AXLABP control
axis|abels.

4.1 Listing labels

The PPLUS command PPL LIST LABEL S can be used to list the currently defined labels. For
example,

yes? PPL LIST LABELS
@ACSEA SURFACE TEMPERATURE (Deg C)

@ASLONGITUDE
@ASLATITUDE

XPOS YPOS HGT ROT UNITS
LAB 1 8.000E+00 7.200E+00 0.060 0 SYSTEM (QASFERRET Ver. 4.40
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 2 8.000E+00 7.100E+00 0.060 0 SYSTEM @ASNOAA/PMEL TMAP
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 3 8.000E+00 7.000E+00 0.060 0 SYSTEM (@ASOct 22 1996 09:24
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 4 0.000E+00 6.600E+00 0.120 0 SYSTEM @ASTIME : 16-JAN
LINE PT: 0.000E+00 0.000E+00 NO LINE LEFT JUSTIFY LABEL

Thefirst threelines of output show the plot title, the X axislabel, andtheY axislabel. Thesela-
bels are controlled by the PPL TITLE, PPL XLAB, and PPL YLAB commands, respectively.
Thethree characters“ @AS’ indicate the font of the label—in this case “ASCII Simplex” (see
Chapter 6, section 6, “Fonts,” p. 120).

Next isatable of “movable labels’—Ilabels that were defined using the PPL LABS command.
Labelsare generally simpler to control with the GO unlabel and LABEL commands described
in the following sections, rather than with the PPL LABS command.

Each label isdescribed with two lines. The column headersrefer to thefirst of thetwo. The co-
ordinatesof each label, (XPOS,Y POS), may beinunitsof “inches’ or may beintheunitsof the
axes. Thisisreflected in the UNITS field of the output, which will contain “SY STEM” if the
coordinatesareininchesor “USER” if the coordinates are axisunits. (The/NOUSER qualifier
onthe PPL LABS command isused to indicate that coordinates are being givenininches.) Co-
ordinates are calculated relative to the axis origins. The PPL HLABS and PPL RLABS com-
mands control label height and rotations, respectively.

The second line of the label description containsinformation about an optional line on the plot
which can be used to point to the label (refer to the PPLUS command LLABS or see section

108 CHAPTER 6

4.7, “Positioning labels using the mouse pointer,” p. 112). At the end of thislineisthe text of
the movable label.

4.2 Adding labels

The Ferret command LABEL adds alabel to a plot and takes the following arguments:

yes? LABEL xpos,ypos,center,angle,size text

wherexposand yposarein user (axis) units, sizeisininches, angleisin degrees (0 at 3 0’ clock)
and center is-1, 0, or +1 for left, center, or right justification. The label position will adjust it-
self automatically when the plot aspect ratio or the viewport is changed.

If you prefer to locate labels using inches rather than using data units issue the command

yes? LABEL/NOUSER xXpos, ypoOS, ...

Note, however, that the layout of aplot ininches—lengths of axes, label positions, etc.—shifts
with changes in window aspect ratio (SET WINDOW/ASPECT) and with the use of
viewports. Labels specified using LABEL/NOUSER will need to be adjusted if the aspect ratio
or viewport is changed.

Notes:

1) If you use the command PPL LABS instead of LABEL, be aware that when defining anew
movable label, al lower-numbered |abels must already be defined.

2) TheFerret command LABEL isanaliasfor PPL %L ABEL. PPLUSdoesNOT consider ala-
bel created with LABEL a movable label. Consequently, no label number is assigned and
the label cannot be manipulated as a movable label.

3) %LABEL isanunusua command inthat thelabel appearson the plot immediately after the
command is given, rather than being deferred. This has ramifications for the user who has
multiple plot windows open and isin MODE METAFILE, since ametafileis not closed un-
til anew plot isbegun. If the user produces a plot in window B, and then returnsto a previ-
ous window A and adds alabel with LABEL, that label will appear on the screen correctly,
but will be in the metafile corresponding to window B.

Example

yes? PLOT/I=1:100 sin(i/6)
yes? LABEL 50, 1.2, 0, 0, .2 @P2MY SIN PLOT

CUSTOMIZING PLOTS 109

&
=
o

E
1
T T T

SIN(L/E)

£z
1
BEEERERE

X

SIN(I/6)

Figure 20.

4.3 Removing movable labels

Removing amovablelabel isatwo step process: identifying thelabel number and then deleting
the label. PPLUS internally refers to al movable labels with label reference numbers. The
PPLUS command LIST LABEL Swill list the PPLUS labels and the text strings they contain.
Then the user can use “ GO unlabel n”, where n is the reference number, to delete alabel.

Example

In thisexample we plot the samefigurein two viewports, one plot with the default “ signature,”
and one plot with the signature removed (Figure 20).

lupper viewport has a “signature”
yes? PPL BOX on

yes? SET VIEW upper

yes? PLOT/I=1:100 sin(i/6)

'in the lower viewport

'the signature has been removed
yes? SET VIEW lower

yes? GO unlabel 1

yes? GO unlabel 2

yes? GO unlabel 3

yes? PPL PLOT

yes? CANCEL VIEWPORT

110 CHAPTER 6

4.4

4.5

Axis labels and title

Special commands and specia logic govern the labels of axes and titles. Use the PLOT+ com-
mands XLAB, YLAB, and TITLE in conjunction with the Ferret plotting qualifier /SET_UPto
modify the labeling choices that Ferret makes.

For two-dimensional plots(CONTOUR, FILL) Ferret will 1abel the plot axeswiththetitlesand
units from the appropriate axes of the grid. The command SHOW GRID can be used to seethe
labels that will be used. The title will be the title of the variable (see SHOW VARIABLE, p.
275, and SHOW DATA/VARIABLE, p. 270) modified by the units and comments about trans-
formations in parentheses.

For one-dimensional plots (PLOT) other than PLOT/V S the independent axis will be labeled
using the title and units from the appropriate axis of the grid. The dependent axis will be la-
beled with the units of the variable being plotted. The title will be labeled as for two-dimen-
sional plots.

For output of the PLOT/V'S command the axes will be labeled with the titles of the variables
(see SHOW VARIABLE, p. 275, and SHOW DATA/VARIABLE, p. 270) each modified by its
units and comments about transformations in parentheses.

Ferret label controls

In addition to LABEL (discussed above), Ferret controlsinclude the/NOLABELS qudlifier,
which suppresses default plot title, documentation and signature, and /TITLE qualifier to
graphical output commands PLOT, SHADE, CONTOUR, VECTOR, and WIRE:

Ferret qualifiers

INOLABELS
ITITLE=

and arguments to SET MODE and CANCEL MODE:
Ferret arguments
ASCIl_FONT
CALENDAR

LATIT LABEL
LONG_LABEL

CUSTOMIZING PLOTS 111

4.6 PPLUS label commands

Ferret storesthetext strings of thefollowing labelsin PPLUS symbols. The symbol namesare:

symbol name label

LABTIT title label

LABX X axis label
LABY Y axis|abel
LABN nth movable |abel

As stated above, PPLUS commands regarding movable labels are largely superceded by the
Ferret command LABEL and “GO unlabel n”.

Command Function

LIST LABELS showsthe currently defined labels

LABS* makes, removes, or alters a movable |abel

HLABS sets height of each movable |abel

RLABS sets angle for each movable |abel

LABSET sets character heights for labels

LLABS sets start position for and draws a line to a movable |abel
TITLE* sets and clears main plot |1abel

XLAB* sets label of X axis

YLAB* setslabel of Y axis

* issued by Ferret with every relevant plot

Example

This example customizes aplot using PPLUS label controls.

yes? PLOT/Z:2O/IZI:IOO/SET7UP z * sin(1/6)

yes? PPL LABS 4,48,0,0 @p2’lab4d’

yes? PPL HLABS 4,.25

yes? PPL LABS/NOUSER 5,0,6.3,-1 *** Magnified SIN function ***
yes? PPL LABSET ,,, .35

yes? PPL PLOT

4.7 Positioning labels using the mouse pointer
Oftenitisawkward precisely to position plot |abels. Using the mouse pointer can simplify this
as mouse clicks can be used to place labels and other annotations on plots. The full syntax of
the LABEL command is

LABEL xpos, ypos, justify, rotate, height “text”

112 CHAPTER 6

Xpos,ypos are the (x,y) position of the label

justify = -1, 0, 1 for left, center, right justification — default = left

rotate is given in degrees counter-clockwise — default = 0

height isin “inches”
text to be plotted. This argument may include font and color specifications

Note that the LABEL /NOUSER qualifier is not relevant for mouse inpuit.

If either of thefirst two arguments (label position) are omitted it isasignal that mouseinput is
desired. For example

yes? GO ptest
yes? LABEL “this is a test”

will wait for mouse input, using the indicated point as the lower left corner of the text string.
Equivaent to thisis

yes? LABEL ,,-1,0,.12 “this is a test”
Notethat left justification will always be used in thismode, regardless of the value specified.

For mouse control over justification and/or to draw aline or arrow associating a label with a
feature on the plot, explicitly omit the justification argument. Ferret will put up a menu
requesting a selection of “Arrow”, “Line”, “Right”, “Center”, “Left”. If Arrow or Lineis se-
lected two mouseinputs are required — thefirst indicating the feature to be marked, the second
indicating the lower |eft corner of the text area. If “Right”, “ Center” or “Left” is specified the
text will be justified accordingly.

Note that the mouse-driven LABEL command defines the symbols XMOUSE and Y MOUSE
and writes comments regarding their definitions into the current journa file (if any) as de-
scribed under the WHERE alias.

The command (alias) WHERE reguests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Com-
ments which include the digitized position are al so written to the current journal file (if open).
The WHERE command can be embedded into scriptsto allow interactive positioning of color
keys, boxes, lines, and other annotations.

4.8 Labeling details with arrows and text

Using the technique described in section 4.7 it isalso smpleto create alabel with aline or ar-
row indicating a detail of a plot. Follow the procedure outlined above but select “Line” or
“Fancy line” (arrow) from the menu that appears in the plot window. Then click on the detail
which isto be labeled. The menu will appear again—thistime select the justification and click
on the label position.

CUSTOMIZING PLOTS 113

5.1

To see the precise numerical coordinates of the arrow and label use the PPL ECHO ON com-
mand prior to the PPLUS command which redraws the plot. The endpoint coordinates of the
arrow will appear as a comment line which beginswith “C LLABS’ in the echo file, fort.41.
The coordinates of the label will appear as a comment line which begins with “C LABS".
(Easily viewed with “spawn tail -2 fort.41".)

COLOR

Ferret and PPLUS use colors stored by index. Storageindices 0 and 1 are used aswindow back-
ground and foreground colors. Indices 1-6 are reserved for lines. As the user makes SHADE
and FILL requests, each color is assigned to the next available storage index beginning at 7,
and that assignment isautomatically “ protected” when viewportsor color overlaysare added.

If your SHADE and FILL commands request more colorsthan there are storage indices (256),
you will beinformed with an error message and the color behavior may become unpredictable.
For example, if you have multiple viewports defined within awindow you may run out of color
storage indices. If you are using the same color pal ette(s) in each viewport, you can free up in-
dices by canceling the color protectionswith PPL SHASET RESET. Seethe exampleslater in
this section for details on removing color protection. Currently, thereisno way to ask PPLUS
how many colorsitisusing in aplot.

Thefollowing discussion isdivided into atreatment of text and line colors, and a discussion of
shade and fill color.

Text and line colors’

Line and text colors are regulated by use of storage indices 1-6, each index associated with a
default color. It is possible to change the six available line colors with the PPLUS enhance-
ments command COL OR. (See Plotplus Plus: Enhancementsto Plotplus.) When you create a
plot with multiple data lines, Ferret automatically draws each line in a different color. By de-
fault, axes, labels, and thefirst datalineareall drawn inthe same color. You can modify thisbe-
havior with the following Ferret and PPLUS commands.

5.1.1 Ferret color controls for lines

114

Plotted line colors can be set using

? Inthefollowi ng discussion, “line color/thickness’ isused as equivalent to “line style” for the sake of
simplicity. However, if you are using ablack and white printer, then the metafile translator will substitute a
dash pattern for each line color. See Plotplus Plus. Enhancements to Plotplus to see monochrome line
styles.

CHAPTER 6

yes? PLOT/LINE=n
yes? VECTOR/PEN=n
yes? CONTOUR/PEN=n

where“n” isan integer between 1 and 18.

5.1.2 PPLUS text and line color commands

The PPLUS command PEN assigns a color and thickness index to a specified pen. The com-
mand takes the form:

yes? PPL PEN pen #, color thickness

where pen # is the PPLUS pen number and color_thickness is a color and thickness index.
PPLUS uses different pensfor different tasks. By default, color_thicknessindex 1 isassigned
to pen 0. The following chart may be helpful.

pen number default color_thicknessindex drawing task
0 1 (black or white) axes and labels
1 1 (black or white) first dataline
2 2 (red) second dataline
3 3 (green) third dataline
4 4 (blue) fourth data line
5 5 (cyan) fifth dataline
6 6 (magenta) sixth dataline

Note: Whether you plot several data lines simultaneously, or usethe/OVERLAY qualifier on
your Ferret commands, the col or/thicknessresult will bethe same. But the Ferret/PPLUS inter-
actionisdifferent. When Ferret plots multiple datalines simultaneously, PPLUS automatically
cycles through pen numbers 1 through 6 combined with symbols. Type co 1ine samples in
Ferret to see the 36 different line styles. However, if you are using /OVERLAY for additional
datalines, Ferret controlsthe color_thicknessassigned to pen 1 and PPLUSdrawseach overlay
line with pen 1.

Pen numbersrangefrom 0to 6, and color_thicknessindicesrangefrom 0to 18. Thevalues1to
18 follow the formula:

color_thickness=6 * (thickness - 1) + color

wherethicknessrangesfrom 1 to 3 and color from 1to 6. Type“ GO line_thickness” in Ferret to
see actual colors and thicknesses.

The specia color_thicknessindex O refersto the background color, which produces*®invisible”
lines that can be used as “white-out” for specia purposes.

CUSTOMIZING PLOTS 115

The following PPLUS commands use the color_thickness index.

Command Function

@Cnnn uses color_thicknessindex “nnn” when embedded in alabel
PEN sets color_thicknessindex for each data line (see chart above)
LEV sets color_thickness index for contour plot lines

Examples

1) Ferret’s default behavior—these two plots will look identical

yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-1) !3 curves with 3 pens
yes? PLOT/i=1:10 1/1 !first curve with pen 1
yes? PLOT/OVER/i=1:10 1/ (i+3) loverlay with pen 1 (next index)

yes? PLOT/OVER/i=1:10 1/i+1/(10-1) loverlay with pen 1 (next index)

2) select different colorsfor pensOand 1

yes? PLOT/i=1:10/SET 1/1

yes? PPL PEN 1 4 !assign color thickness 4 to pen 1 (plot curve)
yes? PPL PEN 0 3 !assign color thickness 3 to pen 0 (axes & labels)
yes? PPL PLOT !render the plot

yes? PPL PEN 0O 1 !reset pen 0 to default color thickness (not\

reset by Ferret as is pen 1)

3) better way to do above plot:

yes? PLOT/i=1:10/LINE=4/SET 1/i !include line style with qualifer /LINE
yes? PPL PEN 0 3 ; PPL PLOT
yes? PPL PEN 0 1

5.2 Shade and fill colors

Colors specified with the PPLUS SHASET command or in pallette files (also called spectrum
files) contain pre-defined color palettes. With Ferret 5.0 there are now three ways to specify
how colorsare set in SHADE, FILL, and POLY GON plots: the earlier Percent RGB mapping,
and also By value and By _level.

The Percent method defines points along an abstract path in RGB color space that runsfrom 0
to 100 percent. The pallette file bluescale.spk, for example, contains these lines:

0009
100 95 95 95

Thefirst number on alineisthe percentage distance along the path in color space, and thefol-

lowing numbers arethe percents of red, green, and blue, respectively. The actual colorsused by
SHADE or FILL are determined by dividing this abstract color scale into N equal increments,

116 CHAPTER®6

where N is the number of colors, and linearly interpolating between the red, green, and blue
values from the neighboring SHASET percentage points.

For compatibility with older palettefiles, the Percent RGB mapping method isthe default, and
pre-5.0 palette files will be interpreted correctly. Palette files using Percent RGB mapping
written out with Ferret 5.0 will have a dlightly different format; for example the bluescale pal-
ette saved with Ferret 5.0 will look like this:

RGB_Mapping Percent

1 SetPt Red Green Blue
0 0 0 95
100 95 95 95

Thefirst lineinforms Ferret that the RGB mapping method is Percent. Lines beginning with an
exclamation point are comments and ignored when read in—jpal ette files created or modified
using atext editor can contain comment lines as documentation.

The new RGB mapping method By value uses color interpolation similar to the Percent
method, with the significant difference that colors are based on the values of the variable being
plotted rather than an abstract zero to 100 percent axis. When you use the same By _value pal-
ette in several plots, identical values of one variable will be represented by the same color in
each plot. For example with the following palette, ocean_temp.spk:

RGB_Mapping By value

I SetPt Red Green Blue
-2.0 80.0 0.0 100.0
0.0 30.0 20.0 100.0
10.0 0.0 60.0 30.0
20.0 100.0 100.0 0.0
30.0 100.0 0.0 0.0
35.0 60.0 0.0 0.0

a particular temperature, say 25 degrees, will have the same color on a SHADE or FILL plot
with levels ranging from O to 30, and on a plot with levels between 20 and 30 degrees.

The second new RGB mapping method By _level alows the user to select the precise color to
be used at each level in SHADE and FILL plots. Unlike the other methods, no interpolation of
RGB valuesisdone. Colors specified in the palette will be used exactly as defined. If thereare
more SHADE or FILL levelsthan colors specified, the color palette will repeat. In the follow-
ing palette, by level rainbow.spk,

CUSTOMIZING PLOTS 117

RGB_Mapping By_level

ILevel Red Green Blue
1 80.0 0.0 100.0
2 30.0 20.0 100.0
3 0.0 60.0 30.0
4 100.0 100.0 0.0
5 100.0 0.0 0.0
6 60.0 0.0 0.0

for example, with 6 colorsdefined and used in aplot with 10 levels, the col ors used at each plot
level will be asfollows:

Plot level Color

QOO ~NOOOUIdWNPEF
QONFPFOOUUIWDNPEF

=
=

5.2.1 Ferret shade and fill color controls

By default, Ferret will use the PPLUS spectrum file default.spk for shades and fills (normally
default.spk is a Unix soft link to rnb.spk). Ferret comes with many color palettes. The UNIX
command “Fenv” liststhe environment variable SFER_PALETTE whichisalist of pathsto be
searched for paette files (the palette file names all end in .spk). The UNIX command
“Fpalette” allows you to find and examine these files (type “Fpalette -help” at the Unix
prompt). You can easily create your own palette files with atext editor.

Use the Ferret qualifier /PALETTE= with Ferret graphical output commands
CONTOUR/FILL and SHADE to specify acolor palette. See Chapter 6 section “ Contouring,”
p. 124, for details on the CONTOUR qualifier /LEV, which controls colors and dash patterns,
aswell as sets contour levels.

Ferret qualifiers

/PALETTE= (aliasfor PPL SHASET SPECTRUM=)

118 CHAPTER 6

/ILEV=
PALETTE isaso astand-alone command alias; it sets a new default color palette.

Be aware that when you use /PALETTE= in conjunction with /SET_UP, the color spectrum
you specify becomes the new default palette; to restore the default palette use command
PALETTE with no argument.

5.2.2 PPLUS shade color commands

Command Function

SHASET sets colors used by SHADE

SHASET isan enhancement of PPLUS designed for Ferret. You can specify acolor spectrum,
save a spectrum, change an individual color in the spectrum, or remove the protection (PPL
SHASET RESET) for colors already on the screen. See Plotplus Plus: Enhancements to
Plotplus for more information.

If you need precise control over each individual RGB color on your plot, run “GO exact_col-
ors’, which containsinstructions on modifying individual colorsinapaletteusing SHASET.

Examples

1) look at the relief of the earth’s surface

yes? SET DATA etopol20
yes? SHADE rose !Ferret’s default behavior
yes? SHADE/PAL=land sea rose lemphasize land and sea with palette

2) Perhapsyou would like to compare two topography resolutions. To illustrate what happens
when you use more colorsthan areavailable, request an excessively large number of levels:

yes? SET DATA etopol20
yes? SET REGION/Y=-20:20

yes? SET VIEWPORT UPPER 'upper half

yes? SHADE/LEV=(-8000,8000,100) rose 1160 colors, default palette
yes? SET VIEWPORT LOWER !'lower half

yes? SET DATA etopo20 'high resolution

yes? SHADE/LEV rose[d=etopo20] 'another 160 colors (320 > 256!)

yes? CANCEL VIEWPORT

PPL+ error: You’'re attempting to use more colors than are available.
Using SHASET RESET to re-use protected colors may help.

If you reuse the same palette, asin this example, you canissue PPL SHASET RESET after the
first plot and plot the second picture without error:

yes? SET DATA etopol20
yes? SET REGION/Y=-20:20

CUSTOMIZING PLOTS 119

yes?
yes?
yes?
yes?
yes?
yes?
yes?

SET VIEWPORT UPPER
SHADE/LEV=(-8000,8000,100) rose
SET VIEWPORT LOWER

PPL SHASET RESET

SET DATA etopo20

SHADE/LEV rose[d=etopo20]
CANCEL VIEWPORT

6 FONTS

6.1 Ferret font controls

By default, Ferret producesall plot labelsusing thefonts ASCII Simplex (code AS) and ASCII
Complex (code AC). For upper and lower caselettersthesefontsareidentical to thefonts Sim-
plex Roman (SR) and Complex Roman (CR), respectively. In addition, however, fontsAS and
AC includethe complete set of ASCII punctuation charactersand ignorethe special PPLUSIn-
terpretations of the characters“”” (superscript), “_” (subscript), and “@” (change font or pen).
Using a text editor, the ESCAPE character (decimal 27) may be inserted before the special
charactersto restore their special interpretation.

The Ferret command CANCEL MODE ASCII causes Ferret to generate PPLUS labels which
havethe font unspecified. When thefont isunspecified the PPLUS command DFLTFNT deter-
mines the default font and PPLUS responds to the special characters“~”, " 7, and “@”". SET

MODE ASCII restores normal font behavior.

6.2 PPLUS font commands

Command Function

DFLTENT

@AB

Note that many ASCII punctuation characters are printable only in ASCIl simplex and com-
plex fonts. In al other fonts these characters “@”, “”, and “_” have special meanings: @ =

!reuse color storage indices

Sets default character font for all 1abeling.
Inalabel string, selectsthefont for which AB isatwo-letter abbreviation

(i.e., @CI for complex italic—see PPLUS manual for fonts).

font change; ™ = superscript; _ = subscript.

Examples

1) axis labelsin custom fonts (Figure 21)

yes?
yes?
yes?
yes?

PLOT/SET/i=1:10/NOLAB 1/i
PPL XLAB @CImy x-axis label
PPL YLAB @GEmy y-axis label
PPL PLOT

120 CHAPTER6

—axis label
3

my ¥
g

0
my @ awis label

sin e

Figure 21. Figure 22.

2) set default font for all labeling (Figure 22)

yes? CANCEL MODE ASCII

yes? PPL DFLTENT CS !complex script

yes? PLOT/I=1:100/TITLE="sin curve" sin(i/6)

yes? SET MODE ASCII

yes? PPL DFLTFNT SR 'numeric axis labels unaffected by SET MODE ASCII

7 PLOT LAYOUT

7.1 Ferret layout controls

Layout of plots can be controlled with commands which modify window size and aspect ratio,
and viewports.

Ferret command

SET WINDOW/SIZE=/NEW/ASPECT=

DEFINE VIEWPORT/XLIMITS=/YLIMITS=/TEXT= view_hame
SET VIEWPORT view_name

CANCEL VIEWPORT

7.1.1 Viewports

A viewport isasub-rectangle of afull window. Viewports can be used to put multiple plotsonto
a single window. Issuing the command SET VIEWPORT is best thought of as entering
“viewport mode.” While in viewport mode all previously drawn viewports remain on the
screen until explicitly cleared with either SET WINDOW/CLEAR or CANCEL VIEWPORT.
If multiple plotsare drawn in asingle viewport without the use of /OVERLAY the current plot
will erase and replace the previous one; the graphicsin other viewports will be affected only if
theviewportsoverlap. If viewports overlap the most recently drawn graphicswill awayslieon

CUSTOMIZING PLOTS 121

s fro
TIHE : 1E-AUG D7 2DUTA SET coads_cfimatalogy TME 18—AlE OF AXATi SET: ceads_dimotalegy
GOADS Monthly Cimotokegy {1946—1953) QA0S Manthly Climatslagy (19451985
1 L L 1 L L L 1

gt .'/,‘\ -
.J‘»z_,‘,i, '
sy)

m—\;\\ g b e

R e 7 Py
5 ARG A \\‘\T\f ‘f’//
i S
R
P B N W

LN
T T t T T T T T
e = 14w

o
LONSTUBE
) SOVAL ¥ (1675 , MIFIINAL XD (/)

SEA LEVEL PRESSURE (MB|

—= O3
e R
THE : 1E-AUG D7 2DATA SET coada_cfimatalogy THE f8-AUE 07 AXATh SET: ceada_dimotalegy
GOADS Manthly Cimotolay (1546—1553) 00405 Manthly Chmatolagy (1345 1985)
L 1 L L L 1 1 1
- % . ; =
N — e W*m A
N r r et o
W 2P r s T . e b
£ . A 4 £ A ~
s Q
n, O
% E uEs EiQ} e
el o H - ol L
| k\'\‘_‘.—\v 2 | ’w |
, . *
] w r ™ Mf
= T T T T T T ﬂ|' T
T N L "
LONGTUDE LONEMUNE

Figure 23.

top, possibly obscuring what is underneath. By default, the state of “viewport mode” is can-
celed. A number of the most commonly desired viewports are pre-defined.

7.1.2 Pre-defined viewports

Name Description

FULL full window

LL lower left quadrant of window
LR lower right quadrant of window
UR upper right quadrant of window
UL upper left quadrant of window
RIGHT right half of window

LEFT left half of window

UPPER upper half of window

LOWER lower half of window

Example: GraphicsViewports

Plot four variablesfrom coads _climatology into the four quadrants of asingle window (Figure
23).

yes? SET DATA coads climatology

yes? SET REGION/QW/L=8

yes? SET VIEWPORT LL

yes? CONTOUR sst !sea surface temperature

122 CHAPTER 6

yes? SET VIEWPORT LR

yes? CONTOUR airt 'air temperature

yes? SET VIEWPORT UL

yes? CONTOUR slp !sea level pressure

yes? SET VIEWPORT UR

yes? VECTOR/XSKIP=4/YSKIP=4 uwnd,vwnd !zonal wind, meridional wind

yes? CANCEL VIEWPORT

7.1.3 Advanced usage of viewports

For the purposes of defining viewports, a graphics window is considered to have length 1 and
height 1. All viewport commands refer to positions relative to the current aspect ratio of the
window. Thus,

yes? DEFINE VIEWPORT/XLIM=.5,1/YLIM=.5,1 V5

will locate the origin of viewport V5 in the upper right of the output window regardless of the
shape of the window.

yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM= 0,.3 V1
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.3,.6 V2
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.6,.9 V3

defines three viewports; each takes a third of the height of the page, and the entire width.

The qualifiers /XLIMITS=x1,x2 and /YLIMITS=y1,y2 alow the user to specify a portion of
the graphics window to be the defined viewport. The arguments must be values between [0,1]
(NOT world coordinates). x1 and x2 indicate the lower and upper bounds for the length of the
window to be defined as the viewport; y1 and y2 serve an analogous purpose for height.

The/TEXT=n qualifier allowsthe user control over the shrinkage or enlargement of text on the
plot. A value of /TEXT=1 indicates that the text size should be the same as it is on the full
screen output. If avalue lessthan 1 is specified the text will shrink. If avalue is not specified
Ferret chooses a value appropriate to the viewport size. Acceptable values are 0 < n <inf. but
only values up to about 2 yield useful results.

7.2 PPLUS layout commands

Command Function

ORIGIN sets distance of plot origin from lower left corner
BOX controls drawing of a box around the plotting area
CROSS controls drawing of lines through (0, 0) on graph
ROTATE rotates plot by 90 degrees on screen and plotter
AXLEN sets axis lengths

SHAKEY locates the color key

VECKEY locates the vector key

CUSTOMIZING PLOTS 123

7.3

8.1

Command Function

AXSET includes/excludes particular axes
SIZE sets the overall size of the graphics window

Controlling the white space around plots

The location and size of the axis rectangle within the viewport or window determines the
amount of white space surrounding a plot. Complete control over thisis possible using low
level controls, DEFINE VIEWPORT/TEXT_PROMINENCE, PPL ORIGIN, and PPL
AXLEN, but these commands are sometimes awkward to work with. A smpler strategy isto
use the GO tool

yes? GO margins
When given without arguments this command will report the amount of white space surround-

ing aplot. With argumentsit will adjust the axis origins and lengths according to the requested
margins. Try the Unix command

> Fgo -more margins

for further documentation.

CONTOURING

Ferret contour controls

Thefollowing qualifiersto the Ferret command CONTOUR allow customization of a contour
plot.

Qualfier Function

/FILL produces a color-filled contour plot (command FILL is an alias for
CONTOUR/FILL)

/ILEVELS specifies contour levels, dash patterns, line thickness and color

IKEY turns on display of color key for color-filled contour plots (default)
INOKEY turns off display of color key for color-filled plots

INOAXIS turns off display of X and Y axes (useful for map projections)

/LINE adds contour linesto a color-filled plot (lines replace key)

/IPALETTE= specifiesacolor palette for color-filled contour plot

/PEN= sets line style for contour lines (same arguments as PLOT/LINE=. See

Chapter 6 section “Text and Line Colors,” p. 114.)

124 CHAPTER6

8.1.1 /LEVELS qualifier
The/LEVELS qualifier is a powerful and multi-functional tool.
The/LEVELS= quallfler takes the form /LEVELS=levels descriptor

/LEVELS
without an argument /LEV EL Sinstructs Ferret to reuse CONTOUR or SHADE levelsfrom
the last CONTOUR or SHADE plot

/LEVELS=n
specifying asimple numerical argument such as/LEVEL S=25 instructs Ferret to select ap-
proximately 25 levels automatically, based upon the limits of the data to be plotted

ILEVELS=nC (centered levels)
appending a“C” to the suggested number of levelsinstructs Ferret to select levelswhich are
centered about the zero level. Such levelsare suitable for zero-symmetric quantities such as
anomalies and velocity components.

/ILEVEL S=x.xD (deltalevels)
Useof “D” asasuffix instructs Ferret to use the preceding val ue as the delta val ue between
contour levels. Thus /LEVEL S=0.25D will cause Ferret to select contour levels that span
the range of the data to be contoured with a delta value of 0.25 between contour levels. The
“D” and “C” notations can be combined. For example, /LEVEL S=0.25DC instructs Ferret
to create zero-centered levels with a delta of 0.25 spanning the range of the data.

JLEVELS=(lo, hi, delta)
or

/ILEVELS=(lo, hi, delta, ndigits)
or

/LEVEL S=(vaue)
where ndigits is the number of decimal placesto use on contour levels as
-1 for integer format
or
-3 to omit numerical labels

Examples
/LEVELS=(10,50,5)
/LEVELS=(-20,20,2)
/LEVELS=(33.5,35.0,.025,3)
/LEVELS=(5)

CUSTOMIZING PLOTS 125

Refinements to the basic levels may be applied using the syntaxes below. If blanks are in-
cluded, surround the entire levels descriptor in double quotation marks.

1) To request additional levels, smply append additional (lo, hi, delta) and/or (value) specifi-
ers.

Example: /LEVELS="(-100,100,10) (100,1000,100) (2000)"
2) To remove selected levels, append the specifier DEL (lo, hi, delta) or DEL (value).
Example: /LEVELS="(-100,100,10) DEL(10)"

3) To specify the line type as dark (heavy line), append DARK(lo, hi, delta) or DARK (value).
Similar syntax can be applied to LINE (solid, thin) or DASH.

Example: /1EVELS="(-100,100,10) DARK(100) DARK (-100)"

4) To specify the color_thickness index of contour lines (see Chapter 6 section “Color, ” p.
114, for adiscussion of color_thicknessindices), append PEN(lo, hi, delta, index).

Example: /LEVELS="(-100,100,10) PEN(-100,-10,10,2) PEN(10,100,10,4)"

8.2 PPLUS contour commands
Command Function

CONPRE sets prefix for contour labels (usually afont, e.g., “@TR”)
CONPST sets suffix for contour labels (usualy units, e.g., “cm”)
CONSET controls various aspects of contour labels and curves (see below)

CONSET is a modified version of the PPLUS command. Two new parameters have been

added—" spline _tension” and “draftsman”. “spline_tension” controls a spline fitting routine
for contour lines, and is primarily used in conjunction with the narc parameter. The new param-
eter “draftsman” enables the user to specify horizontally oriented contour labels (draftsman
style) or the default, labels oriented along contour lines. Arguments for CONSET are as fol-
lows:

CONSET hgt,nsig,narc,dashln, spacln,cay,nrng,dslab,spline tension,draftsman
hgt = height of contour labels. default=.08 inches
nsig = no. of significant digitsin contour labels. default=2

narc = number of line segments to use to connect contour points. default=1

126 CHAPTER6

dashln = dash length of dashes mode. default=.04 inches
spacln = space length of dashes mode. default=.04 inches

cay Thisargument has no effect on gridded data. It is documented in PLOT PLUSfor Ferret
User’s Guide and also in the discussion of objective analysis under command USER in the
Commands Reference section of this manual.

nrng Thisargument has no effect on gridded data. It isdocumented in PLOT PLUSfor Ferret
User’s Guide and also (as parameter “rng”) in the discussion of objective anaysis under
command USER in the Commands Reference section of this manual.

dslab= nominal distance between |abels on a contour line. default=5.0 inches.

spline_tension = areal valuethat affectsthefit of the contour line. default=0. Thisparameter is
only applied if narc is greater than 1. Otherwise, straight lines are drawn between data
pointsand no interpol ated points are contoured. Thisvalueindicatesthe curvinessdesired.

abs(spline_tension) isnearly zero (e.g., .01). Theresulting curveisapproximately a
cubic spline.

abs(spline _tension) is large (e.g., 10.). The resulting curve is nearly a polygonal
line.

spline_tension = 0. The resulting curve is a cubic spline (the default algorithm in
ppl).

A typical valuefor spline_tension is 1, and the typical useful range of valuesis .01 to 10.
draftsman = areal value that controls the label format. default = 0.

0. = original label style—labels oriented along contour arcs

> 0. = draftsman label style—labels oriented horizontally on the page

< 0. =reserved for future use

Examples

Run the demonstration on custom contouring for many examples of 1abel styles, contour line
styles (color, thickness dash pattern), and contour intervals— yes? co custom contour

1) Color-filled contour plot of sea surface temperature

yes? SET DATA coads climatology

yes? SET REGION/@t/1=6 !specify tropical Pacific, month 6
yes? SET VIEWPORT upper

yes? FILL sst !filled contour plot

yes? SET VIEWPORT lower

yes? FILL/LINE sst 'make the plot with contour lines

2) Let’'simprove on the earlier example (5.2.2) of shaded bathymetry with blue palette

CUSTOMIZING PLOTS 127

yes? SET DATA ETOPO60
yes? LET/TITLE="Surface relief x1000 (meters)" rl1000 rose/1000
yes? FILL/PAL=ocean blue/LINE/LEV=(-8,-1,1,-3)LINE(-8,-1,1,-3)/PEN=4 r1000

Here is a breakdown of the final command line;

FILL color-filled contour plot (aliasfor CONTOUR/FILL)
PAL specifies color palette for fill colors
LINE specifies that contour lines be overlaid on thefilled plot (in lieu of akey)

LEV first arg specifies contour levels without numerical labels, next requests solid
lines (dashed lines are the default for negative contour values)
PEN assigns line style 4 (blue) to contour lines

9 MAP PROJECTIONS AND CURVILINEAR COORDINATES

9.1 Three-argument (curvilinear) version of SHADE, FILL, CONTOUR, and
VECTOR

The SHADE, FILL, CONTOUR and VECTOR commands now have a 3-argument mode
which allows them to create output in “curvilinear” coordinates. This allows for easy genera
tion of output plots using sigma coordinates as well as the application of various map projec-
tions. A typical command line entry will look like:

yes? SHADE sst, x page, y page

where the second and third arguments, x page (i, 5) and v page (i, 9), must be (at least) 2-di-
mensional grids which specify the X page (horizontal) position and Y page (vertical) position
for each (i,) index pair. The page positions may bein any units; Ferret will scalethe plot ac-
cording to the ranges of valuesin the position fields.

Note: Thedefault axislabeling for the 3-argument commandswill be the ranges of the position
fields: inappropriate when map projectionsare being used. The/NOA XIS qualifier isprovided
for this purpose.

The /NOAXIS qualifier causes the axes and axis labels to be omitted from the plot. (See the
AXSET command in the PLOT+ Users Guide). The qualifier has been added to support the
curvilinear coordinate and map projection capabilities of the 3-argument versions of SHADE,
FILL, CONTOUR and VECTOR in which linear axes are inappropriate.

Notethat if the/SET_UPqualifier isused in conjunctionwith/NOAXISaFerret stateisaltered

such that future plotswill be drawn without axes. Ferret will warn you of thisand coach you to
use PPL AXSET 1, 1, 1, 1 to restore normal axis drawing.

128 CHAPTER 6

9.2 Gridded data sets on curvilinear coordinates

If agiven gridded variable is defined on a curvilinear coordinate system, then one need only
provide the X and Y coordinate fields in the 3-argument SHADE or FILL command to accu-
rately depict the field. For example, if a data set contained a variable TEMP, which was Nx x
Ny in the longitude-latitude plane, and the data set also contained variables LON_POSITION
and LAT_POSITION of the same size, then the command:

yes? SHADE TEMP, LON POSITION, LAT POSITION

would render the curvilinear plot.

9.3 Layered (sigma) coordinates

The capability to render curvilinear coordinates allows Ferret to display sigma coordinate
fields without interpolating or regridding the variable to be displayed.

Inthisexamplefromthe Ferret FAQ thevariableflow isdefined on thegg grid wherethe Z axis
isinlayers. To display thefield we need only create multidimensional fields specifying therel-
ative positions of (i,j) pairs and use the new curvilinear coordinate commands:

let depth = h[k=Q@rsum]-h/2

set variable/title="DEPTH function"/unit=meters depth
! regrid ‘Y’ to the data grid

let ygg = ylg=gg]

set variable/title="Y"/unit=kilometers ygg

shade flow[x=0,1=1], ygg, depth[x=0,i=1]

3 s + =

T8 & B F g E faaddEHEYH

non—physical flow field

For adetailed exampleillustrating the use of curvilinear coordinates to analyze sigma-coordi-
nate fields see the FERRET FAQ entry, How to handle sigma coordinate output in Ferret.

CUSTOMIZING PLOTS 129

9.4 Map Projections

Along with general capabilitiesfor curvilinear coordinates, version 4.9 of Ferret and later pro-
vide a series of scripts for many common map projections.

Each map projection script will create the following variables:

mp central meridian

mp_standard parallel

X _page

y_page

mp_mask

central longitude calculated from the currently set region
central latitude calculated from the currently set region

two dimensional array mapping X world coordinates to page
coordinates

two dimensional array mapping Y world coordinates to page
coordinates

mask two hide “back side” data in orthographic or other 3-D
projections

9.4.1 Using Map Projection scripts

130

To create output with a particular map projection you must do the following:

agrwdE

Example

yes?
yes?
yes?
yes?
yes?
yes?

set grid for the variable you wish to plot

run the map projection script

adjust the window aspect ratio (if desired)

multiply the variable of interest by mp_mask (required for “3-D” projections)
give the three-argument plotting command

use coads climatology

set region/l=1
set grid sst
go mp hammer
go mp_aspect

shade/noaxis mp mask, x page, y page

CHAPTER 6

, ‘

pu.

TIME : 16—Jak OR.00 DATA SET. coada_climatalkgy

COADS Manthly Slimatology (19461980}

,/" :
P

El 3 [) i

7 A
————

SEA SURFACE TEMPERATURE (Deg C)

9.4.2 Overlays with Map Projections

Overlayscan be drawn once amap proj ection script has been run. To add afilled land mask, sea
level pressure and wind vectors onto our SST map we would issue the following commands:

yes? set grid uwnd

yes? go mp fland

yes? vector/over/pen=1 uwnd*mp mask, vwnd*mp mask, x page, y page
yes? set grid slp

yes? contour/over/pen=5 slp*mp mask, x page, y page

THE = 16-H ORGD DATH SET. coadn_slimatokos
CUADS Mankhly Glimatalogy (18451488}

IR U U —— 3T

ey SEA SURFACE TEMPERATURE (Deg C)

If, instead, we wished to overlay sealevel pressurefor the South Atlantic only, we would need
to take advantage of the mp central meridian and mp standard parallel variables.
Normally, the map projection scripts cal cul ate the central meridian and standard parallel from
the currently set region and generate the x page and y page coordinate transformations ac-
cordingly. When we overlay asubregion, we need to rerun the map proj ection script and passin
valuesfor mp central meridian and mp_ standard parallel SO that they arematch the previ-
ous values and are not calculated from the subregion associated with the overlay.

yes? use coads_climatology
yes? set region/l=1
yes? set grid sst
yes? go mp hammer
yes? go mp_ aspect
yes? shade/noaxis sst*mp mask, x page, y page
yes? go mp fland
yes? list mp central meridian, mp_standard parallel
LONGITUDE: 20E to 20E (380)
LATITUDE: 90S to 90N
Column 1: MP CENTRAL MERIDIAN is (MP_X[I=@GMAX] + MP X[I=@MIN])/2
Column 2: MP_STANDARD PARALELL is (MP_Y[J=@MAX] + MP Y[J=@MIN])/2
MP_CENTRMP STAND
I/ *: 200.0 0.0000
yes? go mp_hammer 200 0
yes? set region/x=60w:20e/y=45s:0n
yes? set grid slp
yes? contour/over slp, x page, y page

CUSTOMIZING PLOTS 131

Note: Had we used go mp hammer 200 0 in the beginning we would not have had to rerun

mp_hammer.

TIME 7 18-J4H QB0

9.4.3 Map Projection scripts

’},-5‘.* q.‘ %

o

DATA SET. coadr_climatalkay

COADS Manthly Climatology (18461380}

= B E £ S

3ST*MP_MASK

Hereisthelist of map projection scripts delivered with Ferret. (The techniques used are quite
general and can be applied to most map projections.)

Ferret script

mp_bonne.,jnl
mp_craster_parabolic.jnl
mp_eckert_greifendorff.jnl
mp_eckert_iii.jnl
mp_eckert_v.jnl
mp_hammer.jnl
mp_lambert_cyl.jnl
mp_mcbryde_fpp.jnl
mp_orthographic.jnl
mp_plate careejnl
mp_polyconic.jnl
mp_sinusoidal.jnl
mp_stereographic_eq.jnl
mp_stereographic_south.jnl
mp_vertical_perspective,jnl
mp_vertical _perspective.jnl
mp_wagner_vii.jnl
mp_winkel_i.jnl

132 CHAPTER6

Projection name

Bonne

Craster Parabolic

Eckert Grifendorff

Eckert 111

Eckert V

Hammer

Lambert Cylindrical Equal Area
McBryde Flat Polar Parabolic
Orthographic

Plate Caree

Polyconic

Sinusoidal

Stereographic Equatorial
Stereographic North
Stereographic South

Vertical Perspective

Wagner VI

Winkel |

Hereisthelist of utility scripts to support curvilinear coordinates

Ferret script

mp_demo.jnl
mp_fland.jnl
mp_graticule.jnl

mp_label.jnl

mp_land.jnl
mp_land_stripmap.jnl

mp_linejnl
mp_ocean_stripmap.jnl

mp_polygon

Function

demonstration of various map projections
curvilinear version of f1and.nl

creates agraticule (lines of longitude and lati-
tude) over the whole globe or any portion

correctly places labels using lat-lon coordi-
nates

curvilinear version of 1and. jn1

creates a land-centric interrupted map using
the current projection

correctly plots user lat-lon data on the map

creates an ocean-centric interrupted map us-
ing the current projection

overlays a“map projected” polygon

CUSTOMIZING PLOTS 133

Chapter 7: HANDLING STRING DATA: “SYMBOLS”

Ferret offersavariety of toolsfor manipulating strings through the use of “symbols’ (variables
defined to be strings). The following are the relevant commands:

DEFINE SYMBOL

usage:
DEFINE SYMBOL symbol _name = string

SHOW SYMBOL
usage:
SHOW SYMBOL/ALL
SHOW SYMBOL symbol_name
SHOW SYMBOL partial_name

CANCEL SYMBOL
usage:
CANCEL SYMBOL/ALL
CANCEL SYMBOL symbol_name

Legal symbol names must begin with aletter and contain only letters, digits, underscores, and
dollar signs.

To invoke symbol substitution—the replacement of the symbol name with its (text)
value—within a Ferret command include the name of the symbol preceded by adollar signin
parentheses.

For example,

yes? DEFINE SYMBOL hi = hello everyone
yes? MESSAGE ($hi) ! issues “hello everyone” msg

It is also possible to nest symbol definitions, as the following commandsiillustrate:

yes? DEFINE SYMBOL label 2 = My test label
yes? DEFINE SYMBOL number = 2
yes? SAY (Slabel (Snumber))

My test label

AUTOMATICALLY GENERATED SYMBOLS

A number of useful symbols are automatically defined whenever Ferret sets up aplot. Follow-
ing any plotting command issue the command SHOW SYMBOLS/ALL to see alist. Consult
the PLOT PLUSfor Ferret Users Guide (section “ Genera Globa Symbols’) for detailed de-
scriptions of the plot symbols. For example, if we wish to place a label “hello” at the upper
right corner of a plot we might do the following

HANDLING STRING DATA: “SYMBOLS” 135

yes? PLOT/I=1:100 SIN(I/6)
yes? LABEL/NOUSER (S$pplS$xlen) (Sppl$ylen) 1 0 .2 hello

This labeling procedure would work regardless of the aspect ratio of the plot. Use the com-
mand SHOW SYMBOL/ALL to see the symbols (and see “Genera Global Symbols’ in the
PLOT+ Users Guide).

2 USEWITH EMBEDDED EXPRESSIONS

When used together with Ferret embedded expressions symbols can be used to perform arith-
metic on the plot geometry. For example, this command will locate the plot titlein bold at the
center of a plot regardless of the aspect ratio:

yes? LABEL/NOUSER ~ (SpplS$xlen) /2" ~ (SpplSylen)/2° 0 0 .2 QAC(Slabtit)

3 ORDER OF STRING SUBSTITUTIONS

The above example illustrates that the order in which Ferret performs string substitutions and
evaluatesimmediate mode expressionsin the command lineissignificant. The successful eval-
uation of the embedded expression = (sppisxien) /2" requiresthat (sppisxien) is evauated
before attempting the divide by 2 operation. The order of Ferret string substitutionsis as fol-

lows:
1. substitute “GO” command arguments of the form “$1”, “$2”, ...
2. substitute symbols of the form ($symbol_name) (discussed here)
3. substitute command aliases
4. substitute immediate mode mathematical expressions

For example, if the script snoopy.jnl contains

DEFINE SYMBOL fcn = $1
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT= (“Result is ”,$2)
ANSWER ~ (Sfcn) (($372)/2) "+5

then the command

yes? GO snoopy EXP F5.2 2.25

would evaluate to

DEFINE SYMBOL fcn = EXP
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT= (“Result is ”,F5.2)
LIST/NOHEAD/FORMAT= ("Result is ”,F5.2) ‘EXP((2.25"2)/2) +5

and would result in Ferret output of “Result is 17.57.”

136 CHAPTER7

4 CUSTOMIZING THE POSITION AND STYLE OF PLOT
LABELS

All of the plot labels generated by Ferret are automatically defined as symbols. Thisincludes
the title ($labtit), X and Y axis labels ($labx),($laby), as well as the position labels (latitude,
longitude, depth, time), which are normally placed at the upper left on aplot (see“Labels,” p.
108). Sometimesit isdesirable to change thelocation, size or fonts of these labels. The symbol
facility makesit possibleto do thisin away that isindependent of the particular label stringsor
plot aspect ratio. See the demonstration script symbol _demo.jnl for an example.

5 USING SYMBOLS IN COMMAND FILES

Oftenin Ferret command filesthe identical argument substitutions must be repeated at several
pointsin thefile. Using symbolsit is possible to write“ cleaner” Ferret scriptsin which the ar-
gument substitution occurs only once—to define a symbol which isused in place of the argu-
ment thereafter. See the demonstration script symbol _demo.jnl for an example.

6 PLOT+ STRING EDITING TOOLS

The PLOT+ program provides a variety of tools for editing symbol strings. See the PLOT+
Users Guide for further information. A sample usage:

yes? DEFINE SYMBOL test = my string

yes? PPL SET upper test SEDIT (test,UPCASE)
yes? SHOW SYMBOL upper test

UPPER TEST = “MY STRING”

7 SYMBOL EDITING

Symbols may be edited and checked using the same controls that apply to journal file argu-
ments.

The section of this users guide entitled “Arguments to GO tools’ describes the syntax for
checking and editing arguments. The identical syntax appliesto symbols. Aswith the GO tool
arguments (e.g., “$4"), al string manipulations are case insensitive.

In brief, the capabilities include:

default strings

If a symbol is undefined a default value may be provided using the pattern ($my_sym-
bol%my default string%o). For example,

HANDLING STRING DATA: “SYMBOLS” 137

(SSHAPESXYS%)
check against list of acceptable values

A list of acceptable string values may be provided using the pattern
($my_symbol %]option 1|option 2|%). For example,

(SSHAPES |X|Y|Z|T|%)
will ensure that only 1-dimensional shapes (X, Y, Z, or T) are acceptable.
string substitution

Any of the optional string matches provided can invoke a substitution using the pattern
($my_symbol %|option 1>replacement|%). For example,

(SSHAPES | X>I|Y>J|Z>K|T>L|%)
will substitute | for X or JforY, etc.
Asterisk (**”) provides default substitution

The asterisk character matches any string. For example,

(SSHAPES |X|Y|Z|T|*>other%)
will dwaysresult in“X,” “Y,” “Z,” “T,” or “other.”
Asterisk (“*”) provideslimited string edited

The asterisk character, when used on the right hand side of a string substitution, inserts the
original symbol contents

(SSHAPES | *>The shape is *|%)
error message control

An error message can be provided if the symbol is undefined or doesn’t match any options.
The pattern for thisis
($my_symbol%option 1joption 2|<error message text %). For example,

(SSHAPES |X|Y|Z|T|<Not a l-dimensional shape%)

138 CHAPTER7

8 SPECIAL SYMBOLS

There are two symbols, generated automatically by plots, which are not documented in the
PLOT PLUSfor Ferret Users Guide. Those are

PPLSXPIXEL
PPLSYPIXEL

the number of pixelsinthe horizontal (X) and vertical (Y) size of the current Ferret output win-
dow.

HANDLING STRING DATA: “SYMBOLS” 139

Chapter 8: WORKING WITH SPECIAL DATA SETS

1 WHAT IS NON-GRIDDED DATA?

Many data setswhich are not normally regarded as* gridded” can nonethel ess be managed, an-
alyzed, and visualized effectively in a gridded data framework. Track lines, “point data”, etc.
are common examples of “non-gridded” data. Profiles and time series, although they areindi-
vidually simple one-dimensional grids, have anon-gridded structure when considered asacol-
lection, which is often essential.

This chapter addresses a number of classes of non-gridded data sets and offers approaches that
make it straightforward to work with these data typesin Ferret’s gridded data framework. The
approaches are all concelved to facilitate a fusion of these data types—so that multiple data
types may be easily combined in calculations..

“Point data’ refersto collections of values at scattered locations and times. An examplewould
be the column burden of oceanic NO3 and the scattered |ocations and times at which the mea-
surements were made.

« If at each point of the data scattered there is a vertical profile of values then see
COLLECTIONS OF VERTICAL PROFILES (p. 144).

« If a each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 148).

« If at each point of the data scattered thereisa2-dimensional gridinthe ZT planethen see
COLLECTIONS OF TIME SERIES (p. 148).

« If a each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 148).

2 POINT DATA

In agridded context point datais best viewed asacollection of 1-dimensional variables, where
theaxisof eachvariableistheindex value, 1, 2, 3, ... of theindividual point in the scatter. Thus,
continuing our example of an oceanic NO3 data set, we would want to view this as four vari-
ables, longitude, latitude, date, and burden, where each variable was defined on a one-dimen-
sional axisof earthquake number. Typically, thissort of dataisorganizedin atable of theform

index longitude latitude year month day NO3
1 160 30 1968 11 -999 6.2
2 33.1 60.2 1992 5 13 5.5

WORKING WITH SPECIAL DATA SETS 141

2.1

2.2

Getting point data into Ferret

Since point data sets are most commonly availablein table form, where the columns of the ta-
ble are the variables and each row of the table is a separate point. Chapter 2, section 5.1 Read-
ing ASCII files (p. 35), example 2 and subsequent examples show how such a file might be
read into Ferret.

For example, let us suppose that the file above isintroduced to Ferret with the command

yes? FILE/VAR="index, lon,lat,yr,mn,day,NO3"/SKIP=1 my data file.dat
yes? SHOW DATA my data file.dat

currently SET data sets:
1> ./my data file.dat (default)

name title I J K L
LON LON 1:20480
LAT LAT 1:20480
YR YR 1:20480
MN MN 1:20480
DAY DAY 1:20480
NO3 NO3 1:20480

Notethat the SET VARIABL E command would normally be used aswell to assign titles, units,
and missing value flags to the variables.

Also note that until the first datais actually requested from the file, Ferret does not know the
size of thefile. The /GRID= option may be used to tell Ferret what size to expect. Lacking a
/GRID specification the “1:20480” isthe size of the default grid “EZ.” After the first data ac-
cess SHOW GRID will reveal the true size of the file, instead. If the size still appears to be
20480 it may bethat the default grid EZ was not large enough, and the/GRID qualifier must be
used to pre-allocate sufficient space.

How point data is structured in Ferret

In table form (above) each column represents a dependent variable; the column for “burden”
and the column for “latitude” have equal status. In many cases thisis an adequate representa-
tion. For example, aplot of NO3 burden versus|atitude could be produced with the command

yes? PLOT/VS lat, NO3

To combine point dataorganized in tableswith gridded datasources, say agridded field of oce-
anic temperature two approaches are available. Either the gridded data may be viewed in the
structure of the table, or the scattered data may be viewed in a geo-referenced 1-dimensional
grid structure. The problem to be solved determines which approach is suitable. The next two
sections describe these two approaches.

142 CHAPTERS8

2.2.1 Working with dates

Ferret V5.0 does not understand formatted dates inside of generic data ASCI| files. To use the
datesintelligibly inside of Ferret you

1. Needto get theyear, month, and day fields broken out separately or provideaJulian day.

2. Can create a Julian date from year, month, day using function DAY S1900. If atime ori-
gin other that 1-jan-1900 is needed subtract DAY S1900(yearO, monO, day0)

3. Can create an axis of dates as done in the preceding latitude axis example.

See Chapter 4, Section 3.4, “Time” (p. 92) and Chapter 10, Section 3.5.7, “Converting time
word data to numerical data’ (p. 171) for details of creating time axes.

2.3 Subsampling gridded fields onto point data locations and times

Ferret can be used asatool to extract variablesfrom gridded data sets at time/space |l ocationsto
match the scatter of the point data. In thisform they may, effectively, be combined into thetable
of dataread fromthe ASCII (or binary) file. For example, suppose we want to obtain val ues of
sea surface temperature at the locations of our NO3 samples, from a climatol ogical annual av-
erage SST field. This may be accomplished simply with

yes? use coads climatology

yes? let ssttav sst[l=1:12Qave]

yes? let my lon lon[d=my data file.dat]

yes? let my lat = lat[d=my data file.dat]

yes? LET sst xy SAMPLEXY (ssttav, my lon, my lat)

Supposethat, instead our SST variablewasamonthly climatology field. Thevariablesst_xy as
defined above would then have a two-dimensional structure: sample index by 12 months. To
sampleintime, aswell, we use

yes? LET sst t = SAMPLET DATE (sst xy,0,mn,day,0,0,0)

Note that the year was entered ssmply as 0, since SST is a climatological variable.

2.4 Defining gridded variables from point data

For some calculations one may want to let Ferret know which of the variables are dependent
(measurements) and which are independent (coordinates). For example, suppose we wish to
compute the average column burden of NO3 asafunction of latitude. Burden hereisanintegral
of the concentration NO3 over depth. For this, we will want to see our variable burden on an
axis of latitude.

The stepsto do thisare

WORKING WITH SPECIAL DATA SETS 143

1. Ingenera, thelatitude variablewill not be sorted into strictly increasing order — needed

to create an axis. Determine the sorting order for latitude using
yes?LET lat index = SORTI (lat)

2. Create alatitude grid
yes? DEFINE AXIS/FROM/NAME=lat ax/Y/UNITS=degrees SAMPLEI (lat index,

lat)
yes? DEFINE GRID/Y=lat ax glat
yes? LET NEW = index[g=glat] ! a dummy variable to use in RESHAPE below

3. Defineyour function for the burden based on the variable NO3, on the command line or

using your script my_brdn.jnl.
yes? GO my brdn NO3 burden

4. Define anew variable burden_on_lat using this axis
yes? LET sorted burden = SAMPLEI(lat index, burden)
yes? LET burden on lat = RESHAPE(sorted burden, glat)

5. Now, to plot the NO3 burden averaged into 5 degree latitude bands we could use
yes? PLOT burden on lat[Y=60s:30n:5CAVE]

2.5 Visualization techniques for point data

Scattered point data can be displayed in a number of ways.

A simple scatter plot showing the locations of points

yes? PLOT/VS lon,lat
yes? GO land

Use co/nelp land for an explanation of resolving incompatible longitude encodings, should
they arise.

A scatter plot in which the symbols are colored by value with control over the color palette and

resol ution can be made using the polymark.jnl script. For example, to plot using stars symbols
in color levels by 10s use

yes? GO polymark POLYGON/LEV=(0,100,10) lon lat NO3 star.
Type co/uere polymark for more options.

See also Chapter 6 on Map Projections (p. 128) for guidance on plotting scattered data. The
map projection scripts can be used in conjunction with the above.

3 VERTICAL PROFILES

A single profile, possibly consisting of multiple variables, can be regarded as a smple 1-di-
mensional data set. Ferret’s plotting and analysis tools apply in a straightforward manner.

Collections of profiles resemble point data setsin their X,Y, and T structure, however at each
point thereisal-dimensional Z-axisstructure. In general, the Z axes at each point may differ.

144 CHAPTERS8

3.1 How collections of profiles are structured in Ferret

If the collection of profilesis sufficiently small (say 4 or fewer) then it is straightforward to
handle them simply as 4 separate data sets. The D= qualifier may be used to designate which
profileisbeing referred to. The IF ... THEN ... EL SE syntax may be used to combine the pro-
filesinto expressions.

As the number of profiles in the collection grows larger, however, it becomes necessary to
mergethem into asingle structure. Typically, the sequence number of theprofile, 1, 2, ...,N, be-
comesthe X axisof the collection. Thelongitude, latitude, and time of each profile become de-
pendent variablesindexed by the sequence number. The Z structures of the profilesare blended
into asingle Z axis by achoice of techniques. The stepsto creating a blended data set then be-
come:

1. Determinethe nature of the Z axisto be used and the collection of variablesto be defined
on the grid

2. Create an empty grid with the desired structure in afile

3. Populate the file with the profiles, each profilein turn.

The determination of the Z axis structure may be by any of these techniques:

1. Supply an arbitrary Z axisto which all of theindividual profileswill be regridded by lin-
ear interpolation. Thistechnique produces adata set whichisvery easy to work with and
small in size, however, some of the data have been altered by linear interpolation. The de-
fault Ferret regridding (GZ=@LIN) is used for this technique.

2. CreateaZ axiswhichisasuperset of the Z axis points from all of the grids. In the final
dataset thisaxiswill be sparsely populated, containing only those Z pointsthat were actu-
ally present in each profile.

3. Thistechnique produces adata set whichis 100% faithful to the original data and reason-
ably easy to work with, but may become very largeif the number of profilesislarge and
the Z axes vary greatly. Ferret “exact match” regridding (GZ=@XACT) isused for this
technique.

4. Do not create a Z axis at all — instead store the Z coordinates as a dependent variable.
The Z axis becomes simply an index counter of length equal to the longest profile. This
technique produces a data set which is 100% faithful to the original data and of modest
Size, however it is the most laborious to work with.

The choice of technique depends on the nature of the profile collection and thetypes of analysis
or visualization to be done. Often it is desirable to combine technique 1, which isfast and sim-
ple with 2 or 3, which can be used for spot checking if there is a question of data fidelity. If
method 3 is chosen (Z coordinates in a dependent variable) the techniques for handling the
variablesarevery similar to sigmacoordinate data, described in a separate section of thischap-
ter (p. 149).

WORKING WITH SPECIAL DATA SETS 145

3.2 Getting profile data into Ferret

As of 4/99 the approaches to merging collections of profiles into a single structure are still
“manual.” (Datawhich are stored asglobal attributesintheinput files, asisdonein EPICfiles,
arelost in this process.) Thistext describes an example of the manual process used, where the
target Z axisiscreated arbitrarily and dataare interpolated to it. In thisexamplethe profilesare
read from ASCI| files, so the Z axis of each profile has to be created. This example does not
save the longitude, latitude, and time positions of the casts.

! for this example we begin by manufacturing some data
! ... pretend this is one of your casts - unequal vertical spa01ng
list/file=test cast.dat/nohead/form= y/1=1:10 10*i+randu (i), sin(i/6)

! create a grid suitable for ALL casts together

! make the points regular in X and Z ... they need not be, however
define axis/depth/z=0:1000:20/unit=meters zall ! ARBITRARTY Z AXIS
define axis/x=0:9:1/unit="sequence" xall

define grid/x=xall/z=zall gall

! create an empty output file

! 1f we were reading netCDF files we would create variables to hold
! longitude, latitude, and time (year, month, day).

! A latitude output variable, for example, is created below

let outvar = 1/0 * x[g=gall] * z[g=gall]

set variable/title="My merged var"/units="my units" outvar
save/file=all casts.cdf/ilimits=1:10/z1imits=0:1000 outvar

let lat = 1/0*X[gx=gall]

set variable/title="Latitude"/Units="degrees" lat
save/append/file=all casts.cdf/ilimits=1:10 lat

! read in a single cast (the fake data we created)
! if we were reading a NetCDF file this block would be unnecessary
file/var=depth,invar test cast.dat

define axis/from data/z/depth/name=zlcast/unit=meters depth ! make 7Z
! axis for 1 profile
define axis/x=0:0:1/unit="sequence" xlcast ! sequence no. of first cast

define grid/x=xlcast/z=zlcast glcast
canc data 1

! save first cast interpolated to many-point Z axis
file/var="-,invar"/grid=glcast test cast.dat

let outvar = invar[g=gall]

save/append/file=all casts.cdf outvar[I=1]

canc data 1

! if available, output latitude thusly

! LET lat = 0*X[g=gall] + RESHAPE (Y[G=invar],X[gx=gall])
! SAVE/append/file=all casts.cdf lat[I=1]

! save next cast

define axis/x=1:1:1/unit="sequence" xlcast ! X position of 2nd cast
file/var="-,invar"/grid=glcast test cast2.dat

save/append/file=all casts.cdf outvar[I=2]

canc data 1 a

! etc for next 8 casts ..

! This may be automated with: REPEAT/I=1:10 GO output one profile
! where the script output one profile.jnl reads profile file names from a
list

The output data set which we create will be structured as follows:

146 CHAPTER 8

yes? use all casts
yes? show data
currently SET data sets:
1> ./all casts.cdf (default)

name title I J K L
OUTVAR My merged var 1:10 ce 1:51
LAT Latitude 1:10

3.3 Defining vertical sections from profiles

In the data set created above the profiles may or may not be ordered as needed to createavalid
section. There are many possible waysto order the data. Often more than one technique is ap-
plicableto asingle data set. The datamay be ordered along a ship track, ordered by increasing
latitude, ordered by path distance along aregression line, etc.

Continuing with the example above, we can order the profiles into increasing latitude with:

yes? let order = SORTI (lat)
yes? let section = SAMPLEI (order, outvar)

Other definitions of the variable order may be created by straightforward meansto apply other
ordering principles.

As defined above, “section” has an X axis which is the values 1, 2, 3,...N from the Ferret
ABSTRACT axis. To cast this on a proper latitude axis, use these two steps:

yes? DEFINE AXIS/Y/NAME=yax sect/FROM DATA/UNITS=degrees SAMPLEI (order,lat)
yes? LET ysection = RESHAPE (section, Y[gy=yax sect]+Z[gz=all])

3.4 Visualization and analysis techniques for profile sections

The variables “section” and “ysection” defined above may be plotted and analyzed with the
normal gridded plot commands. For examples,

yes? CONTOUR section ! contour plot ordered on X=1,2,3,...

yes? FILL ysection ! color contour plot on formatted latitude axis
yes? PLOT/Y=20S/Z=100:500 ysection ! profile at 20 south

yes? PLOT ysection[Z=@loc:20] ! depth of 20 degree isotherm

3.5 Subsampling gridded fields onto profile coordinates and times

The technique described for sampling grids at scattered point values will work unmodified for
collections of vertical profiles. The Z coordinate of the gridded variable will be retained un-
modified throughout the sampling operations. Regrid thefinal result variableto other Z axesas
desired.

WORKING WITH SPECIAL DATA SETS 147

4

6.1

COLLECTIONS OF TIME SERIES

Handling of collections of time seriesis analogous to handling collections of vertical profiles,
described above. The choices of

1. asingleinterpolated time axis (using the default, GT=@LIN, regridding)
2. asuper-set of all times axis (using “exact match,” GT=@XACT, regridding)

should be considered. Choice 3, in which time would be handled as an independent variable, is
possible, but awkward, due to the multiplicity of time encodings.

COLLECTIONS OF 2-DIMENSIONAL GRIDS

Handling collections of 2-dimensional grids (e.g. ZT gridsfrom acoustic current profilers) isa
straightforward extension of the techniques described under collections of profiles. If thetime
axes of theinput gridsareall identical, no additional work isneeded beyond the techniques de-
scribed there. If the time axes differ then follow the guidance given under Collections of Time
Series, using intermediate variable definitionsthat reconcilethetime axesinto asingle uniform
axis before saving the input variables into a merged output file.

LAGRANGIAN DATA

Lagrangian data (ship tracks, drifters, etc.) isaspecial case of scattered point data described in
a preceding section. In the terminology of “Defining gridded variables from point data’
Lagrangian data is simply point data organized onto a 1-dimensional time axis grid.

Visualization techniques for Lagrangian data

Ferret has several visualization tools that specifically address the needs of Lagrangian data.
There are three scripts:

polymark marks value-colored symbol at each location

(polymark_demo)

polytube (polytube_demo) creates a line following the Lagrangian track with color
varying according to a Lagrangian variable

trackplot (trackplot_demo) creates aline plot of aLagrangian variable where the zero

line of the plot follows the Lagrangian track

Overlays of the trackplot script are useful to visualize more than one variable. Run the demon-
stration scripts noted above for each tool for an example of its use with Lagrangian data.

148 CHAPTERS8

7 SIGMA COORDINATE DATA

With sigmacoordinate datathe vertical coordinate (or layer thickness) isavail able asadepend-
ent variable and the Z axis of the sigma-encoded variablesislayer number (theZ index). Thisis
precisely analogous to method 3 of handling collections of profiles, above.

See also the FAQ on Using Sigma Coordinates.

7.1 Visualization techniques for sigma coordinate data

Visuadlizations of sigma coordinate data in vertical section planes are best handled with the
3-argument versions of the SHADE, FILL, CONTOUR and VECTOR commands. See further
information in Customizing Plots (Chapter 6, p. 103).

For visualization of sigmacoordinate datain other planes or orientations use the techni ques de-

scribed in the next section.

7.2 Analysis techniques for sigma coordinate data

Analysis of sigma coordinate data, which requires shifting to depth or pressure coordinates, is
facilitated by thefunction ZAXREPLACE, which convertsfrom layer number to other vertical
coordinate axes. If the data set provides|ayer thickness rather than depth a depth variable may
be created using integration with @iin.

8 CURVILINEAR COORDINATE DATA

By “curvilinear coordinate data’ we refer to datawhich iscurvilinear ininthe XY planethere.
We presumethat the X,Y coordinates (typically longitude, latitude) are available through other
dependent variables.

8.1 Visualization techniques for curvilinear coordinate data

Visualizations of curvilinear coordinate data in the XY plane section planes are best handled
with the 3-argument versions of the SHADE, FILL, and Contour commands. See further infor-
mation in Customizing Plots (Chapter 6, p. 103).

For visualization of curvilinear coordinate data in other planes or orientations use the tech-
niques described under “ Analysis techniques for curvilinear coordinate data.”

WORKING WITH SPECIAL DATA SETS 149

../../../FAQ/data_management/sigma_coordinate_demo.html

8.2

9.1

9.2

150

Analysis techniques for curvilinear coordinate data

Analysisof coordinate coordinate data, may be donein the curvilinear coordinate systemor in
arectilinear (including lat-long) coordinate system. If theanalysisisdonein the curvilinear co-
ordinate system, it istheresponsibility of the user to ensure that the proper geometric factor are
applied when integral s and derivatives are computed. Converting other fieldsto the curvilinear
coordinate system is most easily accomplished with the function SAMPLEXY.

To perform the analysis in a rectilinear coordinate system, the conversion of the curvilinear
datais most easily done with SAMPLEXY _CURV (under development—7/99).

POLYGONAL DATA

By “polygonal data’ we refer to aclass of point data set where each point represents a polygo-
nal region rather than asingle coordinate. An example of polygonal datawould be avalue asso-
ciated with each state in the United States.

Visualization techniques for polygonal data

Visualizations of polygonal datais best handled with the POLY GON command. If the coordi-
nates of the polygon vertices are available in 2-dimensional arrays, xpoly and ypoly, in which
the axes of the arrays are the polygon vertices and the sequence of polygons the use of the
POLYGON command is straightforward. The POLYGON command can also handle se-
guences of polygons encoded in 1-dimensional arrays with missing values separating each

polygon.

Analysis techniques for polygonal data

Ferret version 5.0 does not have any tools specifically addressing the analysis of polygonal
datasets. The analysis of these data setsin Ferret requires the creation of agridded mask field
corresponding to the polygonal regions (an external function could bewritten that would create
agridded mask of arbitrary resolution from polygonal coordinates.)

Oncethe mask is created, the standard gridded operatorsfor averaging, integrating, etc. can be
used. For example, if variable cal_mask contains a gridded mask of the state of Californiaon
latitude and longitude axes of 10 minute resolution then this definition would compute the av-
erage of agridded variable, var, over California:

yes? let cal var = mask * var[g=mask]
yes? let cal average = cal var[x=@ave, y=(@ave]
CHAPTER 8

Chapter 9: COMPUTING ENVIRONMENT

1 SETTING UP AN ACCOUNT

This discussion assumesthat Ferret is aready installed on your system. Installation documen-
tation is avail able separately from node abyss.pmel.noaa.gov.

STEP1
Execute interactively or add to your .login file the Unix C-shell command

% source /usr/local/ferret paths

(Note: If thiscommand doesn’t work consult your system manager, who may have placed
ferret_pathsin a different directory.)

The Ferret program requires access to several files and directories. These Unix paths are
stored in environment variables defined by thefile“ferret_paths’. Your Unix account must
be“madeaware” of wherethe Ferret utilitiesarelocated. Thisisdone by adding to the defi-
nition of your environment variable PATH thedirectory “$FER_DIR/bin”. Unlessyour sys-
tem manager hasmodified thetypical setup, thiswill occur automatically when you execute
the above command.

STEP 2 (personal customizations—optional)

Execute the “cp” command below:

$ cp SFER DIR/bin/my ferret paths template \
$SHOME/my _ferret_paths
Then use atext editor to customize my_ferret_paths. Instructions are inside the file.
Some of the Ferret environment variables identify files and directories that are integral to
the Ferret program, but others identify files that you may maintain—your data files, GO
scripts, and palettefiles, for example. (The environment variablesthat you may want to cus-
tomize are discussed at the end of this section.) To assist in customizing the Ferret environ-
ment variablesthe templatefilein the“cp” command, above, hasbeen provided. Thefileis
self-explanatory.

STEP3

Execute the command below interactively or add it to your .login file.

% setenv DISPLAY node:0.0 €., $ setenv DISPLAY anorak:0.0

COMPUTING ENVIRONMENT 151

This command sets the environment variable “DISPLAY” to point to the workstation con-
sole or X-terminal where you want Ferret graphical output displayed. In the example above,
graphical output is directed to the screen of workstation “anorak.”

2 FILES AND ENVIRONMENT VARIABLES USED BY FERRET

ferret—the Ferret initialization file. Thisoptional file holdsalist of Ferret commandsthat will
be executed immediately each time Ferret is started, permitting Ferret to betailored to individ-
ual needs and styles. Thefile must belocated in your $SHOME (login) directory. A simple way
to set up such afileisto enter Ferret, enter the commandsthat you want executed each timeyou
enter Ferret, exit Ferret and renamethefile“ferret.jnl” to“ .ferret”. Thereafter, all commandsin
“ ferret” will be executed automatically whenever you enter Ferret.

The following environment variables are defined in the file ferret_paths:

FER_DATA—alist of directoriesto be searched to locate data files. Usualy thislist includes
“.”, the current directory, and $FER_DSET S/data, a directory of sample data sets provided
with Ferret. Your system manager may have set this variable to include other data areas as
well. Thisisthelist of directories searched to locate NetCDF files.

FER _DESCR—alist of directoriesto be searched to |ocate descriptor files. Descriptorsarere-
quired by Ferret to access data sets that are in Ferret’s “GT” (grids at timesteps) or “TS’
(time series) formats. Usualy this list includes “.”, the current directory, and

$FER_DSETS/descr, adirectory of sample descriptors provided with Ferret.

FER_GRIDS—alist of directoriesto be searched to locate grid definition files. Data sets will
usually have a grid definition file associated with them so that the grids on which the data
are defined may be known.

FER_DIR—top directory of the Ferret distribution on your system.
FER_DSETS—directory of sample data sets provided with the Ferret distribution.

FER_PALETTE—alist of directoriesto be searched to locate palette files. Usually thislist in-
cludes“.” and $FER_DIR/ppl.

FER_GO—alist of directories to be searched to locate GO scripts. Thislist usually includes
“.”, $FER_DIR/go, $FER DIR/examples (demonstrations and tutorial), and
$FER_DIR/contrib (user contributions demonstrating various applications; accuracy not
guaranteed).

FER_EXTERNAL_FUNCTIONS—alist of directoriesto be searched to |ocate the shared ob-

ject files(.sofiles) for external functions. By default thislist includesthe location of the ex-
ample functions and the functions included with the Ferret distribution.

152 CHAPTER9

3 MEMORY USE

Ferret indicates memory problems by issuing the error message “insufficient memory.” |If
memory is a problem running Ferret the following suggestions may help:

1) Use the command SET MEMORY/SIZE=nnn to increase the memory cache region avail-
able to Ferret.

2) Use the command SET MODE DESPERATE to determine the threshold size of memory
objects at which Ferret will break a large calculation into fragments. A smaller argument
value will induce stricter memory management but at a penalty in performance.

3) Use CANCEL MEMORY whenever you are sure that the data referenced thus far by Ferret
will not be referenced again. Thisis particularly appropriate to batch procedures that use
Ferret. Thiseliminates any memory fragmentation that may beleft by previous commands.

4) Use CANCEL MODE SEGMENT S to minimize the memory usage by graphics (ona few
X-window systemsthismay prevent windowsfrom being restored after they are obscured).

5) When using DEFINE VARIABLE (alias LET) avoid embedding upper and lower axis
bounds within the variable definition. Ferret cannot split up large calculations along axes
when the limits are fixed in the definition. For example,

yes? LET V2=TEMP/10
yes? PLOT/K=1:10 V2

ispreferableto

yes? LET V2=TEMP[K=1:10]/10
yes? PLOT V2

6) Try togroup together calculationsthat are on smaller dimensioned objects. For example, the
expression VAR[i=1:100, j=1:100]*2* Pl will make less efficient use of cpu and memory
than the expression VAR[i=1:100, j=1:100]*(2*Pl). The former multiplies each of the
10000 points of VAR by 2 and then performs a second multiplication of the 10000 result
points by PI. The latter computes the scalar 2* Pl and uses it only once in multiplying the
10000 points of VAR.

7) 1f onehas SET MODE STUPID:weak _cache, then make surethat theregionisfully defined
(i.e., check SHOW REGION and check the region qualifiers of your command). When the
region along some axisis not specified Ferret defaults to the full span of the data along that
axis and is unable to optimize memory usage.

COMPUTING ENVIRONMENT 153

4 HARD COPY AND METAFILE TRANSLATION

4.1 Hard copy

To obtain hard copy of plots produced by Ferret, follow these steps:

1) Within Ferret, enter the command

yes? SET MODE METAFILE

Thistells Ferret to generate agraphic metafile (ANSI/ISO GKSM format) for each plot cre-
ated thereafter. To stop making the metafiles type

yes? CANCEL MODE METAFILE

2) Produce each plot asyou would normally. Each new plot on your screen generates an addi-
tional file named “ metafile.plt.~n~" where“n” will beincremented for each metafile. Over-
lay commands do not produce additional metafiles. (The metafile name may be set by the
SET MODE METAFILE command.)

3) After exiting from Ferret use the command Fprint.

Note: If itisnecessary to use Fprint without exiting Ferret, then issue
thecommand yes> pr1, cuserr. Thiswill closethe current metefile.
Note that neither overlays nor additional viewports can be added to
the plot after the metafile has been closed.

Fprint isascript which translates metafiles generated by Ferret. It usesthe program “ gksm2ps’
and isintended to ssimplify sending plotsto printers, to an output file only, or to aworkstation
screen.

For monochrome printers the metafile translator, gskm2ps, uses different line styles (dash-dot
patterns) rather than colorsfor different lines. See Appendix | of Plotplus Plus. Enhancements
to Plotplus for a complete list of line styles for monochrome devices.

The Fprint script translates metafiles to Encapsulated PostScript or X-window output. Your

system manager should customize the script at your site to permit your specification of the ac-
tual printers you have as output devices. Fprint uses standard Unix command line syntax.

Fprint [-h] [-P printer || -o file name || -X]

[-p orient] [-# n] [-] line] [-R] metafile(s)

154 CHAPTER9

Options
-h

-P printer

-o file_name
-X

-p orient

-#n
-l line

Examples

displays help on your terminal.

Routes output to named printer. Files will not be renamed by previewing.
You will be prompted, however, with an option to del ete each metafile after
previewing. The output window size will be equivalent to the default size
in Ferret (SET WINDOW/SIZE=0.7).

Routes output to named disk postscript file.

Routes output to your workstation screen. Fileswill not be renamed by pre-
viewing. You will be prompted, however, with an option to delete each
metafile after previewing. The output window sizewill be equivalent tothe
default sizein Ferret (SET WINDOW/SIZE=0.7).

The page orientation option determines whether the plot will be placed on
the page in landscape format, with the horizontal sidelonger than the verti-
cal, or portrait, with the vertical sidelonger. Valid option values are “land-
scape” and “portrait”. The default behavior isto orient the plot to best fit

the page.
Specifies number of copies (n).

This option lets you specify line styles. Valid options are “ps’ and “cps’.
“ps’ uses dot-dashed line types; “cps’ uses colored lines. The default is
“ps’ for monochrome printers and “cps’ for color printers.

Turns off the default behavior of the metafile transator to append a date
stamp to metafile names when they are sent to a printer or adisk file. The
default action is intended to distinguish metafiles that have been printed
out; this option keeps the metafile names unmodified.

% Fprint metafile.plt

renders “metafile.plt” on the default printer identified by the environment
variable PRINTER.

% Fprint -P myprinter -R metafile.plt*

renders all versions of “metafile.plt” on printer myprinter. Does not date
stamp them.

% Fprint -o my plot.ps metafile.plt.~1~

writes plot “ metafile.plt.~1~" to a postscript file named “my_plot.ps’.

COMPUTING ENVIRONMENT 155

4.2 Metafile translation

The command “gksm2ps’ allows you to control the tranglation of the device-independent
metafiles made by Ferret into device-specific output files. “gksm2ps’ was written by Larry
Oolman at the University of Wyoming and modified at NOAA/PMEL for use with Ferret. The
“gksm2ps’ command uses standard Unix command line syntax. See usage hints provided by

the -h option.

gksm2ps [-h]

[-p landscape| |portrait] [-1 ps|lcps] [-d cps| |phaser] \

[-X || -0 <ps_output_file>] [-R] [-a] [-g WxH+X+Y] file(s)

Options

-h

-p orient

-l line

-d devtype

-X
-0 ofile

-g WXH+X+Y

156 CHAPTER9

prints help message.

The page orientation option determines whether the plot will be placed
on the page in landscape format, with the horizontal side longer than the
vertical, or portrait, with the vertical side longer. The default isto orient
the plot to best fit the page.

Thisoption permits specification of line stylesin the hardcopy plot. Valid
options are “ps’ (the default) and “cps’. “ps’ renders lines as solid and
dot-dashed and is suited for monochrome printers. “cps’ renderslinesin
color.

The target device type of the trandator. If the -d option is omitted and
output isto afile gksm2ps will use devtype “ps’.

Valid devtype values:

Cps— color PostScript
phaser — Tektronix Phaser PX. The phaser is a PostScript printer, but it
uses transfer sheets that reduce the usable page size.

Sends the output to your X-window for preview.

The output will be directed to the file “ofile.” Omit both this and the de-
vice type option when directing output to your workstation screen with
-X. If neither -0 nor -X is specified, gksm2ps creates a postscript filein
the current directory called “gksm2ps_output.ps’.

Makes the plot the size of the original plot as specified in PPLUS inches
(absolute size), rather than fitting the plot to the page (the default behav-
ior).

The -g option (-g WxH+X+Y) provides detailed control over the size,
position, and aspect ratio of the plot on the printed page. The arguments
W, H, X, and Y are given in units of points (1/72 of aninch).

Normally when using this option you will want to specify an identical
valuefor both W and H—the size (in points) you want the longer dimen-
sion of the plot to be. Unequal values of W and H will alter the aspect ra-
tio of the plot relative to its appearance on your workstation screen.

Options

The X and Y values are the offset of the lower left corner of the plot from
thelower left corner of the page. If you want your plot’slonger sideto be
5incheslong, 3 inchesright from the corner, and 2 inches up, for exam-

ple, specify

> |pr my_plot.ps

-R Turns off the default behavior of the metafile translator to append a date
stamp to metafile nameswhen they are sent to aprinter or adisk file. The
default action isintended to distinguish metafiles that have been printed
out; this option keeps the metafile names unmodified.

If the user does not specify an output option (-0 or -X) gksm2pstranslatesthe metafile and pro-
duces a PostScript file called gksm2ps_output.ps. After tranglation by gksm2ps, metafiles are
renamed with a date stamp unless -R was specified. To get hard copy printed, the output Post-
Script file needs to be sent to the appropriate printer.

OUTPUT FILE NAMING

Ferret usesafile naming schemeto differentiate successive graphic metafilesand journal files.
The scheme is styled after the gnu (Free Software Foundation) emacs editor. The scheme ap-
pends numbers to the end of the file name asin the following examples:

Metafile.plt.~2~
metafile.plt.~12~
metafile.plt

The third example, “metafile.plt” with no suffix appended, is the most recent file. When the
next successive file is created, this file will have the suffix “.~nnn~" appended to its name.
“nnn” isthe current highest file suffix number plus one.

Two Unix tools are provided to assist with managing multiple file suffix numbers:

Fpurge removes al but the current version of the named file (that is, al but the most re-
cent).
ExanuﬂeiijFpurge ferret.jnl

Fsort sorts the versions of afile into increasing numerical order
Exanuﬂe: % Fprint ‘Fsort metafile.plt*’

See Chapter 1 section “Unix tools,” p. 22, for further information.

COMPUTING ENVIRONMENT 157

6

6.1

158

INPUT FILE NAMING

There are several Ferret commands that use filenames. These include:

GO filename

SET DATA filename

LIST/FILE=filename (do not use relative versions (below) with LIST)
USER/FILE=filename

SET MODE META filename

SET MODE JOURNAL filename

SET MODE PPLLIST filename

The filename specified can be just the filename itself, or it can include the path to the file. For
example:

GO ferret.jnl or GO “/home/diskl/jnl files/far side.jnl”
Note that if the path is specified as part of the filename, the entire name must be enclosed in

guotation marks.

Relative version numbers

Under some circumstances (see the GO command, p. 222) aspecial syntax called “relative ver-
sion numbers” will apply. If afilename hasaversion valueof zero or lessitsvalueisinterpreted
relative to the current highest version number.

For example, if the current directory contains the files

ferret.jnl ferret.jnl.~1~ ferret.jnl.~2~ ... ferret.jnl.~99~

then the filename ferret.n1.~0~ refersto rerret.n1 and the filename ferret.jn1 . ~-1~
refersto ferret.jnl.~99~,

Thesyntax for relative version numbersisquiteflexible. For example, if thedesiredfileisfer-
ret.9nl.~99~, both of the following are valid:

yes? GO ferret.jnl.~-1~ or yes? GO ferret.jnl~-1

CHAPTER 9

Chapter 10: CONVERTING TO NetCDF

1 OVERVIEW

The Network Common Data Format (NetCDF) is an interface to alibrary of data access rou-
tinesfor storing and retrieving scientific data. NetCDF allows the creation of data setsthat are
self-describing and network-transparent. NetCDF was created under contract with the Divi-
sion of Atmospheric Sciences of the National Scientific Foundation and is available from the
Unidata Program Center in Boulder, Colorado (on Internet: unidata.ucar.edu).

This chapter provides directionsfor creating NetCDF datafiles. In addition to the documenta-
tion provided here, refer to the NetCDF User’s Guide, published by Unidata Program Center,
for further guidance. A user who uses and creates NetCDF files within the Ferret environment
needs no additional software.

NetCDF isavery flexible standard. In most casesthere are multiple stylesor profilesthat could
be used to encode data into NetCDF. To resolve the ambiguities inherent in this multiplicity
communities of users have banded together to devel op profiles—documentsthat provide more
detail on how data should be encoded into NetCDF. Ferret adheres to the COARDS standard.
The full standard is available through the Ferret home page on the World Wide Web.

2 SIMPLE CONVERSIONS USING FERRET

In straightforward conversion operations where ASCII or unformatted binary datafilesare a-
ready readable by Ferret, the conversion to direct access, self-describing NetCDF formatted
data can be accomplished by Ferret itself. The following set of examplesillustrates these pro-
cedures:

Example 1

Consider an ASCI| file uv.data, with two variables, u and v, defined on agrid 360 by 180. The
following set of commandswill properly read in uand v and convert them to aNetCDF format-
ted data set:

yes? DEFINE AXIS/x=1:360:1/units=degrees xaxis
yes? DEFINE AXIS/y=1:180:1/units=degrees yaxis
yes? DEFINE GRID/x=xaxis/y=yaxis uv_grid

yes? FILE/GRID=uv_grid/BAD=-999/VAR="u,v" uv.data
yes? SET VARIABLE/TITLE="zonal velocity" u

yes? SAVE/FILE=uv.cdf u,v

See command DEFINE A XIS in the Commands Reference (p. 211). See Chapter 4 (p. 77) for
setting up formatted latitude, longitude and time axes.

CONVERTING TO NETCDF 159

Example 2

Consider now two separate ASCI| files, u.data and v.data, defined on agrid 360 by 180. The
following set of commands will properly read in u and v and convert them to asingle NetCDF
formatted data set:

yes? DEF AXIS/x=1:360:1/units=degrees xaxis
yes? DEF AXIS/y=1:180:1/units=degrees yaxis
yes? DEF GRID/x=xaxis/y=yaxis uv_grid

yes? FILE/GRID=uv_grid/BAD=-999/VAR=u u.data
yes? FILE/GRID=uv_grid/BAD=-999/VAR=v v.data
yes? SAVE/FILE=uv2.cdf u[D=1]

yes? SAVE/APPEND/FILE=uv2.cdf v[D=2]

Example 3—multiple time steps

Consider 12 ASCII files, uv.datal to uv.datal2, each defined on the same grid as above but
each representing a successive time step. The following set of commands illustrates how to
save these datainto asingle NetCDF data set (time series):

yes? DEF AXIS/x=1:360:1 xaxis

yes? DEF AXIS/y=1:180:1 yaxis

yes? DEF AXIS/t=1:1:1 taxisl

yes? DEF GRID/x=xaxis/y=yaxis/t=taxisl uv gridl
yes? FILE/GRID=uv gridl/BAD=-999/VAR="u,v" uv.datal
yes? SAVE/FILE=uvl 12t.cdf u,v

yes? CANCEL DATA uv.datal

yes? DEF AXIS/t=2:2:1 taxisl

yes? FILE/GRID=uv gridl/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/APPEND/?ILE:uVlith.Cdf u,v

and so on, redefining the time axisto be 3:3:1, 4:4:1, ... each time anew fileis set.
Example 4—multiple slabs

The procedure used in example 3, above, is possible because NetCDF files can be extended
along the time axis. In order to append multiple levels (Z axis), the NetCDF file must first be
created including all of itsvertical levels(thelevelsinitially arefilled with amissing dataflag).

Consider 5 ASCI| files, uv.datal to uv.datab, each defined on the same grid as above but each
representing asuccessive vertical level. Thefollowing set of commandsillustrates how to save
these datainto asingle NetCDF data set:

yes? DEF AXIS/x=1:360:1 xaxis

yes? DEF AXIS/y=1:180:1 vyaxis

yes? DEF AXIS/Z=0:100:25/DEPTH zaxis

yes? DEF GRID/X=xaxis/Y=yaxis/Z=zaxis uv_grid
yes? DEF AXIS/z=0:0:1 =zaxisl

yes? DEF GRID/LIKE=uv_grid/Z=zaxisl uv_gridl
yes? FILE/GRID=uv_gridl/BAD=-999/VAR="u,v" uv.datal
yes? LET/TITLE="My U data" ul = ul[G=uv_grid]
yes? LET/TITLE="My V data" vl = v[G=uv_grid]
yes? SAVE/FILE=uvl 5z.cdf/KLIMITS=1:5 ul, vl
yes? CANCEL DATA uv.datal

160 CHAPTER 10

3.1

yes? DEF AXIS/7z=25:25:1 zaxisl
yes? FILE/GRID=uv_gridl/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/FILE=uvl 5z.cdf/APPEND ul,vl

The NetCDF utilities “ncdump” and “ncgen” can aso be combined with atext editor to make
final refinements to the NetCDF files created by SAVE. (These utilities are not provided with
the Ferret distribution; they can be obtained from unidata.ucar.edu.) Hereisasimple example
that removes all “history” attributes from a NetCDF file using pipes and the Unix “grep” util-

ity:

% ncdump old file.cdf | grep -v history | ncgen -o new file.cdf

WRITING A CONVERSION PROGRAM

There arethree stepsrequired to convert datato NetCDF if your datais not already readable by
Ferret:

1. CreateaCDL (the ASCII NetCDF Description Language) filethat describesthe axes, grids,
and variables of the desired output data set. Note: Ferret itself often provides the simplest
way to create the CDL file (see the following section).

2. Convert this CDL fileinto aNetCDF file with the ncgen utility.

3. Create a program that will read your particular data and insert them into the NetCDF file.
The ncgen utility will create most of the FORTRAN or C code needed for this task.

The file converting_to_netcdf.f which is located in the Ferret documentation directory
($FER_DIR/doc) contains a complete description and example of these three steps. The re-
mainder of this section provides further details.

Creating a CDL file with Ferret

Suppose that we wish to create a CDL file to describe a data set entitled “My Global Data’
which contains variablesu and v in cm/sec on a5x5 degree global lat/long grid. Thefollowing
commands would achieve the goal with Ferret doing the mgjority of the work:

e From Ferret issue the commands

DEFINE AXIS/X=2.5E:2.5W:5/UNITS=degrees xlong

DEFINE AXIS/Y=87.5S:87.5N:5/UNITS=degrees ylat

DEFINE GRID/X=xlong/Y=ylat my grid

LET shape 2d = x[G=my grid]+y[G=my grid]

LET U = 1/0*SHAPE 2D -

LET V = 1/0*SHAPE 2D

SET VARIABLE/TITLE="Zonal Velocity"/UNITS="cm/sec" u

SET VARIABLE/TITLE="Meridional Velocity"/UNITS="cm/sec" v

CONVERTING TO NETCDF 161

SAVE/FILE=my file.cdf/TITLE="My Global Data" u,v
QUIT

¢ From Unix issue the command

ncdump -c my file.cdf > my file.cdl

Theresulting filemy_file.cdl is ready to use or to make final modifications to with an editor.

3.2 The CDL file

A CDL file consists of three sections. Dimensions, Variables, and Data. All of the following
textinCouri er font constitutesareal CDL file; it can be copied verbatim and used to gen-
erate a NetCDF file. The full text of this file is included with the Ferret distribution as
$FER_DIR/doc/converting_to_netcdf.basic.

netcdf converting to netcdf.basic {

3.2.1 Dimensions

In this section, the sizes of the grid dimensions are specified. One of these dimensions can be of
“unlimited” size (i.e., it can grow).

Dimensions:
lon = 160 ; // longitude
lat = 100 ; // latitude
depth = 27 ; // depth
time = unlimited ;

These are essentially parameter statements that assign certain numbers that will be used in the
Variables section to define axesand variabledimensions. The®//” isthe CDL comment syntax.

3.2.2 Variables

Variables, variable attributes, axes, axis attributes, and global attributes are specified.

variables:

float temp(time, depth, lat, lon) ;
temp: long name = “TEMPERATURE” ;
temp: units = “deg. C” ;
temp: FillValue = 1E34 ;

float salt(time, depth, lat, lon)
salt: long name = “ (SALINITY (ppt) - 35) /1000" ;
salt: units = ”"frac. by wt. less .035" ;
salt: Fillvalue = -999. ;

162 CHAPTER 10

The declaration “float” indicates that the variable is to be stored as single precision, floating
point (32-bit | EEE representation). The declarations“long” (32-bit integer), “short” (16-bit in-
teger), “byte” (8-bit integer) and “double’ (64-bit |EEE floating point) are also supported by
Ferret. Note that although these data types may result in smaller files, they will not affect Fer-
ret’smemory usage, asall variables are converted to “float” internally asthey are read by Fer-
ret.

Variable names in NetCDF files should follow the same guidelines as Ferret variable names:

 caseinsensitive (avoid namesthat are identical apart from case)
* 1to 24 characters (letters, digits, $ and _) beginning with aletter
« avoidreserved names (1, J, K, L, X, Y, Z, T, XBOX, ...)

The_FillVaueattribute informs Ferret that any data value matching thisvalueisamissing (in-
valid) data point. For example, an ocean data set may label land locations with avalue such as
1E34. By identifying 1E34 as afill value, Ferret knows to ignore points matching this value.
The attribute “missing_value” issimilar to “_FillValue” when reading data; but “_FillValue”
also specifies a value to be inserted into unspecified regions during file creation. You may
specify two distinct flagsfor invalid datain the samevariableby using“_FillValue’ and “ miss-
ing_value’ together.

Ferret variablesmay havefrom 1to 4 dimensions. If any of the axes havethe special interpreta-
tions of: 1) latitude, 2) longitude, 3) depth, or 4) time (date), then the relative order of those
axesin the CDL variable declaration must be T, then Z, then Y, and then X, as above. Any of
these special axes can be omitted and other axes (for example, an axis called “ distance”) may
be inserted between them.

axis definitions:
double lon(lon) ;

lon: units = “degrees”;
double lat (lat) ;

lat: units = “degrees”;
double depth (depth) ;
depth: units = “meters”;
double time (time) ;
time: units = “seconds since 1972-01-01";

Axes are distinguished from other 1-dimensional NetCDF variables by their variable names
being identical to their dimension names. Special axis interpretations are inferred by Ferret
through avariety of “clues.”

Date/timeaxesareinferred by unitsof “years,” “days,” “hours,” “minutes,” or “seconds,” or by
axis names “time,” “date,” or “t” (case-insensitive). Calendar date formatting requires the
“units’ attribute to be formatted with both avalid time unit and “since dd-mm-yyyy”.

Vertical axes are identified by axis names containing the strings “ depth”, “elev”, or “z”, or by

units of “millibars.” Depth axes are positive downward by default. The attribute positive=
“down” can aso be used to create a downward-pointing axis.

CONVERTING TO NETCDF 163

Latitude axes are inferred by units of “degrees’ or “latitude” with axis names containing the
strings“lat” or “y”. Longitude axes are inferred by units of “degrees’ or “longitude” with axis
names containing the strings “lon” or “x”.

Global attributes, or attributes that apply to the entire data set, can be specified as well.

global attributes:

:title = “NetCDF Example”;

:message = “This message will be displayed when the CDF file is
opened by Ferret”;

:history = “Documentation on the origins and evolution of this data

set or variable”;

3.2.3 Data

Inthissection, valuesare assigned to grid coordinates and to the variables of thefile. Below are
100 latitude coordinates entered (in degrees) into the variable axis “lat”, 160 longitude coordi-
natesin“lon”, and 27 depth coordinates (in meters) in “ depth”. Longitude coordinates must be
specified with 0 at Greenwich, continuous across the dateline, with positive eastward (modulo
360).

Data:

lat=

-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.151357650,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.987424850,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.169393539,

-9.

.1666526794, -7

.4999852180,-6.

.8333187103,-4
.1666517258,-2
.4999852180, -1

8333206177,-9.

4999876022, -9.
.8333187103,-7.
1666517258, -5.
.4999852180, -4
.8333184719,-2.
.1666518450,-0.

1666536331, -8
4999847412,-7

4999852180, -2
8333183527, -0.

8333182335,-5.
.1666517258,-3.

.8333196640,-8.
.1666512489,-6.
4999852180, -5.
8333187103,—3.
.1666519642,
4999849498, -0.

4999856949,
8333182335,
1666517258,
4999852180,

1.8333185911,

1666515470,

.1666818559,0.5000152588,0.8333486915,1.1666821241,1.
.8333489895,2.1666824818,2.5000159740,2.8333494663, 3.

0 5000154972,
1
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.
5
6

1666829586,
8333497047,
5000162125,
1666841507,
8333530426,

.1666831970,5.5000162125,5.8333497047,6.1666827202,6.
.8333497047,7.1666827202,7.5000166893,7.833350181¢6, 8.
8.5000181198,8.8333511353,9.1666851044,9.5000190735, 9.

10.
12.

17.
25.
37.

1679363251 10

3833675385,13.

0497493744, 18
4404067993,27
4061241150,40

5137376785, 10.
0618314743,13.
.4128704071,19.
.5786647797,29.
.1139259338,42.

8892869949 11
8560228348,14

8560409546, 32

9334945679, 21.

8893203735, 45.

.3138961792,11.
.7786512375,15.
6128730774, 23.
.2618522644, 34
7137718201, 48.

8060989380,
8403968811,
4497566223,

.7833900452,

5679702759;

lon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,142
.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,154.5,
155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,166.5,167
.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,178.5,179.5,
180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,190.5,191.5,192
.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,202.5,203.5,204.5,
205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,214.5,215.5,216.5,217
.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,226.5,227.5,228.5,229.5,
230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,238.5,239.5,240.5,241.5,242
.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,250.5,251.5,252.5,253.5,254.5,
255.5,256.5,257.5,258.5,259.5,260.5,261.5,262.5,263.5,264.5,265.5,266.5,267
.5,268.5,269.5,270.5,271.5,272.5,273.5,274.5,275.5,276.5,277.5,278.5,279.5,
280.5,281.5,282.5,283.5,284.5,285.5,286.5,287.5,288.5,289.5;

depth=

164 CHAPTER 10

5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174.0
,3824.0; }

To use this CDL filetype:

% ncgen -o my data.cdf converting to netcdf.basic

Thiswill will create afile called “my_data.cdf” to which data can be directed (see next sec-
tion).

Another NetCDF command, “ncdump”, can be used to generate a CDL file from an existing
NetCDF file. The command

% ncdump -h my data.cdf

will list the CDL representation of a preexisting my_data.cdf without the Data section, while

% ncdump my data.cdf

will list the CDL file with the Data section. The command

% ncdump -c my data.cdf

will create a CDL filein which only coordinate variables are included in the Data section. The
listed output can be redirected to afile asin the command

% ncdump -c my data.cdf > my data.cdl

3.3 Standardized NetCDF attributes

A document detailing the COARDS NetCDF conventionsto which the Ferret program adheres
are available on line through the Ferret home page on the World Wide Web and at

http://www.unidata.ucar.edu/packages/netcdf/conventions.html

Thefollowing arethe attributes most commonly used with Ferret. They are described in greater
detail in the reference document named above.

Global Attributes
‘title = “my data set title”
-history = “general background information”

Data Variable Attributes
long_name = “title of my variable”
units = “unitsfor this variable’
_FillValue = missing value flag

CONVERTING TO NETCDF 165

http://www.unidata.ucar.edu/packages/netcdf/conventions.html

missing_value = alternative missing value flag
scale factor = (optional) the data are to be multiplied by this factor
add offset = (optional) this number isto be added to the data

Special Coordinate Variable Attributes
time_axis:units = “ seconds since 1992-10-8 15:15:42.5 -6:00"; // example
y_axis:units = “degrees north”
X_axis:units = “degrees_east”
z_axis.positive = “down”; // to indicate preferred plotting orientation
my_axis:point_spacing = “even”; // improved performance if present

3.4 Directing data to a CDF file

The following is an example program which can be used on-line to convert existing data sets
into NetCDF files. It also should provide guidance on sending data generated by numerical
models directly to NetCDF files. This program assumes you have created the NetCDF file as
described in the previous section. It isincluded in the distribution as $FER_DIR/doc/convert-
ing_to_netcdf.f.

program converting to netcdf

Q

written by Dan Trueman
updated 4/94 *sh¥*

Q

This program provides a model for converting a data set to NetCDF.
The basic strategy used in this program is to open an existing NetCDF
file, query the file for the ID’s of the variables it contains, and
then write the data to those variables.

QO 0QQ0

The output NetCDF file must be created **before** this program is run.
The simplest way to do this is to cd to your scratch directory and
% cp SFER DIR/doc/converting to netcdf.basic converting to netcdf.cdl
and then edit converting to netcdf.cdl (an ASCII file) to describe YOUR
data set. If your data set requires unequally spaced axes, climatological c
ime axes, staggered grids, etc. then converting to netcdf.supplement may c be
better starting point then the “basic” file used above.
After you edit converting to netcdf.cdl then create the NetCDF file with
the command -

Q

% ncgen -o converting to netcdf.cdf converting to netcdf.cdl

a0

c Now we will read in **your** data (gridded oceanic temperature and

c salt in this example) and write it out into the NetCDF file

c converting to netcdf.cdf. Note that the axis coordinates can be written
c out exactly the same methodology - including time step values (as below).

LR R R I S b S I S S I S b S I S S b I I S S b I S S b R I S S b S S b SR S I S S S R e S Sh b b S S S Sh b b b S Sh b b 4

c An alternative to modifying this program is to use the command:
c ncgen -f converting to netcdf.cdl

c This will create a large source code to which select lines can

c be added to write out your data.

RR b b b b b S 2 2 S S S S S dh dh dh b b b b b b b b b b b b b b 2 2 S 4 2 2b S Sh Sh Sh Sh Sb ab b b b b b b b b b b b b b 2 2 2 2 S dh db db 2h Sb b b b Y
¢ To compile and link converting to netcdf.f, use:

c £77 -o converting to netcdf converting to netcdf.f -lnetcdf

ER R b b I b b S 2 2 S S S S S S b dh b b b b b b b b b b b b b 2 S S 2 dh S Ih Sh Sb dh Sh b b b b b b b b b S b b b S 2 2 S Sh dh db db dh Sh Sb b b Y

166 CHAPTER 10

c include file necessary for NetCDF

include ‘netcdf.inc’ ! may be found in $FER DIR/fmt/cmn

Kk ok k k sk ok ok ok ok ok ok k ok ok ok sk ok k sk ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok sk ok ok sk ok ok sk ok ok kK sk ok ok sk ok ke k ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

c parameters relevant to the data being read in
c THESE NORMALLY MATCH THE DIMENSIONS IN THE CDL FILE
c (except nt which may be “unlimited”)

integer imt, jmt, km, nt, lnew, inlun
parameter (imt=160, jmt=100, km=27, nt=5)

c imt is longitude, jmt latitude, km depth, and nt number of time steps
LR R R I I i b b b S b b b b b b b I I I I I e I b R b b b b i b b b b I I I b I I I I I I b b b b b b b b i ab b e
c variable declaration

real temp (imt, jmt,km),salt (imt,jmt, km), time step

integer cdfid, rcode
c ** cdfid = id number for the NetCDF file my data.cdf
¢} ** rcode = error id number

integer tid, sid, timeaxid

c ** tid = variable id number for temperature

c ** sid = variable id number for salt

c ** timeaxid = variable id for the time axis
integer itime

c ** itime = index for do loop

Ak hkhkhhhkhkhkhh bk hkhkhkhh bk hkhkhh bk hkhkhhhk ko ko hkhkhhkhkhkhhhkhkhkhkhhhkhkhkhkdhhk bk hkhkhhrhkhkhkhrrkhkhkhhxxkk*

c dimension corner and step for defining size of gridded data

integer corner (4)
integer step(4)

corner and step are used to define the size of the gridded data

to be written out. Since temp and salt are four dimensional arrays,
corner and step must be four dimensions as well. In each output

to my data.cdf within the do loop, the entire array of data (160 long.
pts, 100 lat. pts., 27 depth pts.) will be written for one time step.
Corner tells NetCDF where to start, and step indicates how many steps
in each dimension to take.

QOO0

data corner/1, 1, 1, -1/ ' -1 is arbitrary; the time value

of corner will be initialized
! within the do loop.

data step/imt, Jmt, km, 1/ ! NOT /1, km, jmt, imt/

NOTE Since Fortran and C access data differently, the order of

the variables in the Fortran code must be opposite that in the CDL

file. In Fortran, the first index varies fastest while in C, the

c last index varies fastest.

R IR S S b b b b b b b b b b b b b b S S 2 2 S 2 db S S Sh Sh Sh Sb b b b b b b b b b b b b b b 2 2h 2 S dh dE dh Sh dh b 2b b b b b b b b b b b b 2 3

c initialize cdfid by using ncopn

Qa0

cdfid = ncopn(‘converting to netcdf.cdf’, ncwrite, rcode)
if (rcode.ne.ncnoerr) stop ‘error with ncopn’

R i I I I S I I e b I I b A I S b dh b b S b S b b e I b b S b S e S I S b b I R S I S I S I b b b S I b b dh I b S b S b Sb I S b db b b e 4
c get variable id’s by using ncvid
c THE VARIABLE NAMES MUST MATCH THE CDL FILE (case sensitive)

tid = ncvid(cdfid, ‘temp’, rcode)

if (rcode.ne.ncnoerr) stop ‘error with tid’

sid = ncvid(cdfid, ‘salt’, rcode)

if (rcode.ne.ncnoerr) stop ‘error with sid’
timeaxid = ncvid(cdfid, ‘time’, rcode)

if (rcode.ne.ncnoerr) stop ‘error with timeaxid’

CONVERTING TO NETCDF

167

Rk i i I b b 2 S S S S S SR b dh I b Ih I b b b b b b b S S S S dh dh dh S Ih Ih b b b b b b b b b b b b b S e e S b d dh dh b Ib S b b 4

c this is a good place to open your input data file
! OPEN (FILE=my data.dat, STATUS='OLD’)

K ok & k k& ok sk ok k ok k ok ok k sk ok ok sk ok ok ok ok ok ok ok sk ok k sk ok ok sk ok ok ok ok sk ok k sk ok ok sk ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok k ok ok sk ok ok ok ok ok ok ok ok ok ok ok

c begin do loop. Each step will read in one time step of data
¢ and then write it out to my data.cdf.
do 10 itime = 1, nt

corner (4)
time step

itime ! initialize time step in corner
float (itime) ! or you may read this from your file

* insert your data reading routine here

! CALL READ MY DATA (temp,salt) ! you write this
write (6,*) ‘writing time step: ‘,itime, time step ! diagnostic output
call ncvpt(cdfid, tid,corner,step,temp(l,1,1),rcode) ! write data to
if (rcode.ne.ncnoerr) stop ‘error with t-put’
call ncvpt (cdfid,sid,corner,step,salt(l,1,1),rcode) ! my data.cdf with
if (rcode.ne.ncnoerr) stop ‘error with s-put’
call ncvptl (cdfid, timeaxid,itime, time step, rcode) ! ncvpt

if (rcode.ne.ncnoerr) stop ‘error with timax-put’

ncvptl writes a single data point to the specified location within
timeaxid. The itime argument in ncvptl specifies the location within
time to write.

float (itime) is used (rather than simply itime) so the type matches the
type of time declared in the CDL file.

QQ0aQQ

10 continue
L e b I I e b I b e I I i b e b I e I b I I e I e I b I I e b I b b b I b b b I b b b b b b b b I b b b b I b b b b b b b I i

c close my data.cdf using ncclos
call ncclos(cdfid, rcode)

if (rcode.ne.ncnoerr) stop ‘error with ncclos’
ER b b i b b b b b b b i b b b b b b b b b b b b b b i b i b b b b b

stop
end

3.5 Advanced NetCDF procedures

This section describes:

1. Setting up a CDL file capable of handling data on staggered grids.

2. Defining coordinate systems such that the data in the NetCDF file may be regarded as
hyperslabs of larger coordinate spaces.

3. Defining boundaries between unevenly spaced axis coordinates (used in numerical integra-
tions).

4. Setting up “modulo” axes such as climatological time and longitude.

5. Converting dates into numerical data appropriate for a NetCDF time axis.

The final section of this chapter contains the text of the CDL file for the example we use
throughout this section.

In this sample data set, we will consider wind, salt, and velocity calculated using a stag-
gered-grid, finite-difference technique. The wind data is limited to the surface layer of the

168 CHAPTER 10

ocean (i.e., normal to the depth axis). We will also consider the salt datato be limited to a nar-
row slab from 139E to 90W (1=10 to 140), 32.5N to 34.9N (J=80 to 82), and for all depth and
time values.

3.5.1 Staggered grid

Ferret permits each variable of a NetCDF file to be defined on distinct axes and grids. Stag-
gered grids are a straightforward application of this principle. Dimensions for each grid axis
must be defined, the axes themsel ves must be defined (in Variables), and the coordinate values
for each axis must be initialized (in Data). In the case of the example we use throughout this
and the next section, there aretwo grids—awind grid, and avelocity grid; slon, slat and sdepth
aredefined for thewind grid, and ulon, ulat, and wdepth for the vel ocity grid. Thevariablesare
then given dimensionsto placethemintheir proper grids(i.e., wind(time, sdepth, dat, slon)).

3.5.2 Hyperslabs

There are anumber of stepsrequired to set up aNetCDF data set that represents a hyperslab of
datafrom alarger grid definition (a parent grid).

1. Define adimension named “grid_definition.” This dimension should be set equal to 1.

2. Define parent gridsin Variables with the argument “grid_definition”.

char wind grid(grid definition) ;
char salt grid(grid definition) ;

3. Define the 4 axes of the parent grids using the “axes” attribute.

“slon slat normal time” ;
“slon slat sdepth time” ;

wind grid: axes
salt grid: axes

Theargumentsareawaysalist of four axisnames. Notethat the order of argumentsisopposite
that in the variable declaration. The argument “normal” indicates that wind_grid is normal to
the depth axis.

4. Define the variablesthat are hyperslabs of these grids with the proper dimensions.

float wind(time, slat, slon) ;
float salt(time, sdepth, slat80_ 82, slonlO_140) ;

where the dimension dat80_82 = 3 and slon10 140 = 131. Optionally, these axes may be de-
fined themselves with the attribute “child_axis’.

float slat80 82 (slat80 _82) ;
slat80 82: child axis =" "

CONVERTING TO NETCDF 169

These “child axes’ need not be initialized in data, nor do edges need to be defined for them;
Ferret will retrieve this information from the parent axis definitions. However, it is recom-
mended that they be initialized to accommodate other software that may not recognize parent
grids.

5. Usethe “parent_grid” variable attribute to point to the parent grid.

wind: parent grid = “wind grid”
salt: parent grid = “salt grid”

6. Also, asavariable attribute, define the index range of interest within the parent grid.

wind: slab min index
wind: slab max index

ls, 1s, 1s, 0s ;
160s, 100s, 1s, 0Os ;
10s, 80s, 1s, Os ;
140s, 82s, 27s, 0Os ;

salt: slab min index
salt: slab max index

The “s’ after each integer indicates a “short” 16-bit integer rather than the default “long”
32-bit integer. If an axisdimension is designated as “unlimited” then the index boundsfor this
axis must be designated as“0s”.

These attributes will effectively locate the wind and salt data within the parent grid.

3.5.3 Unevenly spaced coordinates

For coordinate axes with uneven spacing, the boundaries between each coordinate can be indi-
cated by pointing to an additional axisthat containsthelocations of the boundaries. The dimen-
sion of this“edge” axisis necessarily one larger than the coordinate axis concerned. If edges
are not explicitly defined for an unevenly spaced axis, the midpoint between coordinatesis as-
sumed by default.

1. Defineadimension onelarger than the coordinate axis. For the sdepth axis, with 27 coor-
dinates, define:

sdepth edges = 28 ;
2. Define an axis called sdepth_edges.

3. Initialize this axis with the desired boundaries (in Data).
4. Asan attribute of the main axis, point to edges list:

sdepth: edges = “sdepth edges” ;

3.5.4 Evenly spaced coordinates (long axes)

If the coordinate axes are evenly spaced, the attribute “ point spacing” should be used:

slat: point spacing = “even” ;

170 CHAPTER 10

When used, this attribute will improve memory use efficiency in Ferret. Thisisespecialy im-
portant for very large axes—10,000 points or more.

3.5.5 “Modulo” axes

The “modulo” axis attribute indicates that the axis wraps around, the first point immediately
following the last. The most common uses of modulo axes are:

1. longitude axes for globe-encircling data
2. time axes for climatological data

time: modulo = 7 ; // any arbitrary string is allowed

If the climatological data occursin the years 0000 or 0001 then the year will be omitted from
Ferret’s output format.

3.5.6 Reversed-coordinate axes

NetCDF axes may contain monotonically decreasing axis coordinates instead of
monotonically increasing coordinates. Ferret will hide this aspect of the file data ordering.

3.5.7 Converting time word data to numerical data

To set up atime axisfor datarepresented asdates (e.g., “1972 January 15 at 12:15”) it isneces-
sary to determine a numerical representation for each of the dates. Ferret can assist with this
process, as the following example shows.

Suppose the data are 6-hourly observations from 1-JAN-1991 at 12:00 to 15-MAR-1991 at
18:00. These commands will assist in creating the necessary time axis for a NetCDF file:

yes? DEFINE AXIS/T="1-JAN-1991:12:00":"15-MAR-1991:18:00":6/UNITS=hours\
my time

yes? DEFINE GRID/T=my time tgrid

yes? SET REGION/T="1-JAN-1991:12:00":"15-MAR-1991:18:00"

yes? LIST T[g=tgrid] 'to see the time values

yes? SAVE/FILE=my time.cdf T[g=tgrid]

Thefilemy_time.cdf now containsamodel of exactly the desired time axis. Usethe Unix com-
mand

% ncdump my time.cdf > my time.cdl

to obtain the time axis definition as text that can be inserted into your CDL file.

CONVERTING TO NETCDF 171

3.6 Example CDL file

Thefollowingisan example CDL file utilizing many of the features described in the preceding
section.

netcdf converting to netcdf supplement {

// CONVERTING DATA TO THE “NETWORK COMMON DATA FORM” (NetCDF) :
// A SUPPLEMENT
//

// NOAA PMEL Thermal Modeling and Analysis Project (TMAP)
// Dan Trueman, Steve Hankin
// last revised: 1 Dec 1993: slat80 82 and slonlO 140 coordinates included

// I. INTRODUCTION

// This supplement to “Converting Data to the Network Common Data Form:
// an Introduction” describes:

//

// 1. How to set up a cdl file capable of handling data
// on staggered grids.

// 2. How to define coordinate systems such that the data
// in the NetCDF file may be regarded as hyperslabs of
// larger coordinate spaces.

// 3. How to define variables of 1, 2, or 3 dimensions.
// 4. How to define boundaries between unevenly spaced axis
// coordinates (used in numerical integrations).

// 5. How to set up climatological “modulo” time axes.

// 6. How to convert time word data into numerical data
// appropriate for NetCDF.

//

// In this sample data set, we will consider wind, salt, and

// velocity calculated using a staggered-grid, finite-difference
// technique. The wind data is naturally limited to the surface

// layer of the ocean (i.e. normal to the depth axis). We will
// also consider the salt data to be limited to a narrow slab from
// 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for
// all depth and time values.

// II. STAGGERED GRIDS

// Dealing with staggered grids is fairly straightforward. Dimensions

// for each grid axis must be defined, the axes themselves must be

// defined (in Variables), and the coordinate values for each axis must
// be initialized (in Data). In this case, there are two grids, a

// wind grid, and a velocity grid, so tlon, tlat and tdepth are

// defined for the wind grid, and ulon, ulat, and udepth for the velocity
// grid. The variables are then given arguments to place them in their
// proper grids (i.e. wind(time, sdepth, slat, slon)).

// III. HYPERSLABS

// There are a number of steps required to set up a NetCDF data set that
// represents a hyperslab of data from a larger grid definition.

//

// 1. Define a dimension named “grid definition”. This dimension
// should be set equal to 1.

// 2. Define parent grids in Variables with the argument

// “grid definition”.

// -

// char wind grid(grid definition) ;

// char salt grid(grid definition) ;

//

// 3. Define the 4 axes of the parent grids using the “axes” attribute.
//

// wind grid: axes = “slon slat normal time”

// salt grid: axes = “slon slat sdepth time”

//

// Note that the order of arguments is opposite that in the

// variable declaration. The argument “normal” indicates that

172 CHAPTER 10

wind grid is normal to the depth axis.

4. Define the variables which are hyperslabs of these grids with
the proper dimensions.

float wind(time, slat, slon) ;
float salt(time, sdepth, slat80 82, slonlO 140) ;

where slat80 82 = 3 and slonl0 140 = 131. The axis names are
arbitrary - chosen for readability. These axes (child axes)
must be defined with the attribute “child axis” as follows:

float slat80 82 (slat80 82) ;
slat80 82: child axis =™ " ;

These “child axes” need not be initialized in Data, nor do their

edges need be defined; Ferret retrieves this information from
the parent axes.

5. Use the “parent grid” variable attribute to point to the
parent grid.

wind: parent grid = “wind grid”

6. Also as a variable attribute, define the index range of interest
within the parent grid.

wind: slab min index = 1ls, 1s, 1ls, 0Os ;
wind: slab max index = 160s, 100s, 1s, Os ;
salt: slab min index = 10s, 80s, 1s, Os ;

salt: slab max index = 140s, 82s, 27s, Os ;

The “s” after each integer indicates a “short” 16-bit integer
rather than the default “long” 32-bit integer. If an axis
dimension is designated as “unlimited” then the index bounds
for this axis must be designated as “0s”.

These commands will effectively locate the wind and salt data within
the full grid.

IV. VARIABLES OF 1, 2, or 3 DIMENSIONS

One, two, or three dimensional variables may be set up in one of

two ways - either using the parent grid and child axis attributes

as illustrated in the 3-dimensional variable “wind” from the hyperslab
example, above, or by selecting axis names and units that provide
Ferret with adequate hints to map this variable onto 4-dimensional

space and time. The following hints are recognized by Ferret:
Units of days, hours, minutes, etc. or an axis name of “TIME”, “DATE”
implies a time axis.
Units of “degrees xxxx” where “xxxx” contains “lat” or “lon” implies
a latitude or longitude axis, respectively.
Units of “degrees” together with an axis name containing “LAT” or
“Y” implies a latitude axis else longitude is assumed.
Units of millibars, “layer” or “level” or an axis name containing
“Z” or “ELEV” implies a vertical axis.
V. UNEVENLY SPACED COORDINATE BOUNDARIES

For coordinate axes with uneven spacing, the boundaries between each
coordinate can be indicated by pointing to an additional axis that
contains the locations of the boundaries. The dimension of this “edge”
axis will necessarily be one larger than the coordinate axis concerned.
If edges are not defined for an unevenly spaced axis, the midpoint
between coordinates will be assumed by default.

1. Define a dimension one larger than the coordinate axis. For
the sdepth axis, with 27 coordinates, define:

CONVERTING TO NETCDF 173

// sdepth edges = 28 ;

//

// 2. Define an axis called sdepth edges.

// 3. Initialize this axis appropriately (in Data).

// 4. As a sdepth axis attribute, point to sdepth edges:
//

// sdepth: edges = “sdepth edges”

//

// If the coordinate axes are evenly spaced, the attribute “point spacing”
// should be used:

//

// slat: point spacing = “even” ;

//

// When used, this attribute will improve memory use efficiency in Ferret.
//

// VI. CLIMATOLOGICAL “MODULO” AXES

//

// The “modulo” axis attribute indicates that the axis wraps around,

// the first point immediately following the last. The most common

// uses of modulo axes are:

//

// 1. As longitude axes for globe-encircling data.

// 2. As time axes for climatological data.

//

// time: modulo = ” ; // any arbitrary string is allowed
//

// If the climatological data occurs in the years 0000 or 0001 then Ferret
// will omit the year from the output formatting.

// VII. CONVERTING TIME WORD DATA TO NUMERICAL DATA
// If the time data being converted to NetCDF format exists in string format

// (i.e. 1972 - JANUARY 15 2:15:00), rather than numerical format (i.e. 55123
// seconds) a number of TMAP routines are available to aid in the conversion

// process. The steps required for conversion are as follows:

//

// 1. Break the time string into its 6 pieces. If the data is of the

// form dd-mmm-yyyy:hh:mm:dd, the TMAP routine “tm break date.f” can
// be used.

// 2. Choose a time origin before the beginning of the time data to

// assure that all time values are positive. 1.e. if the data begins
// at 15-JAN-1982:05:30:00, choose a time origin of

// 15-JAN-1981:00:00:00. This time origin should then be an attribute
// of the time axis variable in the CDL file.

// 3. Produce numerical time data by using “tm sec from bc.f”, which

// calculates the number of seconds between 01-01-0000:00:00:00 and
// the date specified. Continuing the example from (2), the time value
// for the first time step with respect to the time origin could be
// calculated as follows:

//

// time (1) = tm sec from bc(1982, 1, 15, 5, 30, 0) -

// tm sec from bc(1981, 1, 15, 0, 0, 0)

//

// or more generally

//

// time (n)=tm sec from bc(nyear,nmonth,nday,nhour, nminute,nsecond) -
// tm-sec from bc (oyear, omonth, oday, ohour,ominute, osecond)

//

// where nyear is the year for the nth time step and oyear is the year
// of time origin.

//

// VII. EXAMPLE CDL FILE dimensions:
// staggered grid dimension definitions:

slon = 160 ; // wind/salt longitude dimension
ulon = 160 ; // velocity longitude dimension
slat = 100 ; // wind/salt latitude dimension
ulat = 100 ; // velocity latitude dimension
sdepth = 27 ; // salt depth dimension

wdepth = 27 ; // velocity depth dimension

174 CHAPTER 10

slonl0O 140 = 131 ;
slat80 82 = 3 ;

// for salt hyperslab
// for salt hyperslab

time = unlimited ;
// grid definition is the dimension name to be used for all grid definitions
grid definition =1 ;
// edge dimension definitions:
sdepth edges = 28 ;
wdepth edges = 28
variables:
// variable definitions:
float wind(time, slat, slon) ; // 3-dimensional variable
wind: parent grid = “wind grid”
wind: slab min index = 1s, 1ls, 1ls, 0s ;
wind: slab max index = 160s, 100s, 1s, Os ;
wind: long name = “WIND” ;
wind: units = “deg. C”" ;
wind: FillValue = 1E34f ;
float salt(time, sdepth, slat80 82, slonlO 140) ; // 4-dim.
Variable
salt: parent grid = “salt grid” ;
salt: slab min index = 10s, 80s, 1ls, 0s ;
salt: slab max index = 140s, 82s, 27s, Os ;
salt: long name = “ (SALINITY (ppt) - 35) /1000" ;
salt: units = "frac. by wt. less .035" ;
salt: Fillvalue = -999.f ;
float u(time, sdepth, ulat, ulon) ;
u: long name = “ZONAL VELOCITY” ;
u: units = “cm/sec” ;
u: FillvValue = 1E34f ;
float v(time, sdepth, ulat, ulon) ;
AN long_name = “MERIDIONAL VELOCITY” ;
v: units = “cm/sec” ;
v: FillvValue = 1E34f ;

float

w(time, wdepth, slat, slon) ;

w: long name = “VERTICAL VELOCITY” ;
w: units = “cm/sec” ;
w: FillValue = 1E34f ;
// axis definitions:
float slon(slon) ;
slon: units = “degrees” ;
slon: point spacing = “even”
float ulon(ulon) ;
ulon: units = “degrees” ;
ulon: point spacing = “even” ;
float slat(slat) ;
slat: units = “degrees” ;
slat: point spacing = “even”
float ulat (ulat) ;
ulat: units = “degrees” ;
ulat: point spacing = “even” ;
float sdepth(sdepth) ;
sdepth: units = “meters” ;
sdepth: positive = “down”
sdepth: edges = “sdepth edges” ;
float wdepth (wdepth) ;
wdepth: units = “meters” ;
wdepth: positive = “down”
wdepth: edges = “wdepth edges” ;
float time(time) ;
time: modulo = “ ”

time: time origin =

“15-JAN-1981:00:00:00"

CONVERTING TO NETCDF

175

//

time: units " seconds"

child grid definitions:

float slonl0 140 (slonl0 140) ;

_slon1071407 child axis =" " ;

slonl0 140: units = “degrees” ;

float slat80 82 (slat80 82) ;

//

T slat80 82: child axis =" " ;
slat80 82: units “degrees” ;

edge axis definitions:

float sdepth edges(sdepth edges) ;
float wdepth edges(wdepth edges) ;

!/

parent grid definition:

char wind grid(grid definition) ;

wind grid: axes = “slon slat normal time”

char salt grid(grid definition) ;

salt grid: axes “slon slat sdepth time”

// global attributes:
:title = “NetCDF Title” ;
data:
// // ignore this block //

//This next data entry, for time, should be ignored. Time is initialized here
// only so that Ferret can read test.cdf (the file created by this cdl file)
// with no additional data inserted into it.

Time=1000;

// // end of ignored block //

slat=

-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.1513576508,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.9874248505,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.1693935394,

-9.

37.

ul

.1666818559,0.
.8333489895, 2.
.5000162125, 3.
.1666831970,5.
.8333497047, 7.
.5000181198, 8.
.1679363251,10.
.3833675385,13.
.0497493744,18.

8333206177,-9
.1666526794,-7

.4999852180, -6.

.8333187103, -4

.1666517258,-2.

.4999852180, -1

.4404067993,27

at=

5000152588,0.8333486915,1.
1666824818,2.5000159740, 2.
8333497047,4.1666831970,4.
5000162125,5.8333497047,6.
1666827202,7.5000166893, 7.
8333511353,9.1666851044, 9.

4061241150, 40.

.4999876022,-9.
.8333187103,-7.
1666517258, -5.
.4999852180,-4.
8333184719,-2.
.1666518450,-0.

1666536331,-8
4999847412,-17
8333182335,-5
1666517258,-3

.8333196640,-8.
.1666512489,-6.
.4999852180,-5.
.8333187103,-3.
4999852180,-2.1666519642,-1.8333185911,
8333183527,-0.4999849498,-0.1666515470,
1666821241,1.5000154972,
8333494663,3.166682958¢6,
5000162125,4.8333497047,
1666827202,6.5000162125,
8333501816,8.1666841507,
5000190735,9.8333530426,
5137376785,10.8892869949,11.3138961792,11.8060989380,
0618314743,13.8560228348,14.7786512375,15.8403968811,
4128704071,19.9334945679,21.6128730774,23.4497566223,
.5786647797,29.8560409546,32.2618522644,34.7833900452,
1139259338,42.8893203735,45.7137718201,48.5679702759;

4999856949,
8333182335,
1666517258,
4999852180,

-27.6721439362,-25.3877544403,-23.1883945465,-21.1119174957,-19.1907978058,
-17.4507274628,-15.9094810486,-14.5761461258,-13.4507236481,-12.5241250992,
-11.7785758972,-11.1883859634,-10.7210769653,-10.3387994766,-9.9999876022,

.6666545868,-9.
.9999856949,-7.
.3333182335,-5.
.6666517258,-4.

.9999852180,-2

3333184719,-0.

3333206177,-8.9999866486,-8.6666526794,-8.3333196640,
6666517258,-7.3333182335,-6.9999847412,-6.6666512489,
9999847412,-5.6666517258,-5.3333182335,-4.9999847412,
3333182335,-3.9999849796,-3.6666517258,-3.3333184719,
.6666519642,-2.3333184719,-1.9999853373,-1.6666518450,
9999850392,-0.6666516662,-0.3333182633,0.0000151545,

.3
.0000154972, 2.
.6666829586,4.
.3333492279, 5.
.0000157356, 7.

333485723,0.

176 CHAPTER 10

6666819453,1.0000153780,1.3333487511,1.6666821241,
3333489895,2.6666827202,3.0000162125,3.3333497047,
0000162125,4.3333497047,4.6666827202,5.0000162125,
6666827202,6.0000162125,6.3333492279,6.6666827202,
3333497047,7.6666831970,8.0000171661,8.3333511353,

8.6666841507,9.0000181198,9.3333520889,9.6666860580,10.0000190735,
10.3358526230,10.6916217804,11.0869522095,11.5408391953,12.0713586807,
12.6953773499,13.4282865524,14.2837600708,15.2735414505,16.4072513580,
17.6922454834,19.1334934235,20.7334957123,22.4922523499,24.4072608948,
26.4735546112,28.6837768555,31.0283031464,33.4953994751,36.0713844299,
38.7408676147,41.4869842529,44.2916526794,47.1358833313,50.0000534058;
slon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.
142.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.
154.5,155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.
166.5,167.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.
178.5,179.5,180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.
190.5,191.5,192.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.
202.5,203.5,204.5,205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.
214.5,215.5,216.5,217.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.
226.5,227.5,228.5,229.5,230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.
238.5,239.5,240.5,241.5,242.5,243.5,244.5,245.5,246.5,247.5,248.5,249.
250.5,251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,260.5,261.
262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,273.
274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.
286.5,287.5,288.5,289.5;

ulon=
131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.
143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.
155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.
167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.
179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.
191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.
203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.
215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.
227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.
239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.
251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.
263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.
275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.
287.0,288.0,289.0,290.0;

sdepth=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362. 5 483.5, 680 0,979.5, 1395 5,1916.0,2524.0,3174. O
3824.0;

sdepth edges=
0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,
145.0,165.0,190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,
2849.0,3499.0,4149.0;

wdepth=
10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,145.0,165.0,
190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,2849.0,3499.0,
4149.0;

wdepth edges=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,94.375,105.625,119.375,135.625,
153.75,176.25,202.5,235.75,280.0,347.5,460.75,651.25,950.0,1372.75,1895.0,
2524.0,3174.0,3986.5,4311.0;

[RGO EOROEGO NGO NEGO RO NO NG NE NG NE))
S N SN S S S S S S S~~~

clolololololololoNoNoNeNe]
N N SN SN SN S SN S SN S S~ S~ 0~

slonl0 140=
"139.5, 140.5, 141.5, 142.5, 143.5, 144.5, 145.5, 146.5, 147.5,
148.5, 149.5, 150.5, 151.5, 152.5, 153.5, 154.5, 155.5, 156.5, 157.5,
158.5, 159.5, 160.5, 161.5, 162.5, 163.5, 164.5, 165.5, 1l66.5, 167.5,
168.5, 169.5, 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5,
178.5, 179.5, 180.5, 181.5, 182.5, 183.5, 184.5, 185.5, 186.5, 187.5,
188.5, 189.5, 190.5, 191.5, 192.5, 193.5, 194.5, 195.5, 196.5, 197.5,
198.5, 199.5, 200.5, 201.5, 202.5, 203.5, 204.5, 205.5, 206.5, 207.5,
208.5, 209.5, 210.5, 211.5, 212.5, 213.5, 214.5, 215.5, 216.5, 217.5,
218.5, 219.5, 220.5, 221.5, 222.5, 223.5, 224.5, 225.5, 226.5, 227.5,
228.5, 229.5, 230.5, 231.5, 232.5, 233.5, 234.5, 235.5, 236.5, 237.5,
238.5, 239.5, 240.5, 241.5, 242.5, 243.5, 244.5, 245.5, 246.5, 247.5,
248.5, 249.5, 250.5, 251.5, 252.5, 253.5, 254.5, 255.5, 256.5, 257.5,
258.5, 259.5, 260.5, 261.5, 262.5, 263.5, 264.5, 265.5, 266.5, 267.5,
268.5, 269.5 ;

slat80 82=
11.8060989379883, 12.3833675384522, 13.0618314743042 ;

CONVERTING TO NETCDF 177

4 CREATING A MULTI-FILE NETCDF DATA SET

Ferret supportscollections of NetCDF filesthat areregarded asasingle NetCDF dataset. Such
data sets are referred to as “MC” (multi CDF) data sets. A descriptor file, in the style of
TMAP-formatted data sets. These are FORTRAN NAMELIST-formatted files. Slight varia-
tions in syntax exist between systems. The requirements for an MC data set are described in
Chapter 2, Section 2.1 “Multi-file NetCDF data sets”.

A typical MC descriptor file is given below. This file ties into a single data set the 23 files
named mtaa063-nc.001 through mtaa063-nc.024. The time steps are encoded in the descriptor
filethroughthe S START and S_END values. Ferret performs sanity checking on the data set
by comparing these time coordinates with those found in the datafiles as the data are read.

Ak hhkhkhkhhhkhhkhkhhr bk hkhkhh bk hkhkhhhk bk ok hkhhhk bk hkhhkhk ko hkhkhkhh bk hkhkhhhk bk hkhkhhrhkhkhkhhkhkhkhkhkhkrhkhkhkhrxkk*

* NOAA/PMEL Tropical Modeling and Analysis Program, Seattle, WA. *
* created by MAKE DESCRIPT rev. 4.01 *

kA kA Ak hkhh kA hk kA hhhhkhkhhhhk Ak Ak h Ak Ak kA h bk Ak hhkhk Ak hkhkhhhkhkhkhhhkhkhkhhkh vk hkhhkhkhkhkhhkhkrhhhkhrxkk*k

SFORMAT RECORD

D TYPE = ' MC’,
D FORMAT = ' 1A',
D SOURCE CLASS = ‘MODEL OUTPUT',
SEND N
$BACKGROUND RECORD
D EXPNUM = '0063’,
D_MODNUM = ' AA’,
D TITLE = ‘MOM model output forced by Sadler winds’,
D TOTIME = ‘14-JAN-1980 14:00:00",
D TIME UNIT = 3600.0,
D TIME MODULO = .FALSE.,
D ADD PARM = 15%7 v,
$SEND
SMESSAGE RECORD
D MESSAGE = ',
D ALERT ON OPEN = F,
D ALERT ON OUTPUT = F,
SEND -

R b b b b b 2 S S S S S S SR Ih Ih A Ih b b b b b b b b b S b S S S S S S dE dh S dh b dh b 4

SEXTRA RECORD
SEND

$SSTEPFILE RECORD

s filename ‘mtaa063-nc.001",

S AUX SET NUM = 0,

S START = 17592.0,
S END = 34309.0,
S DELTA = 73.0,

S NUM OF FILES = 23,

-
~

S _REGVARFLAG
$END
KAk khhkhkhkhkdAh kA Ak A hhkhkhhkhkkdkhkhhkhkkhkhkhkhhkkhkdhkhkhkhkdhhkhkhkhkkdkhhkk**k
$STEPFILE RECORD

s _filename = “**END OF STEPFILES**'

SEND

Ak hkhkhkhhkhkhhkhrhhkhkhhhkhkhkhhhkhdhkhkh ok hkhhkhhkhkhhkhrhxkhkkhrxkkx*k

178 CHAPTER 10

Chapter 11: EXTERNAL FUNCTIONS

1 OVERVIEW

External functionsare user-written Fortran routineswhich are used on the Ferret command line
just asinternal Ferret functions (e.g. SIN, COS) are used. For example, you might create arou-
tine to compute the amplitudes of the Fourier transform of atime series (the periodogram) and
name your function “FFT_AMP". In Ferret you would use it like this:

LET my fft = FFT AMP(my time series)

Oncethe variable my_fft is defined, it can be used in other expressions, plotted, etc. External
functions can be used in every way that Ferret internal functions are used and are distinguished
only by their appearance after internal functions when the user issues a SHOW FUNC com-
mand.

A Ferret external function uses input arguments defined in a Ferret session and computesare-
sult with user-supplied Fortran code. The external function specifies how the grid for the result
will be generated. The axes can be inherited from the input arguments or specified in the exter-
nal function code.

Utility functions, linked in when the external function is compiled, obtain information from
Ferret about variables and grids. The utility functions are described in section 6 (p. 190).

Ferret external functions are compiled individually to create shared object (.so) fileswhich are
dynamically linked with Ferret at run time. Ferret looksfor shared object filesin the directories
specified in the FER_EXTERNAL_FUNCTIONS environment variable.

2 GETTING STARTED

Ferret Version 5.0 and later contains everything you need to run the external functions which
are included with the distribution. The environment variable
FER_EXTERNAL_FUNCTIONSIsdefined, listing the directory wherethe shared object files
reside. To see alist of theincluded external functions and their arguments, type

> ferret

yes? SHOW FUNC/EXTERNAL
Externally defined functions available to Ferret:
ADD 9(A,B,C,D,E,F,G,H,I)
" (demonstration function) adds 9 arguments
AVET (A)
(demonstration function) returns the time average
A: data to be time averaged

EXTERNAL FUNCTIONS 179

2.1

3.1

Several of the demo scripts such as ef_fft_demo.jnl and ef _sort_demo.jnl show the use of of
the included external functions.

Getting example/development code

To writeyour own external functions, you will need to get source code and set up adirectory in
which to work. All of the source code you need to get started (Makefiles, utility functions,
common files, simple examples) can be obtained from the Ferret Home Page
(http://ferret.wrc.noaa.gov/Ferret/). Go to the External Functions subdirectory and follow the
instructions there.

You will need to download at least e utility.tar.z and examples.tar.z tO get started.
When you untar these files you will find that the e+ uti1ity/ directory contains object files
andthe rerret cnn subdirectory. Theer utility/ directory must bein place beforeyou can
compileany of the other external function code. Theexanp1es/ directory contains source code
and amvzkefile. If you download any of the other external function directories, you will find
source code and makeriles for specific types of external functions (e.g., sorting, regridding,
etc.).3

QUICK START EXAMPLE

It's always easier to start coding from an example. Any of the external functions we provide
should be documented well enough to serve as a starting point for writing a new function. In
this section, wetake the most trivial examplefunction, pass_thru, and alter it to do something a
little more interesting, if no more useful.

The ti mes2bad20 function

WE'Il use the pass_thru(...) function as a template, modifying it into a times2bad20(...) func-
tion. Thisnew function will multiply all valuesby 2.0 and will replace missing valueflagswith
the value 20.0.

Inside any of the example functions, the areas that you need to (are allowed to) modify are set
off with

ChFxrhFrhdhhrhhrhhkr kb hkhrhhrhhhh b bk bk rhkhhdhhkrhhrhdrhdhhrhdrhdrhrhkxhkxkhx

c* USER CONFIGURABLE PORTION |
c* |
c* v

—>Insert your code here<—
c* A
c* |
c* USER CONFIGURABLE PORTION |

C***

180 CHAPTER 11

../../../Demos/ef_fft_demo/ef_fft_demo.html
../../../Demos/ef_sort_demo/ef_sort_demo.html
http://ferret.wrc.noaa.gov/Ferret/
http://ferret.wrc.noaa.gov/Ferret/External_Functions/

Here's what you need to do to create the new function:

moveto the examp1es/ directory

COpY pass thru.F {0 times2bad20.F

use your favorite editor to change each “pass_thru” to “times2bad20"

godown intothe®times2bad20 _init” section and change the description of thefunction
go to the “times2bad20_compute” subroutine and change the code to look like this

arwdE

c* result(i,Jj,k,1) = bad flag result
result(i,j,k,1) = 20
ELSE
c* result(i,j, k,1) = argl(i,j, k,1)
result(i,j,k,1) = 2 * argl(i,j, k,1)

Assuming you have downloaded all of theer uti1ity/ directory development code and you
arestill inthe examp1es/ directory, you should be able to:

> make times2bad20.so
> setenv FERfEXTERNALiFUNCTIONS .
> ferret

yes? use coads_climatology
yes? let a = times2bad20 (sst)
yes? shade a[l=1]

TIME & T6i—l4h RELO DwTh SET: coade_climatelegy
COADS Manthly Climotelegy (19461980}

LATITUDE

B 5 B % & &5 & & &8 &

LCHETURE
TIMES2BAD14 (S5T)

Congratulations! You have just written your first external function.

EXTERNAL FUNCTIONS 181

4 ANATOMY OF AN EXTERNAL FUNCTION

Every Ferret external function contains an ~ init subroutine which describes the external
function’s arguments and result grid and a ~ compute subroutine which actually performsthe
calculation. Three other optional subroutines are available for requesting memory allocation;
creating axislimitsfor theresult variable which are extended with respect to the defined region
(useful for derivative calculations, etc.); and creating custom axes for the result.

For the following discussion we will assume that our external function is called efname (with
source codein afile named efname.F). Examplesare al so taken from the external functions e x-
amples/ directory which you installed when you downl oaded the external functionscode. This
sectionwill briefly describethework doneby the~ init and~ compute subroutines. Theindi-
vidual utility functions called by these subroutines are described in the section on Utility Func-
tions below.

4.1 The ~_i ni t subroutine (required)

subroutine efnane_init (id)

This subroutine specifies basic information about the external function. This information is
used when Ferret parsesthe command line and checksthe number of arguments; when it gener-
ates the output of SHOW FUNCTION/EXTERNAL; and in determining the result grid.

Thefollowing codefrom exampies/subtract . = showsatypical exampleof an~ init subrou-
tine. For an example with more arguments please 0ok at cxamples/add 9. F. FoOr an example
where a result axis is reduced with respect to the equivalent input axis take alook at exam-
ples/percent good t.F.

SUBROUTINE subtract init (id)
INCLUDE ‘ferret cmn/EF Util.cmn’
INTEGER id, arg

CALL ef version test (ef version)

RAR IR b b b b b b b b b b S I 2 S S S S S SR dh Sh Sh b b b b b b b b b b b b S S 2 2 S S IE dh Sh Sh b b b b b b b b b b b b b 4

*
* USER CONFIGURABLE PORTION |
*
*

|
\Y

CALL ef set desc(id,’ (demonstration function) returns: A - B’)

CALL ef set num args(id, 2)

CALL ef set axis inheritance(id, IMPLIED BY ARGS,

. IMPLIED BY ARGS, IMPLIED BY ARGS, IMPLIED BY ARGS)
CALL ef set piecemeal ok(id, NO, NO, NO, NO)

arg = 1

CALL ef set arg name(id, arg, ‘A’)
CALL ef set axis influence(id, arg, YES, YES, YES, YES)

182 CHAPTER 11

arg = 2
CALL ef set arg name(id, arg, ‘B’)
CALL ef set axis influence(id, arg, YES, YES, YES, YES)

A

USER CONFIGURABLE PORTION |

*

* |
*

Kk o kkkk Ak h kA hkhhhhhkhkhhh bk hkhhhrhkhkhkhhhk bk hkhkhhkhhkhkhhrhkhkhhhhkhkhhkhrrhkhkhrrhkkhkhhkhkrkkhkhxx

RETURN
END

4.2 The ~_conput e subroutine (required)

subrouti ne ef nane_conpute (id, arg_1, arg_2, ..., result, wkr_1,
wk 2, ...)

This subroutine does the actual calculation. Arguments to the external function and any re-
guested working storage arrays are passed in. Dimension information for the subroutine argu-
ments is obtained from Ferret common blocks in ferret cmn/EF mem subsc.cmn. The
memllox:menlhix, €fC. valuesare determined by Ferret and correspond to the region requested
for the calculation.@Body Text = Inthe ~ compute subroutine you may call other subroutines
which are not part of the efname_compute.F source file.

SUBROUTINE subtract compute (id, arg 1, arg 2, result)

INCLUDE ‘ferret cmn/EF Util.cmn’
INCLUDE ‘ferret cmn/EF mem subsc.cmn’

INTEGER id

REAL bad flag(EF MAX ARGS), bad flag result

REAL arg 1 (memllox:memlhix, memlloy:memlhivy,

. memlloz:memlhiz, memllot:memlhit)

REAL arg 2 (mem2lox:mem2hix, mem2loy:mem2hiy,

. mem2loz:mem2hiz, mem2lot:mem2hit)

REAL result (memreslox:memreshix, memresloy:memreshiy,
memresloz:memreshiz, memreslot:memreshit)

* After initialization, the ‘res ' arrays contain indexing information
* for the result axes. The ‘arg ' arrays will contain the indexing
* information for each variable’s axes.

INTEGER res lo ss(4), res hi ss(4), res incr(4)
INTEGER arg lo ss (4,EF MAX ARGS), arg hi ss(4,EF MAX ARGS),
arg_incr (4,EF MAX ARGS)

BRI b b b b b b b b b S S e e S S S S SR A S Ih b b b b b b b b b b S e S 2 S S I dh SR b Ib b b b b b b b b b b b b 4

USER CONFIGURABLE PORTION |

|
\Y

* % ok of

INTEGER 1i,7,k,1
INTEGER i1, 31, k1, 11
INTEGER 12, j2, k2, 12

CALL ef get res subscripts(id, res lo ss, res hi ss, res incr)

CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)
CALL ef get bad flags(id, bad flag, bad flag result)

EXTERNAL FUNCTIONS 183

4.3

* A
* |
* USER CONFIGURABLE PORTION |
*

R I I S I R I I I I I e I I b S I S I R I b I b S I S b b b I I S I S e b I R I I S S I b b b S Ih S b Ib b b b b 2b b 4

RETURN
END

Please see the “Loop Indices’ section for the example calculation.4.3

The ~_wor k_si ze subroutine (optional)

Thisroutine allows the external function author to request that Ferret allocate memory (work-
ing storage) for use by the external function. The memory allocated is passed to the external
function when the ~compute subroutine is called. The working storage is deallocated after the
~compute Subroutine returns.

When working storage is to be requested, acall t0 e set num work arrays must bein the
~init subroutine:

SUBROUTINE efname init (id)

CALL ef set num work arrays (id,1)

At thetimethe ~work size subroutineis called by Ferret, any of the utility functions that re-
trieve information from Ferret may be used in the determination of the appropriate working
storage size.

Hereisan example of a ~work size subroutine:

SUBROUTINE my work size (id)

INCLUDE ‘ferret cmn/EF Util.cmn’
INCLUDE ‘ferret cmn/EF mem subsc.cmn’
INTEGER id a a a

* dAhhkkhhhkhkhkkhhkhkkhhkkhhkhkkhhkkhkhkhhkhkkhhhkhhkhhkhkhhkhhkhhhkhkhdhhhkdhhhkhkhrkhhkhkkhkhrkhkhkhkhkhkkhkhhhkhkhhkkhxkx
* USER CONFIGURABLE PORTION |
* |
* \
*
* ef set work array lens(id, array #, X len, Y len, Z len, T len)
*

INTEGER nx, ny, id

INTEGER arg lo ss(4,1:EF MAX ARGS), arg hi ss(4,1:EF MAX ARGS),

arg_incr (4, 1:EF _MAX ARGS)

CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)

NX = 1 + (arg hi ss(X AXIS,ARGl) - arg lo ss(X AXIS,ARGl))

NY = 1 + (arg _hi ss(Y AXIS,ARGl) - arg lo ss(Y AXIS,ARGl))

CALL ef set work array lens(id,1,NX,NY,1,1)
* A
* |
* USER CONFIGURABLE PORTION |
L 2 b 2 S 2 S S S S S dh dh b b b b b b b b b b b b b b b S 2 2h S dh S Sh 2h Sb Sh Sb Ib b b b b b b b b b b b b b 2 2 S dh db db dh dh Sh S Y

RETURN

184 CHAPTER 11

In the argument list of the ~compute subroutine, the work array(s) come after the result vari-
able:

SUBOUTINE efname compute (arg 1, result, workspace)

44 The~_result_limts subroutine (optional)

The result limits routine sets the limits on 2sstracT and custom axes created by the external
function.

Anexample ~result 1imits routine might look likethis:

SUBROUTINE my result limits (id)
INCLUDE ‘ferret cmn/EF Util.cmn’
INTEGER id, arg, NF

* ko hkhkhkhkhkkhkhkhkkhhhhk kA h bk bk drr bk bk h bbbk hkhkhkhkkhkhhhkhkhhkhkhkhArhkhkrrhkhkhkhhkhkhhhkhkhkhkhkkhkkkkkkx*xx
* USER CONFIGURABLE PORTION |
* |
* v
*

INTEGER arg lo ss(4,EF MAX ARGS), arg hi ss(4,EF MAX ARGS),

. arg_incr (4,EF MAX ARGS)

INTEGER lo, hi

CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)

arg = 1

lo =1

hi = (arg _hi ss(T_AXIS,arg) - arg lo ss(T_AXIS,arg) + 1)/ 2

call ef set axis limits(id, T AXIS, lo, hi)
* A
* |
* USER CONFIGURABLE PORTION |
* khkhkk ok hkhkkhhkhkkhhkkhhkhkkhhkhhkhhhkhhhkhhhhhkkhhhhkhkkhhkhhhhhkhhrhkhhkhhkhkkhkhrhhkhkhhkhhohhkhkhrhhxkx

RETURN

END

4.5 The ~_cust om axes subroutine (optional)

The ~custom axes subroutine allows the external function author to create new axes that will
be attached the theresult of the ~ compute subroutine. An example of such afunction might take
time series data with atime axis and create, as aresult, a Fourier transform with a frequency
axis.

Thedifficulty withthe ~custom axes subroutineisthat not all the Ferret internal informationis
available to the external function at the time Ferret calls this routine.5

EXTERNAL FUNCTIONS 185

5

5.1

186

NOTES AND SUGGESTIONS

Inheriting axes

When creating an external function, you can get Ferret to do alot of conformability checking
for you if you “inherit axes’ properly. This means that Ferret can be responsible for making
sure that the arguments you pass to the function are of the proper dimensionality to be com-
bined together in basic operations such as addition, multiplication etc. For any given axis ori-
entation, X, Y, Z, or, T, two arguments are said to be conformable on that axisif 1) they are
either of the samelength, or 2) at |east one of theargumentshasasizeof 1 ontheaxis. (Theter-
minology “size of 1" may equivaently be thought of asasize of 0. In other words, the datais
normal to this axis.) When Ferret encounters a problem it will send an error message rather
than passing the data to your external function which might result in a crash.

To get Ferret to do this kind of checking you should inherit axes from as many appropriate ar-
guments as possible. For instance, in subtract.F we have the following sections of code:

subtract init(...)

CALL ef set axis inheritance(id, IMPLIED BY ARGS,
IMPLIED BY ARGS, IMPLIED BY ARGS, IMPLIED BY ARGS)

Thismeansthat the axes of theresult, and theindex range of theresult on those axes, will be de-
termined by arguments.

arg = 1
CALL ef set arg name(id, arg, ‘A’)
CALL ef set axis influence(id, arg, YES, YES, YES, YES)

arg = 2
CALL ef set arg name (id, arg, ‘B’)
CALL ef set axis influence(id, arg, YES, YES, YES, YES)

Here we specify that each result axis is dependent upon the axes from both arguments. When
Ferret seesthis, it knowsthe arguments must be conformabl e before it passesthem to the exter-
nal function.

The advantages of this approach are best understood by thinking about this example function
“MY_ADD_FUNCTION,” which performs a simple addition:

LET argl = X[x=0:1:.1]
LET arg2 = Y[Y=101:102:.05]
LET my result = MY ADD FUNCTION (argl, arg2)

Thedesired outcomeisthat “my_result” isa2-dimensional field which inheritsits X axisfrom
argl and its Y axisfrom arg2.

CHAPTER 11

5.2

If arguments and result are on the same grid, you should inherit all axesfrom all arguments. In
general, you should inherit axes from as many arguments as possible.

Loop indices

Note: Array indicesneed not start at 1.

Because the data passed to an external function is often a subset of the full data set, array indi-
ces need not start at 1.

Note: Indices on separate arguments are not necessarily the same.
This might occur, for instance, with variables from different data sets.

Because of this, we need to ask Ferret what the appropriate index values are for the result axes
and for each axis of each argument. We also need to know whether the increment for each axis
of each argument isO or 1. Anincrement of O would be returned, for example, astheY axisin-
crement of an argument which which was only defined on the X axis. The data for this argu-
ment would be replicated along the Y axis when needed in a calculation.

Thefollowing section of codefrom subtract.F retrievestheindex and increment information:

CALL ef get res subscripts(id, res lo ss, res _hi ss, res incr)
CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)

Once we have this information we must make sure that we don’t mix and match indices. It's
possible that you can write code which will work in the very simplest cases but will fail when
you try something like:

yes? let a = my func(sst[d=1l],airt[d=2])
yes? plot a[l=@ave]

The solution is straightforward if not very pretty: Assign a separate index to each axis of each
argument and index them all separately. The codein subtract .= shows how to do it with two
arguments:

il arg lo ss (X AXIS,ARGI1)
i2 arg lo ss (X AXIS,ARG2)
DO 400 i=res_lo ss (X AXIS), res_hi ss (X AXIS)

jl arg lo ss (Y AXIS,ARG1)
j2 arg lo ss(Y AXIS,ARG2)
DO 300 j=res lo ss(Y AXIS), res hi ss(Y AXIS)

kl = arg lo ss(Z AXIS,ARGI)
k2 = arg lo_ss(Z AXIS,ARG2)
DO 200 k=res lo ss(Z AXIS), res _hi ss(Z AXIS)

EXTERNAL FUNCTIONS 187

11 arg lo ss(T_AXIS,ARG1)
12 arg lo _ss(T_AXIS,ARG2)
DO 100 l=res lo ss(T AXIS), res hi ss(T AXIS)

IF (arg 1(i1,J1,k1,11) .EQ. bad flag(l) .OR.
arg 2(i2,j2,k2,12) .EQ. bad flag(2)) THEN

result (i,Jj,k,1) = bad flag result
ELSE

result(i,j,k,1) = arg 1(il1,31,k1,11) -
arg _2(i2,j2,k2,12)

END IF
11 11 + arg incr (T AXIS,ARG1)

12 = 12 + arg incr (T AXIS,ARG2)
100 CONTINUE

k1l
k2
200 CONTINUE

k1l + arg incr(Z AXIS,ARG1)
k2 + arg _incr(Zz AXIS,ARG2)

jl
32
300 CONTINUE

jl + arg incr (Y AXIS,ARGIl)
j2 + arg_incr (Y AXIS,ARG2)

il = i1 + arg incr (X AXIS,ARG1)
12 = i2 + arg _incr (X AXIS,ARG2)
400 CONTINUE

5.3 Reduced axes

For external functions we introduce the concept of “axis reduction.” The result of an external
function will have axes which are either RETAINED or REDUCED with respect to the argu-
ment axes from which they are inherited. By default, all result axes have their axis reduction
flag set to RETAINED. Every result axis which has it axis inheritance flag set to
IMPLIED_BY_ARGSwill have the same extent (context) as the argument axis from which it
inherits. Setting the axis reduction flag to REDUCED meansthat the result axisisreduced to a
point by the external function.

The axis reduction flag only needs to be applied when the result is reduced to a point but SET
REGION information should still be applied to the external function arguments. (e.g. afunc-
tion returning astatusflag) In such acase the result axes should beIMPLIED_BY_ARGS and
REDUCED. (as opposed to NORMAL and RETAINED)

Thepercent good t.rfunctionisagood example of wherethe axisreduction flag needsto be
set. Thisfunction takes a 4D region of data and returns atime series of values representing the
percentage of good dataat eachtime point. Insidethepercent good t init Subroutinewe see
that the X, Y and Z axes are reduced with respect to the incoming argument:

188 CHAPTER 11

5.4

BRI b b b b b b b b b S S S S S S SR A S b b b b b b b b b b S e b S S S dh 2 SR Ih Ib b b b b b b b b b b b b 4

USER CONFIGURABLE PORTION |

|
\Y%

CALL ef set desc(id,

‘(demonstration function) returns % good data at each time’)
CALL ef set num args(id, 1)
CALL ef set axis inheritance(id, IMPLIED BY ARGS,
IMPLIED BY ARGS, IMPLIED BY ARGS, IMPLIED BY ARGS)
CALL ef set axis reduction(id, REDUCED, REDUCED, REDUCED,

. RETAINED)
CALL ef set piecemeal ok (id, NO, NO, NO, NO)
arg = 1

CALL ef set arg name(id, arg, ‘A’)
CALL ef set arg desc(id, arg, ‘data to be checked’)
CALL ef set axis influence(id, arg, YES, YES, YES, YES)

* A
* |
* USER CONFIGURABLE PORTION |
*

BRI R b b b b b b b b b b b 2 S S S S SR SR dh 2h b b b b b b b b b b b b b S S 2 S SR dh dh SR Ih Ih b b b b b b b b b b b 4

Thisarrangement allowsthe user to specify an X/Y/Z region of interest and havethisregionin-
formation used when the argument is passed to the function. If we had specified X/Y/Z as
NORMAL axes, Ferret would have understood this to mean that all region information for
these three axes can beignored when the percent_good_t functioniscalled. Thisisnot what we
want.

String Arguments

Ferret can pass strings to external functions. This may be useful if you are writing external
functionsto write anew output format, for example, and wish to pass the output filename asan
argument.

By default, all argumentsare assumed to be of type rroat arc. Inthe~init subroutine, the ex-
ternal function must tell Ferret which arguments are to be handled as strings:

arg = 1

CALL ef set arg type(id, arg, STRING_ ARG)

CALL ef set arg name(id, arg, ‘message’)

CALL ef set arg desc(id, arg, '‘String to be written when executing.’)
CALL ef set axis influence(id, arg, YES, YES, YES, YES)

In the ~compute subroutine, a pointer to the string argument is passed in and dimensioned as
any other argument. A text variable must be declared and a utility function isused to get the ac-
tual text string. As an example:

SUBROUTINE string args_ compute (id, arg 1, arg 2, result)

INCLUDE ‘ferret cmn/EF Util.cmn’
INCLUDE ‘ferret cmn/EF mem subsc.cmn’

INTEGER id
REAL bad flag(l:EF MAX ARGS), bad flag result

REAL argil(memllox?memfhix, memlloy:memlhiy,
memlloz:memlhiz, memllot:memlhit)

EXTERNAL FUNCTIONS 189

REAL arg 2 (mem2lox:mem2hix, mem2loy:mem2hiy,

. ~ mem2loz:mem2hiz, mem2lot:mem2hit)

REAL result (memreslox:memreshix, memresloy:memreshiy,
memresloz:memreshiz, memreslot:memreshit)

INTEGER res_lo ss(4), res_hi ss(4), res_incr (4)
INTEGER arg lo ss(4,1:EF MAX ARGS), arg hi ss(4,1:EF MAX ARGS),
arg_incr(4,1:EF _MAX ARGS)

CHARACTER argl text*160

BRI b b b b b b b b b S S e b S e S S S SR SR A S Ih b b b b b b b b b b S S S S S dh dh SR Ih b b b b b b b b b b b 4

*
* USER CONFIGURABLE PORTION |
*
*

|
\Y

INTEGER i,j,k,1
INTEGER i1, j1, k1, 11
CALL ef get arg string(id, 1, argl text)

WRITE (6,49) argl text
49 FORMAT (‘The text for argl is : ‘'',a,’’’'’)

6 UTILITY FUNCTIONS

Thelistsbelow describethe utility functionsbuilt into Ferret which are avail able to the external
function writer. These are used to set parameters associated with the external function and to
retrieve information provided by Ferret. (Input variables, sending information to Ferret, arein
plain type and output variables, getting information from Ferret, arein italic.)

6.1 EF _Util.cmn

External functionsneedtoincludethe=r uti1.cnn fileineach subroutinein order to use vari-
ous pre-defined parameters. These parameters are defined in the table below:

Parametersdefined in =r uti1.cmn

190 CHAPTER 11

To make the code morereadable:

X AXIS (=1) ARGl (=1) ARG5S (=5) ARGY (=9)
Y AXIS (=2) ARG2 (=3) ARG6 (=6) YES (=2)
Z AXIS (=3) ARG3 (=3) ARG7 (=7) NO (=0)
T AXIS (=4) ARG4 (=4) ARG8 (=8)

Internal parametersfor Ferret:

CUSTOM result axisis defined by the external function

IMPLIED BY ARGS result axisisinherited from one (or more) of the arguments
NORMAL this axis does not exist in the result

ABSTRACT result axisis an indexed axis[1:N]

RETAINED result axis has same extent as argument axis

REDUCED result axisis reduced to a point

6.2 Available utility functions

Setting Parameters
General Information

» ef_set desc(id, desc) (p. 192)

ef set num_args(id, num) (p. 192)

ef_set piecemea _ok(id, Xyn, Yyn, Zyn, Tyn) (p. 193)
ef_set_axis inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc) (p. 192)
_set_arg_name(id, arg, name) (p. 193)

_set_arg_desc(id, arg, desc) (p. 193)

_set_arg_unit(id, arg, unit) (p. 193)

_set_arg_type(id, arg, type) (p. 194)

_set_axis influence(id, arg, Xyn, Yyn, Zyn, Tyn) (p. 194)
_set_axis reduction(id, Xred, Yred, Zred, Tred) (p. 195)
_set_axis extend(id, arg, axis, lo_amt, hi_amt) (p. 194)
_set_axis limits(id, axis, lo, hi) (p. 195)
_set_custom_axis(id, axis, lo, hi, delta, unit, modulo) (p. 195)
~set_ num_work_arrays(id, num) (p. 195)

ef
ef
ef
ef
ef
ef
ef
ef
ef
ef
ef

~set work_array_dims(id, array, Xlo, Ylo, Zlo, Tlo, Xhi, Yhi, Zhi, Thi) (p. 196)
Getting Information
For all calculations
ef _get_res subscripts(id, res lo_ss, res hi_ss, res incr) (p. 196)

« ef get arg subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) (p. 198)
- ef_get bad flags(id, bad flag, bad flag_result) (p. 199)

EXTERNAL FUNCTIONS 191

Text

« ef get_arg info(id, arg, name, title, units) (p. 196)

« ef get arg string(id, arg, text) (p. 197)

« ef get axis info(id, arg, name, units, bkwd, modulo, regular) (p. 197)
« ef get axis dates(id, arg, tax, numtimes, datebuf) (p. 198)

Values

ef _get arg_ss extremes(id, ss min, ss max) (p. 199)

ef _get coordinates(id, arg, axis, o, hi, coords) (p. 199)

ef_get box_size(id, arg, axis, lo, hi, size) (p. 200)

ef _get_box_limits(id, arg, axis, o, hi, lo_lims, hi_lims) (p. 201)
ef _get one val(id, arg, value) (p. 201)

Other

» ef version_test(version) (p.201)
« ef _bail_out(id, text) (p. 202)

ef _set desc(id, desc)
Assign atext string description to the external function.

Input arguments:

1. I NTEGER i d: external function’s ID number

2. CHARACTER* (*) desc: description of thisfunction
ef _set _numargs(id, num

Specify the number of arguments this function will accept.

Input arguments:
1. I NTEGER i d: external function’s ID number
2. | NTEGER num number of arguments for this function
ef set _axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc)

Specify wheretheresult axeswill comefrom. The acceptable valuesfor each axiswill be on of:

192 CHAPTER 11

CUSTOM result axisis defined by the external function

IMPLIED BY ARGS result axisisinherited from one (or more) of the arguments
NORMAL, this axis does not exist in the result
ABSTRACT result axisis an indexed axis [1:N]

Input arguments:

1. I NTEGER i d: external function’s ID number

2. | NTEGER Xsr c: inheritance flag for the X axis
3. I NTEGER Ysr c: inheritance flag for the Y axis
4. | NTEGER Zsr c: inheritance flag for the Z axis
5. NTEGER Tsr c: inheritance flag for the T axis

ef _set _pieceneal _ok(id, Xyn, Yyn, Zyn, Tyn)
Tell Ferret whether it is ok to break up calculations along a particular axis.
Input arguments:
1. I NTEGER i d: externa function’s ID number
2. | NTECGER Xyn: yes/no flag for the X axis
3. I NTEGER Yyn: yednoflag for the Y axis
4
5

. I NTECGER Zyn: yes/no flag for the Z axis
. | NTEGER Tyn: yes/noflagfor theT axis

ef _set_arg nane(id, arg, nane)
Assign atext string name to an argument.
Input arguments:
1. I NTEGER i d: external function’s ID number

2. | NTEGER ar g: argument number
3. CHARACTER* (*) nane: argument name

ef set _arg desc(id, arg, desc)
Assign atext string description to an argument.

Input arguments:

1. I NTEGER i d: externa function’s ID number

2. | NTEGER ar g: argument number

3. CHARACTER* (*) desc: argument description
ef set _arg unit(id, arg, unit)

Assign atext string to an argument’s units.

EXTERNAL FUNCTIONS 193

Input arguments:

1. I NTEGER i d: external function’s ID number
2. | NTEGER ar g: argument number
3. CHARACTER* (*) wuni t: unit description

ef set _arg type(id, arg, type)

Specify the type of an argument aseither r1.oaT ArG Of sTRING 2RG. INthe ~ compute Sub-
routine, theer get arg string() functionisused to obtain the desired text string.

Input arguments:

1. I NTEGER i d: external function’'s D number
2. | NTECGER ar g: argument number
3. I NTEGER t ype: either FLOAT_ARG or STRING_ARG

ef set axis_extend(id, arg, axis, lo_am, hi_ant)

Tell Ferret to extend the range of data passed for an argument. Thisis useful for cases like
smootherswheretheresult at aparticul ar point depends upon arange of input valuesaround

that point.

Input arguments:

1. INTEGER i d: externa function’s ID number

2. | NTEGER ar g: argument number

3. I NTECGER axi s: axisnumber

4. | NTEGER | o_ant : extensionto thelo range (—1 means get one more point than in the

result)

5. | NTEGER hi _ant : extensionto the hi range (+1 means get one more point than inthe

result)

ef _set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn)

Specify whether this argument’s axes “influence” the result axes. A value of ves for a
particular axis meansthat the result should have the same axis asthisargument. If the result
should have the same axis as several input arguments, then each argument should specify
ves for the axis in question. Note that cr set axis inheritance must have specified
tMpLTED BY ARGS for thisaxis.

Input arguments:

. I NTEGER i d: external function’s |ID number

1

2. | NTEGER ar g:
3. I NTEGER Xyn:
4. | NTEGER Yyn:
5. | NTEGER Zyn:
6. | NTEGER Tyn:

194 CHAPTER 11

argument number

influence flag for the X axis
influence flag for the Y axis
influence flag for the Z axis
influence flag for the T axis

ef set _axis reduction(id, arg, Xred, Yred, Zred, Tred)

Specify whether the result axes are RETAINED or REDUCED with respect to the argument
axes from which they are inherited. Setting the axis reduction flag to REDUCED means that
theresult axisis reduced to a point by the external function. The axis reduction flag need only
be set when the result is reduced to a point but SET REGION information should still be ap-
plied to the external function arguments.

Input arguments:

1.1 NTEGER i d: external function’s ID number
2.1 NTEGER ar g: argument number

3.1 NTEGER Xr ed: reduction flag for the X axis
4.1 NTEGER Yr ed: reduction flag for the Y axis
5.1 NTECGER Zr ed: reduction flag for the Z axis
6.1 NTEGER Tr ed: reduction flag for the T axis

ef set axis limts(id, axis, lo, hi)

Specify the lo and hi limits of an axis. (Thisis not needed for most functions and must ap-
pear in a separate subroutine named ~ func name~ result limits (id)).

Input arguments:

1. I NTEGER i d: external function’s ID number

2. | NTEGER axi s: axisnumber

3. | NTEGER | o: index value of the lo range of this axis
4. | NTEGER hi : index value of the hi range of this axis

ef _set _customaxis(id, axis, lo, hi, delta, unit, nodul o)

Createacustom axis. Thisisonly used by functionswhich create acustom axis and must ap-
pear in aseparate subroutine named -~ func name~ custom axes (id).

Input arguments:

1. I NTEGER i d: external function’s ID number

2. | NTECGER axi s: axisnumber

3. | NTECGER | o: index value of the lo range of this axis
4. | NTEGER hi : index value of the hi range of this axis
5. | NTEGER del t a: increment for thisaxis

6. CHARACTER* (*) wuni t: unitfor thisaxis

7. | NTEGER nodul o: flag for modulo axes (1 = modulo)

ef _set _numwork arrays(id, nwork)

Set the number of work arrays to be allocated.

EXTERNAL FUNCTIONS 195

Input arguments:
1. I NTEGER i d: external function’s |D number
2. | NTEGER nwor k: number of storage arrays

ef set _work array dinms(id, iarray, xlo, ylo, zlo, tlo, xhi,
yhi, zhi, thi)

Set the working array axis lengths.

Input arguments:

1. I NTEGER i d: external function’s ID number

2. | NTEGER i array: array number

3. I NTEGER xI o: index value of thelo range of x axis

4. | NTEGER yl o: index value of thelo range of y axis

5. I NTEGER zl o: index value of thelo range of z axis

6. | NTECGER t | o: index value of thelo range of t axis

7. | NTEGER xhi : index value of the hi range of x axis

8. | NTEGER yhi : index value of the hi range of y axis

9. | NTEGER zhi : index value of the hi range of z axis

10. | NTEGER t hi : index value of the hi range of t axis

ef get res subscripts(id, res lo ss, res_hi_ss, res_incr)

Return lo and hi indices and increments to be used in looping through the cal culation of the
result.

Input arguments:
1. I NTEGER i d: external function’s ID number

Output arguments:

1. INTEGER res_| o_ss(4): theloendindicesfor the X, Y, Z, T axes of the result

2. | NTEGER res_hi _ss(4): thehi endindicesforthe X, Y, Z, T axes of the result

3. I NTEGER res_i ncr(4): theincrement to beappliedtothe X, Y, Z, T axesof there-
sult

Sample code:

CALL ef get res subscripts(id,

res lo ss, res hi ss, res incr) ... DO 400 i=res lo ss (X AXIS),
res hi ss (X AXIS) DO 300 j=res lo ss(Y AXIS), res hi ss(Y AXIS)
.. 300 CONTINUE 400 CONTINUE N - N

ef get _arg info(id, iarg, arg nane, arg title, arg units)

Return strings describing argument: name, title, units.

196 CHAPTER 11

Input arguments:
1. I NTEGER i d: external function’s D number
2. | NTEGER i ar g: argument number

Output arguments:
1. CHARACTER* 24 ar g_nane: the name of the argument

2. CHARACTER* 128 arg_titl e: titleassociated with the argument
3. CHARACTER* 32 arg_uni t s: theargument’s units.

ef get _arg string(id, iarg, text)
Return the string associated with an argument of type STRING_ARG.
Input arguments:
1. I NTEGER i d: externa function’s ID number
2. | NTECGER i ar g: argument number

Output arguments:
1. CHARACTER* 24 t ext : theactual text string for the argument

Sample code:

CHARACTER arg text*160

* kkkhkhkkhkhkhkkhhkkhhkhkkhhkkhkhkhhhkkhhhkhhkhhhkhhkkhhkhhhkkhkhdhhkhkkhhhhkhkhhkhkkhkhkkhkhkhkhkhkkhkhrdhhkhkkhrkhkhhkhhkkhx*k
* USER CONFIGURABLE PORTION |
* |
* \Y

INTEGER 1i,7,k,1

INTEGER i1, j1, k1, 11

CALL ef get arg string(id, 1, arg text)

WRITE (6,49) arg text
49 FORMAT (‘The text is : ‘/'7,a,’’’"’)

effget:axisiinfo(id, iarg, axname, ax units, backward, modulo, regular)
Return strings describing argument: name, title, units.

Input arguments:
1. I NTEGER i d: external function’s ID number
2. | NTECER i ar g: argument number

Output arguments:

1. CHARACTER* 16 ax_nane(4) : thename of the four axes
2. CHARACTER* 16 ax_uni ts(4): unitsof thefour axes
3. LOd CAL backwar d(4): trueif axisisbackward axis

4. LOG CAL nodul o(4) : trueif axisismodulo axis

EXTERNAL FUNCTIONS 197

5. LOQ CAL regqgul ar (4): trueif axisisregular axis
ef get axis dates(id, iarg, taxis, nuntines, datebuf)
Returns the string date buffer associated with the time axis of an argument.

Input arguments:

1. I NTEGER i d: externa function’s ID number

2. | NTEGER i ar g: argument number

3. REAL*8 t axi s(nunti nmes): timeaxis coordinate values
4. | NTEGER nunt i mes: number of time

Output arguments:
1. CHARACTER* 20 dat ebuf (nunt i nes) : the string-date buffer for each time.

ef get _arg subscripts(id, arg _lo_ss, arg _hi_ss, arg_incr)

Return lo and hi indices and increments to be used in looping through the cal culation of the
result.

Input arguments:
1. I NTEGER i d: external function’s ID number

Output arguments:

1. INTEGER arg | o_ss(4, EF_MAX ARGS): theloendindicesforthe X,Y,Z, T
axes of each argument

2. | NTEGER ar g_hi _ss(4, EF_MAX_ARGS) : the hi end indices for the X, Y, Z, T
axes of each argument

3. I NTECGER arg_incr (4, EF_MAX _ARGS) : theincrement to be applied to the X, Y,
Z, T axes of each argument

Sample code:

INTEGER i,7,k,1
INTEGER il, j1, k1, 11
INTEGER i2, 32, k2, 12

CALL ef get res subscripts(id, res lo _ss, res_hi ss, res_ incr)
CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)
CALL ef get bad flags(id, bad flag, bad flag result)

il = arg_lo_ss (X AXIS,ARG1)
i2 = arg_lo_ss (X AXIS,ARG2)

DO 400 i=res_lo_ss (X AXIS), res _hi ss (X AXIS)
11 il + arg_incr (X AXIS,ARGl)

i2 = i2 + arg incr (X AXIS,ARG2)
400 CONTINUE

198 CHAPTER 11

ef get _arg ss extrenes(id, ss_mn, ssS_nax)

Return the maximum and minim index values for all the arguments. These define the do-
main of the data.

Input arguments:
1. I NTEGER i d: external function’s ID number

Output arguments:

1. I NTEGER ss_m n(4, EF_MAX_ARGS) : the minimum indices for the X, Y, Z, T
axes of each argum

2. | NTEGER ss_max(4, EF_MAX_ARGS) : the maximum indices for the X, Y, Z, T
axes of each argum

Sample code:
CALL ef get arg ss extremes(id, ss min, ss max)

ef get bad flags(id, bad flag, bad flag result)
Return the missing value flags for each argument and for the result.

Input arguments:
1. I NTEGER i d: external function’'s D number

Output arguments:
1. REAL bad_fl ag(EF_MAX_ ARGS) : missing value flags for each argument
2. REAL bad_fl ag_result: missing valueflag for the result

Sample code:

CALL ef get res subscripts(id, res lo ss, res hi ss, res incr)
CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)
CALL ef get bad flags(id, bad flag, bad flag result)

IF (arg 1(il,j1,k1,11) .EQ. bad flag(ARGl)) THEN
result(i,j,k,1) = bad flag result
ELSE
ef get coordinates(id, arg, axis, |lo, hi, coords)
Return the “world coordinates’ associated with a particular arg, axis and lo:hi range.
Input arguments:

1. I NTEGER i d: external function’s D number
2. | NTEGER ar g: argument number

EXTERNAL FUNCTIONS 199

3. I NTECGER axi s: axisnumber
4. | NTEGER | o: loindex of desired range
5. | NTEGER hi : hi index of desired range

Output arguments:

1. REAL coords(*): array of “world coordinate” values (NB__ these values are associ-
ated with index valueslo:hi but are returned as coords (1:hi-10).)

Sample code:

REAL tk y(1024), tk dx(1024), tk dy(1024), uk dy(1024)
INTEGER dummy

CALL ef get res subscripts(id, res lo _ss, res _hi ss, res_incr)

CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)

CALL ef get bad flags(id, bad flag, bad flag result)

CALL ef get coordinates(id, ARGl, Y AXIS, arg lo ss (Y AXIS, ARGl),
arg hi ss(Y AXIS, ARGl), tk y) - n

dummy = 1

DO 30 1 = arg lo ss (Y AXIS, ARGl), arg hi ss(Y AXIS, ARGl)
cstr(i) = 1.0 / cos(tk y(dummy) * (1.0/radian))
dummy = dummy + 1 n

30 CONTINUE
ef get box size(id, arg, axis, lo, hi, size)

Return the box sizes (in “world coordinates’) associated with a particular arg, axisand lo:hi
range.

Input arguments:

1. I NTEGER i d: externa function’s ID number
2. | NTEGER ar g: argument number

3. I NTECGER axi s: axisnumber

4. | NTEGER | o: loindex of desired range

5. I NTEGER hi : hi index of desired range

Output arguments:
1. REAL size(*): array of box sizevalues (NB__these values are associated with index
valueslo:hi but arereturned as coords (1:hi-10).)

Sample code:

REAL tk_y(1024), tk dx(1024), tk dy(1024), uk dy(1024)
INTEGER dummy

200 CHAPTER 11

CALL ef get res subscripts(id, res lo ss, res hi ss, res incr)

CALL ef get arg subscripts(id, arg lo ss, arg hi ss, arg incr)

CALL ef get bad flags(id, bad flag, bad flag result) B

CALL ef get coordinates(id, ARGl, Y AXIS, arg lo ss(Y AXIS, ARGl),

. arg hi ss (Y AXIS, ARGl), tk y) - N

CALL ef get box size(id, ARGl, X AXIS, arg lo ss(X AXIS, ARGl),
arg hi ss(X AXIS, ARGl), tk dx) - B

dxtdr(i) = 1.0 / (4.0 * tk dx(dummy) * radius/radian)
dummy dummy + 1
20 CONTINUE

1
DO 20 i = arg lo ss(X AXIS, ARGl), arg hi ss (X AXIS, ARGIl)
i

ef get box limts(id, arg, axis, lo, hi, lo linms, hi_|ins)

Return the box limits (in “world coordinates’) associated with a particular arg, axis and
lo:hi range.

Input arguments:

1. I NTEGER i d: externa function’s ID number
2. | NTEGER ar g: argument number

3. | NTEGER axi s: axisnumber

4. | NTEGER | o: loindex of desired range

5. I NTEGER hi : hi index of desired range

Output arguments:
1. REAL | o_lims(*): array of box lower limit values (NB__ these valuesare associated
with index values lo:hi but are returned as coords (1:hi-10).)

2. REAL hi _|inms(*): array of box upper limit values (NB__these values are associated
with index values lo:hi but are returned as coords (1:hi-10).)

ef get one val (id, arg, val ue)
Return the value of 1x1x1x1 variable.
Input arguments:
1. I NTEGER i d: external function’s ID number
2.1 NTECER ar g: argument number

Output arguments:
1. REAL val ve : Thevaue of the variable

ef _version_test (version)
Return the version number of the external functions code that isin place.

Output argument:

EXTERNAL FUNCTIONS 201

1. REAL versi on : The version number
ef bail _out(id, text)
Bail out of an external function, returning to Ferret and issuing a message to the user.
Input arguments:

1. I NTEGER i d: external function’s ID number
2.1 NTECER t ext : text string to output.

202 CHAPTER 11

2.1

2.2

Part II: COMMANDS REFERENCE

ALIAS

Anaiasfor DEFINE ALIAS.

CANCEL

Cancelsaprogram state or definition—generally paired withaSET or DEFINE command. See
commands SET (p. 241) and DEFINE (p. 211) for further information.

Arguments:
The arguments, which are names of variables, data sets, or other definitions can be specified

using wildcards. The* wildcard matches any number of charactersin the name; the ?wildcard
matches exactly one character.

CANCEL ALIAS

Cancels a user-defined command alias.

yes? CANCEL ALIAS ALIAS NAME

The command UNALIASisan diasfor CANCEL ALIAS.
CANCEL AXIS
/MODULO

Cancels the modul o nature of a user-defined axis (only valid with/MODUL O qualifier).

yes? CANCEL AXIS/MODULO my x axis

or

yes? CANCEL AXIS/MODULO my t*
Command qualifiersfor CANCEL AXIS:

CANCEL AXISMODULO

COMMANDS REFERENCE 203

2.3 CANCEL DATA_SET
/ALL /NOERROR

Removes the specified data set from the list of available sets.

yes? CANCEL DATA SET dsetl, dset2, ..., dsetn

where each dset may be the name or number of a data set; or
yes? CANCEL DATA/ALL

(See also SET DATA_SET, p. 242, and SHOW DATA SET, p. 269.)
Command qualifiersfor CANCEL DATA_SET:

CANCEL DATA/ALL
Eliminates all data sets from the list of accessible data sets.

CANCEL DATA/NOERROR

Suppresses the error message otherwise generated when a data set that was never set is can-
celed. Useful in GO scriptsfor closing data sets that may have been opened in previous usage
of the script.

2.4 CANCEL EXPRESSION

Un-specifiesthe current context expression. Ferret’s* action” commands can beissued without
an argument (e.g., ves? proT), inwhich case Ferret uses the current context expression. This
expression is either the argument of the most recent action command, or an expression set ex-
plicitly with SET EXPRESSION.

yes? CANCEL EXPRESSION
The qualifier /ALL can be used with this command, but it exists for compatibility purposes

only and has no effect.

2.5 CANCEL LIST
IALL /APPEND /FILE /FORMAT /HEADING /PRECISION

Toggles the effects of the SET LIST command. See command SET LIST (p. 248).

yes? CANCEL LIST[/qualifiers]

Command qualifiersfor: CANCEL LIST

CANCEL LIST/ALL
Restores all aspects of the LIST command to their default behavior.

204 COMMANDS REFERENCE

CANCEL LIST/APPEND
Resets the listed output to NOT append to existing file.

CANCEL LIST/FILE
Resets the listed output to automatic file naming.

CANCEL LIST/FORMAT
Resets the listed output to its default formatting.

CANCEL LIST/HEAD
Instructs listed output to omit the descriptive data header.

CANCEL LIST/PRECISION
Resets the precision of listed data to 4 significant digits.

26 CANCEL MEMORY
/IALL /PERMANENT /TEMPORARY

Clears data currently cached in memory.

yes? CANCEL MEMORY[/qualifier]

Use this command to save memory space—by clearing data as soon asit is no longer needed
virtual memory requirements can be reduced. Thisis especialy useful for efficient batch pro-
cessing. Default is CANCEL MEMORY/TEMPORARY.

Example:

To produce an animation using minimal virtual memory try:
yes? REPEAT/T=lo:hi:delta GO min mem movie

Where the file min_mem_movie.jnl contains
CONTOUR/FRAME temp[Z=0] ! contour plot
CANCEL MEMORY/ALL ! clear memory for next time step

Command qualifiersfor CANCEL MEMORY:

CANCEL MEMORY/ALL
Clearsall variables stored in memory.

CANCEL MEMORY/PERMANENT

Clears all “permanent” variables stored in memory (i.e., variables loaded into memory with
LOAD/PERMANENT).

COMMANDS REFERENCE 205

CANCEL MEMORY/TEMPORARY (default)
Clears al non-permanent variables stored in memory.

2.7 CANCEL MODE

Sets the state of amode to “canceled.”

yes? CANCEL MODE mode name

(See command SET MODE, p. 251, for descriptions of modes.)

2.8 CANCEL MOVIE

2.9

206

This command is unnecessary in Ferret version 3.1 and later; it is provided for compatibility
with older versions of Ferret. It restores the default movie file name (ferret.mgm) but is not
needed to conclude capturing graphicsto amoviefile.

yes? CANCEL MOVIE
The qualifier /ALL can be used with this command, but it exists for compatibility purposes

only and has no effect.

CANCEL SYMBOL
IALL

Deletes a user-defined symbol (string variable) definition.

yes? CANCEL STRING[/qualifier] [symbol name]

Command qualifiersfor CANCEL SYMBOL.:

CANCEL SYMBOL/ALL

Deletes all user-defined symbol definitions.

Examples:
yes? CANCEL SYMBOL my x label !eliminate my x label from the definitions
yes? CANCEL SYMBOL *x label !remove all strings ending in x label
yes? CANCEL SYMBOL/ALL !remove all user-defined symbols.

COMMANDS REFERENCE

2.10 CANCEL REGION
MNMIKIL IXIYIZIT IALL

Cancels part or al of the current or named region.

yes? CANCEL REGION[/qualifier] [region name]

Examples:
yes? CANCEL REGION !clear the current region
yes? CANCEL REGION/T !leliminate T from the current context
yes? CANCEL REGION regl !clear the region named “regl"

Command qualifiersfor CANCEL REGION:

CANCEL REGION/I 13 IK IL IX Y I1Z IT
Eliminates|, J, K, L, X, Y, Z, or T axisinformation from current context or named region.

CANCEL REGION/ALL
Eliminates ALL stored region information (rarely used).

2.11 CANCEL VARIABLE
IALL

Deletes a user-defined variable definition.

yes? CANCEL VARIABLE[/qualifier] [var name]

Command qualifiersfor CANCEL VARIABLE:

CANCEL VARIABLE/ALL
Deletes all user-defined variable definitions.
Examples:
yes? CANCEL VARIABLE my sst !eliminate my sst from the definitions
yes? CANCEL VARIABLE *wind !delete all variables ending in wind
yes? CANCEL VARIABLE tau? !delete variables named tau plus one character
yes? CANCEL VARIABLE/ALL !delete all user-defined defined variables

2.12 CANCEL VIEWPORT

Cancels adefined viewport or cancels use of viewports.

yes? CANCEL VIEWPORT view name !lun-define view name
yes? CANCEL VIEWPORT !return to full window output

COMMANDS REFERENCE 207

2.13 CANCEL WINDOW
IALL

Removes graphics window(s) from the screen.

yes? CANCEL WINDOW n lor
yes? CANCEL WINDOW/ALL

Command qualifiersfor CANCEL WINDOW:

CANCEL WINDOW/ALL
Removes all graphics windows.

3 CONTOUR
MMIKIL IXIYIZIT D [FILL /FRAME /KEY /LEVELS/LINE /NOAXIS/NOKEY
INOLABEL /OVERLAY /PALETTE /PATTERN/PEN /SET_UP/TITLE /TRANSPOSE
IXLIMITS/YLIMITS

Produces a contour plot.

yes? CONTOUR[/qualifiers] [expression]
Example:

yes? CONTOUR varl !produce a contour plot of the variable varl
Parameters

Expressions may be any valid expression. See Chapter 3, section “Expressions’ (p. 49), for a
definition of valid expressions. The expression will be inferred from the current context if
omitted from the command line.

Command qualifiersfor CONTOUR:
CONTOUR/=/3=IK=/L=/X=/Y=/Z=IT=
Specifiesvalueor range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be

used when evaluating the expression being plotted.

CONTOUR/D=
Specifies the default data set to use when evaluating the expression being contoured.

CONTOUR/FILL (aiasFILL)
Creates a color filled contour image.

208 COMMANDS REFERENCE

CONTOUR/FRAME

Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexible
and we recommend its use rather than this qualifier.

CONTOUR/KEY
Displaysacolor key for the palette used in acolor-filled contour plot. Only valid in conjunction
with /FILL (default with CONTOUR/FILL or aliasFILL).

CONTOUR/LEVELS
Specifies the contour levels or how the levels will be determined. If the/LEVELS qualifier is
omitted Ferret automatically selects reasonable contour levels.

See Chapter 6, section “Contouring” (p. 124) for examples and more documentation on
/LEVELS and color_thickness indices. See also the demonstration “custom con-
tour_demo.jnl”.

CONTOUR/LINE

Overlays contour lines on a color-filled plot. Valid only with /FILL (or as a qualifier to alias
FILL). When /LINE is specified the color key, by default, isomitted. Use FILL/LINE/KEY to
obtain both contour lines and a color key.

CONTOUR/NOKEY
Turns off display of acolor key for the palette used in a color-filled contour plot. Only validin
conjunction with /FILL (or with alias FILL).

CONTOUR/NOAXIS
Suppresses all axislines, ticsand labeling so that no box appears surrounding the contour plot.
Thisis especialy useful for map projection plots.

CONTOUR/NOLABELS
Suppresses al plot labels except axis labels.

CONTOUR/OVERLAY
Causes the indicated expression to be overlaid on the existing plot.

Note (CONTOUR/OVERLAY with time axes):

A restriction in PPLUS requiresthat if timeisan axis of the contour plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid contour fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis.

COMMANDS REFERENCE 209

CONTOUR/PALETTE=

Specifies a color palette (otherwise, the current default palette is used). Valid only with
CONTOUR/FILL (or as aqualifier to the alias FILL). The file suffix *.spk is not necessary
when specifying a palette. Try the Unix command = rpalette ‘+’ t0 See available palettes.
See command PALETTE (p. 232) for more information.

Example:

yes? CONTOUR/FILL/PALETTE=land sea world relief

The/PALETTE qualifier changesthe current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
[SET_UP qualifier. Seethe PALETTE (p. 232) command for further discussion.

CONTOUR/PATTERN=

Specifies apattern file (otherwise, the current default pattern specification is used). Valid only
with CONTOUR/FILL (or asaqualifiertothealiasFILL). Thefilesuffix *.pat isnot necessary
when specifying apattern. Try the Unix command % Fpattern ‘*’ to see available patterns. See
command PATTERN (p. 233) for more information.

CONTOUR/PEN=
Setsline style for contour lines (same arguments as PLOT/LINE=). Argument can be an inte-
ger between 1 and 18; run co 1ine samples to seethe stylesfor color devices.

Example:

yes? CONTOUR/PEN=2 sst

CONTOUR/SET_UP

Performs all the internal preparations required by program Ferret for contouring but does not
actually render output. The command PPL can then be used to make changesto the plot prior to
producing output with the PPL CONTOUR command. This permits plot customizations that
are not possiblewith Ferret command qualifiers. See Chapter 6, section“ Contouring” (p. 124).

CONTOUR/TITLE=

Allows user to specify aplot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include aleading ESC (escape) character.

CONTOUR/TRANSPOSE

Causes the horizontal and vertical axesto be interchanged. By default the X and T axes of the
data are drawn horizontally on the plot and the Y and Z axes of the data are drawn vertically.
For Y-Z plotsthe Z data axisis vertical by default.

210 COMMANDS REFERENCE

4.1

4.2

Note that plotsinthe YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /IXLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

CONTOUR/XLIMITS=
Specifiesaxisrangeand tic interval for the X axis. Without thisqualifier, Ferret selects reason-
able values.

yes? CONTOUR/XLIMITS=lo val:hi val[:increment] [expression]

The optiona “increment” parameter determinestic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

Notethat the“X” in/XLIMITSrefersto the horizontal axis of the plot rather than to the X axis
of thegrid. Thiscanlead to confusion, especially on plotsinthe YT or ZT plane. Plotsinthese
planesare automatically transposed to placethe Y or Z axis, respectively, on thevertical axisof

the plot. Plots may aso be transposed manually with the /TRANSPOSE qualifier. On trans-
posed plots /XLIMITS will refer to the vertical axis of the plot.

CONTOUR/YLIMITS=
Specifies the axis range and tic interval for the'Y axis. See/XLIMITS (above).

DEFINE

Defines anew alias, region, grid, axis, variable, or viewport.

DEFINE ALIAS
Defines an dlias for acommand. “ALIAS’ isan aliasfor DEFINE ALIAS.
yes? DEFINE ALTIAS NAME COMMAND

Example:

yes? DEFINE ALIAS SDF SHOW DATA/FULL

DEFINE AXIS
IXIYIZIT IDEPTH /FILE /FROMDATA /MODULO
INAME /NPOINTS/TO/UNIT

Defines an axis (axis name up to 16 characters).

yes? DEFINE AXIS[/qualifiers] axis name or expr

COMMANDS REFERENCE 211

Example:

yes? DEFINE AXIS/X=140E:140W:.2 AX140

Command qualifiersfor DEFINE AXIS:

DEFINE AXIS/IX=/Y=/Z=IT=
Specifies the limits and point spacing of an axis.

yes? DEFINE AXIS/X=lo:hi:delta axis name

The limits may be in longitude, latitude, or date format (for X, Y, or T axis, respectively) or
may be simple numbers. No units are assumed unless units are given explicitly with the
JUNITS qualifier.

Use /UNITS=degrees to obtain latitude or longitude axes. The X or Y qualifier determines
which orientation “degrees’ refersto.

For T axis, the limits may be dates (dd-mmm-yyyy:hh:mm:ss) or may be time steps. The delta
increment is regarded as hours unless the /UNITS qualifier specifies otherwise.

If the time limits are given as dates then this axis produces date-formatted output (unless
CANCEL MODE CALENDAR isissued). If thetimelimitsare given astime stepsthen al in-
stances of this axis are labeled with time step values in the units specified with the /UNITS
qualifier.

Examples (evenly-spaced axes):

yes? DEFINE AXIS/X=140E:140W:.2 ax140

yes? DEFINE AXIS/Y=15S:25N:.5 axynew

yes? DEFINE AXIS/Z=0:5000:20/UNITS=CM/DEPTH axzcm

yes? DEFINE AXIS/T="7-NOV-1953":"23-AUG-1988:11:00":24 axtlife
yes? DEFINE AXIS/T=25:125:5/UNITS=minutes axtbmin

DEFINE AXIS/IDEPTH

Specifiesthe Z axisto be adepth, positive downward, axis. A depth axisisindicated by a“(-)”
following its title in a SHOW GRID or SHOW AXIS command. Depth axes are notated by
“UD” (up-down) in the grid definition file, while normal vertical axes (such as an elevation
axis in meteorology) are notated by “DU” (down-up).

Example:

yes? DEFINE AXIS/Z=0:5000:20/DEPTH/UNITS=CM AXZDCM

DEFINE AXISIEDGES

The/EDGES qualifier indicates that the coordinates provided refer to the edges or boundaries
between grid cells. When /EDGES is used, the coordinates of the grid points will be computed
at the midpoints between the indicated edges. When /EDGES is used in conjunction with

212 COMMANDS REFERENCE

/FROM_DATA the number of grid points created will be equal to the number of coordinates
minusone, sincethelist of edgesincludes both the upper and lower edge of the axis. An exam-
ple of defining an axis by itsedgesis

yes? DEFINE AXIS/z=0:5010:20//EDGES/DEPTH/UNITS=CM AXZDCM

A classof especially important usesfor the/EDGES qualifier isto create custom calendar axes.
Thisexample createsatrue monthly axis, with axis cellsbeginning on thefirst of each month:

yes? let month = MOD(1-1,12)+1

yes? let add year = INT((1-1)/12)

yes? let tstep = DAYS1900 (1980+add year,month, 1)

yes? define axis/from data/T/units=days/name=tax/t0=1-jan-1900/edges
tstep[l=1:"20*12+1"]

The following exampl e shows the computation of a custom climatological average. Given, for
example, a multi-year time series of adaily measured variable, the climatological average of
the variable between April 3 and and June 5 could be computed with

yes? define axis/t=1-jan-0001:1-Jan-0002:1/unit=days/t0=1-3an-0000
tencoding

yes? let tstep = t[gt=tencoding]

yes? let start date = tstep[t=15-mar-0001]

yes? let end date = tstep[t=27-may-0001]

yes? define axis/from data/T/units=days/name=tax/t0=1-3an-0000/edges/modulo
{‘start_date,p:7\,\ena_date,p:7\,‘start_date+365.2425,p:7‘}

DEFINE AXIS/IFILE=

Reads a gridfile for grid and axis definitions. The gridfile specified should be in the standard
TMAPgridfileformat. There are several documentsin $FER_DIR/doc regarding gridfilesand
TMAPformat (e.g., “about_grid_files.txt”).

yes? DEFINE AXIS/FILE=grid file.grd

DEFINE AXISIFROM DATA
Used only in conjunction with /NAME to define an axis from any expression that Ferret can
evaluate.

yes? DEFINE AXIS/FROM DATA/NAME=axis name expr
(Thisis amechanism to convert dependent variables into independent axis data.)
Note that the values from which the axisisto be created must bein strictly increasing order. If
the coordinates are repeated, Ferret will “micro-adjust” the values by adding multiples of 1
millionth of the axis rangeto the repeated values. Ferret will issue an informative messageif it
IS micro-adjusting an axis.

Example (unevenly-spaced axis):

yes? DEFINE AXIS/FROM DATA/X/NAME=my xaxis pos[D=2]"0.5

COMMANDS REFERENCE 213

defines each coordinate of the axis“my_xaxis’ as the square root of variable “pos’ from data
set 2.

DEFINE AXISMODUL O
Specifies that the axis being defined be treated as modulo; that is, the first point will wrap
around and follow the last point (e.g., alongitude axis).

DEFINE AXISINAME=
Used only in conjunction with /FROM_DATA to specify the name of the axis to be defined.

yes? DEFINE AXIS/FROM_DATA/NAME:axis_name expr

DEFINE AXISINPOINT S=
Specifies the number of coordinate points on the axis being defined.

yes? DEFINE AXIS/Z=lo:hi/NPOINTS=n ax_name
This qualifier can be used instead of specifying z=10:ni:delta.

DEFINE AXISITO=
Specifies the date and time associated with the time step value 0.0

Example:

DEFINE AXIS/T="1-NOV-1980":"15-AUG-1988":72/T0="1-JAN-1800" TNEW

Note: The/TO qualifier isoptional; the underlying time step values are transparent to Ferret us-
ers for most purposes. The default value is 15-JAN-1901.

DEFINE AXIS/UNITS=
Specifies the units of the axis being defined.

Example:

yes? DEFINE AXIS/Z=0:2000:100/UNITS=CM ZCM

Any string (up to 10 characters) is acceptable as a units string, but only the following units are
recognized and used when computing axis transformations:

cm (or centimeter) mm (or millimeter) day

km (or kilometer) mb (or millibar) mon

m (or meter) level yr (or year) (365 days)

deg (or lat or lon) layer gregorian_year (365.2425 days)
ft (or feet or foot) sec year360 (360 days)

in min year366 (366 days)

mile hour M2 cycles

214 COMMANDS REFERENCE

TIP:

Ferret will convert recognized units of length to meters and recognized units of timeto seconds
during transformations such as integration (@IIN and @DIN) and differentiation (@DDB,
@DDC, @DDF) (see*“ General Information about transformations,” p. 56). Using this charac-
teristic it is always possible to query Ferret about the conversion factors from meters or sec-
onds by integrating agrid cell of width one on an axis of the unitsin question. For example:

yes? ! query conversion factor to meters

yes? define axis/x=0:1:1/edges/units=feet xtest ! 1 point, cell width=1
unit

yes? let vx = 0*X[gx=xtest]+l vx =1

yes? list/prec=7 vx[x=0@din]
0*X [GX=XTEST]+1
X (FEET): 0 to 1 (integrated)

0.3048000
yes? ! query conversion factor to seconds
yes? define axis/t=0:1:1/edges/units=month ttest ! 1 point, cell width=1
unit
*** NOTE: /UNIT=MONTHS is ambiguous ... using 1/12 of 365 days.
yes? let vt = 0*T[gt=ttest]+l ' vt =1

yes? list/prec=7 vt[t=0@din]
0*T[GT=TTEST]+1
T (MONTH): 0 to 1 (integrated)
2628000.

4.3 DEFINE GRID
IXIYIZIT [FILE /LIKE

Defines agrid (name may be up to 16 characters).

yes? DEFINE GRID[/qualifiers] grid name
Example:

yes? DEFINE GRID/LIKE=temp/T=my t axis my grid

Command qualifiersfor DEFINE GRID:

DEFINE GRID/X=/Y=/Z=/T=
Specifieswhat particular axisisto bethe X, Y, Z, or T axisfor this grid.

yes? DEFINE GRID/X=axname grid name

The name axname may be the name of an axis, the name of agrid that usesthe axis desired, or
the name of avariable for which the defining grid uses the axis desired.

For example,

yes? DEFINE GRID/X=U gx

COMMANDS REFERENCE 215

will create a grid named gx which is one-dimensional—normal to Y, Z, and T.

Note: Many axes possess an orientation implicit in their units, especialy latitude, longitude,
and time axes. The effects of using an axis in an inappropriate orientation, such as
/X=time_axis, are unpredictable.

DEFINE GRID/FILE=

Reads a gridfile for GRID and AXIS definitions. The gridfile specified should be in the stan-
dard TMAP gridfile format. There are several documents in $FER_DIR/doc regarding
gridfilesand TMAP format (e.g., about_grid_files.txt).

Example:

yes? DEFINE GRID/FILE=new grids.grd

DEFINE GRID/LIKE=
Specifiesaparticular grid (by name or by referenceto avariable defined on that grid) to use as
atemplate to create anew grid.

yes? DEFINE GRID/LIKE=grid or variable name grid name

All axesof thegrid being created will beidentical to the axesof the“LIKE=" grid except those
explicitly changed with the /X, /Y, /Z, or IT qualifiers.

Example:

yes? DEFINE GRID/LIKE=temp[D=2]/Z=ZAX gnew !temp from data set 2
Examples. DEFINE GRID

]) yes? DEFINE AXIS/T="1-JAN-1980":"31-DEC-1983":24 axday
yes? DEFINE GRID/LIKE=temp/T=axday gday
Define grid gday to be like the defining grid for temp but with a4-year, daily-interval time
axis.

2) yes? DEFINE GRID/LIKE=temp |[D=ba022]/T=sst[D=nmc] gnmc3d
Define grid gnmc3d like temp from data set ba022 but with the same time axis as sst from
data set nmc.

3) yes? DEFINE AXIS/X=140E:140W:.2 xnew
yes? DEFINE AXIS/Y=5S:5N:.2 ynew
yes? DEFINE AXIS/T="15-FEB-1982":"15-FEB-1984":48 tnew
yes? DEFINE GRID/X=xnew/Y=ynew/T=tnew gnew
Define grid gnew from new axes. The grid, gnew, will be normal (perpendicular) to Z.

216 COMMANDS REFERENCE

44 DEFINE REGION
MNMJIKI/L IX/YIZIT IDI/DIDK/DL /DX/DY/DZ/DT /IDEFAULT

Defines or redefines a named region_name (first 4 characters are recognized).

yes? DEFINE REGION[/qualifiers] region name

If the qualifier /DEFAULT is not given only those axes explicitly named will be stored. If the
qualifier /IDEFAULT isgiven all axeswill be stored.

Command qualifiersfor DEFINE REGION:

DEFINE REGION/I=/3=/K=/L=/X=IY=/Z=]T=
Specifiesregion limits (=lo:hi or =val).

DEFINE REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Specifiesachangein region relative to the current settings (=lo:hi or =val). See examples be-
low.

DEFINE REGION/DEFAULT
Saves all axes and transformations, not just those explicitly given. Commonly, a GO script be-
ginswith “DEFINE REGION/DEFAULT save’ and ends with “SET REGION save’.

Examples: DEFINE REGION
1) yes? DEFINE REGION/DEFAULT save
Stores the current default region under the name “save”. The region may be restored at a

later time by the command yes? seET REGTON save.

2) yes? DEFINE REGION/X xonly
Stores the current default X axislimits, only, as region xonly.

3) yes? DEFINE REGION/DX=-5 xonly
Stores the current default X axis limits minus 5 as region xonly.

4) yes? DEFINE REGION/Y=20S:20N/Z yanz
Stores the given limits from the Y axis and the default Z axis limits.

5) yes? DEFINE REGION/DEFAULT/L=5 15
Stores the current default region with the modification that L, the time step, is stored as 5.

6) yes? DEFINE REGION/DL=-1:+1 1p2

Storesan L region beginning 1 time step earlier and ending 1 time step later than the current
default region as region Ip2.

COMMANDS REFERENCE 217

45 DEFINE SYMBOL

Allowsthe user to define astring variable. Symbol names must begin with aletter and contain
only letters, digits, underscores, and dollar signs.

yes? DEFINE symbol symbol name=string

Example:

yes? DEFINE symbol my x label = sample number

4.6 DEFINE VARIABLE
/DIQUIET /TITLE/UNITS

Allowsthe user to defineavariablefromavalid algebraic expression. Note: LET isan aliasfor
DEFINE VARIABLE.

yes? DEFINE VARIABLE[/qualifiers] name=expression

Example:

yes? LET SPEED = ur2 + vV~2
Parameters

The expression may be any valid expression. See Chapter 3, section “ Expressions” (p. 49) for a
definition of valid expressions.

The name specified with DEFINE VARIABLE can be 1 to 24 characters in length—Iletters,
digits, $ and _, beginning with aletter. Pseudo-variable, operator, and function names are re-
served and cannot beused (1, J, EQ, SIN,...). See Chapter 3 (p. 43) for recognized pseudo-vari-
ables, operators, and functions.

If the name defined isthe same asavariable namein adataset, the user-defined variableisused
instead of thefilevariable. (Look for LET/D=d_set to control thisbehavior infuture Ferret ver-
sions.)

To enter expressions in Reverse Polish ordering see SET MODE POLISH (p. 257).
Examples:

1) yes? DEFINE VARIABLE sum = a+b

or equivalently

yes? LET sum = a+b

218 COMMANDS REFERENCE

4.7

2) yes? DEFINE VARIABLE/TITLE="velocity"/UNIT="m/sec" pos[T=@DDC]*0.01
Defines velocity in m/sec from position, pos, in cm.

Command qualifiersfor DEFINE VARIABLE:

DEFINE VARIABLE/D=dataset
Restricts the scope of the variable name to the named data set. See detailed discussion in
Chapter3, section “Defining New Variables’ (p. 75).

DEFINE VARIABLE/QUIET
Suppresses message that, by default, tells you when you are redefining an existing variable.
This qualifier isuseful in command files.

DEFINE VARIABLE/TITLE=

Specifies atitle (in quotation marks) for the user-defined variable. Thistitle will be used to la-
bel plots and listings. If no title is specified the text of the expression will be used asthetitle.
(Seeaso SET VARIABLE/TITLE, p. 262.)

DEFINE VARIABLE/UNITS=
Specifies the units (in quotation marks) of the variable being defined. (See command SET
VARIABLE/UNITS, p. 262.)

DEFINE VIEWPORT
ICLIP/ORIGIN /SIZE ITEXT IXLIMITS/YLIMITS

Defines anew viewport (a sub-rectangle of the graphics window).

yes? DEFINE VIEWPORT[/qualifiers] view name

| ssuing the command SET VIEWPORT isbest thought of asentering “viewport mode.” While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multipleplotsaredrawnina
single viewport without the use of /OVERLAY the current plot will erase and replacethe previ-
ous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will alwayslie on top, possibly obscuring
what is underneath. By default, the state of “viewport mode” is canceled.

Example:

yes? DEFINE VIEWPORT/XLIMITS=0,.5/YLIMITS=0,.5 LL

Definesaviewport that will place graphical output into the lower |eft quarter of the screen, and
names the viewport “LL".

COMMANDS REFERENCE 219

Command qualifiersfor DEFINE VIEWPORT.

DEFINE VIEWPORT/CLIP=
This qualifier is obsolete; see XLIMITS= and /YLIMITS= (below). Specifies the location of
the upper right corner of the viewport.

DEFINE VIEWPORT/ORIGIN=
Thisqualifier is obsolete; see /XLIMITS= and /Y LIMITS= (below). Specifies the location of
the lower left corner of the viewport.

DEFINE VIEWPORT/SIZE=
Thisqualifier is obsolete; see /XLIMITS and /YLIMITS (below). Specifies the scaling factor
to use relative to the size of the full window.

DEFINE VIEWPORT/TEXT=
Controls shrinkage (or expansion) of text.

yes? DEFINE VIEWPORT/TEXT=n view name

In some cases text appearance may become unacceptable dueto viewport size and aspect spec-
ifications. A value of 1 produces text of the same size asin the full window; 0 < n < 1 shrinks
the text; n > 1 enlarges text. Sensible values go up to about 2. When the qualifier /TEXT is
omitted, Ferret computes a text size that is appropriate to the size of the viewport.

Note that /TEXT modifies the prominence of the text through manipulation of axis lengths
rather than through direct manipulation of the many text size specifications. A low value of text
prominence produces axes that are “long” (as seen with SHOW SYMBOLS, p. 135, or PPL
LIST XAXIS, p. 108), making the (fixed size) text appear |ess prominent.

DEFINE VIEWPORT/XLIMITS=/YLIMITS=
Specifies the portion of the full window to be used.

yes? DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=yl,y2 view name
The values of the limits must be in the range [0,1]; they refer to the portion of the window (of

height and length 1) which defines the viewport. Together, /XLIMITS and /YLIMITS replace
the CLIP, ORIGIN, and SIZE qualifiersin older Ferret versions.

5 ELIF

The ELIF command is a part of Ferret's conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It isvalid only inside of an IF block. See further description
under the IF command (p. 223) in this Commands Reference section.

220 COMMANDS REFERENCE

6 ELSE

The ELSE command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It isvalid only inside of an IF block. See further description
under the IF command (p. 223) in this Commands Reference section.

7 ENDIF

The ENDIF command is a part of Ferret's conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It isvalid only inside of an IF block. See further description
under the IF command (p. 223) in this Commands Reference section.

8 EXIT
ICOMMAND_FILE

When issued interactively this command terminates program Ferret.

When executed within acommand file this command terminates the execution of the command
fileand returnscontrol to thelevel in Ferret that executed thefile (the user or another command
file).

Command qualifiersfor EXIT:

EXIT/COMMAND_FILE

When executed from within a command file EXIT/COMMAND _FILE forces an immediate
exit from Ferret rather than returning control to the user or another command file.

9 FILE

The FILE command isan aliasfor SET DATA/EZ. All qualifiers and restrictions are identical
to SET DATA/EZ

Example:
yes? FILE/VARIABLES="u,v" velocities.dat

isequivaent to
yes? SET DATA/EZ/VARIABLES="u,v" velocities.dat

COMMANDS REFERENCE 221

10

11

12

FILL

Aliasfor CONTOUR/FILL (color-filled contour plot). All qualifiersand restrictionsareidenti-
cal to CONTOUR/FILL.

Example:

yes? FILL/PAL=land sea etopo60
isequivalent to
yes? CONTOUR/FILL/PAL=land sea etopo60

FRAME
/[FORMAT/FILE

Saves the current graphics display image as aframe in the moviefileinitialized with the com-
mand SET MOV IE. FRAME isalso aqualifier for the*action” commands PLOT, CONTOUR,
POLY GON, SHADE, VECTOR and WIRE.

yes? CONTOUR my var
yes? FRAME

FRAME/FORMAT=format controls the format of the file produced.
FRAME/FORMAT=HDF appends an HDF raster 8 drawn to the specified or implied input
file. FRAME/FORMAT=GIF createsanew GIF file, any existing GIF file with the specified
or implied name using relative version number or less. The default format is HDF.
FRAME/FIL E=filename specifies the name of the output file. If /FORMAT is not specified
the output format is inferred from filename extensions of .hdf, .HDF, .gif, or .GIF.

The maximum filename length, including path, that is allowable is 255 characters.

GO
[HELP

Executes alist of commands stored in afile.

yes? GO file name

If no filename extension is specified a default of .jnl will be assumed. If the full path is speci-
fied then the filename must be enclosed in double quotation marks.

The GO command can pass arguments to the script (tool) it executes. See Chapter 1, section
“Writing GO Tools” (p. 17) for moreinformation. Argumentsto the GO command may be sep-
arated by blanks or commas. To specify multiple words as a single argument, enclose them in

222 COMMANDS REFERENCE

13

14

guotation marks. To specify an argument that isdeliberately omitted, use” ” or two consecutive
commeas.

The response of Ferret to errors encountered during execution of the command file is deter-
mined by mode IGNORE_ERRORS. (See command SET MODE, p. 251.)

The echoing of command file linesis controlled by mode VERIFY.

The GO command understands a specia syntax called “relative version numbers.” If afile-
nameis specified for the GO command which hasaversion value of zero or lessitsvalueisin-
terpreted as relative to the current highest version number. See Chapter 9, section “Relative
version numbers’ (p. 158) for a discussion of relative version numbers of files.

Note: Thecommand SET MODE IGNORE_ERRORS s useful when rerunning past sessions
which may have errors.

/HELP

The command GO/HEL P filename opens the named script with the Unix “more” command
and displaysthefirst 20 lines of the named file. Use thiscommand to quickly see the documen-
tation in a GO script.

HELP

On Unix systems interactive Ferret help is available from the command line with the com-
mands Fapropos, Fhelp, and Ftoc. If multiple windows are not available on your system the*Z
key can be used to suspend the current Ferret session and access the help; the Unix command
“fg” will then restore the suspended session.

See Chapter 1, section “Unix on-line help” (p. 24) for more information.

IF

Ferret provides an IF-THEN-ELSE syntax to allow conditional execution of commands. It
may be used in two styles—single line and multi-line. In both the single and multi-line styles
the true or false of the IF condition is determined by case-insensitive recognition of one of
these options:

TRUE condition:

e avalid, non-zero numerical value
TRUE

. T

- YES

COMMANDS REFERENCE 223

e Y
FAL SE condition:

« azerovaue

« aninvalid embedded expression (see next paragraph)
« FALSE

- F

« NO

« N

« BAD

« MISSING

Examples:

¢ IF i GT 5° THEN SAY “I is too big” ENDIF
writes message if the value of | is greater than 5
* IF (Syes_or no) THEN GO yes script ELSE GO no_script
executes yes _script or no_script according to the value of the symbol yes or_no
* IF (Sdset%|coads>TRUE|%) THEN GO my plot
executes the script my_plot.jnl only if the symbol dset contains “coads”
® IF i LT 3° THEN
GO option 1
ELIF i LT 6° THEN
GO option 2
ELSE
GO option_ 3
ENDIF
uses the multi-line IF syntax to select among GO scripts.

Embedded (grave accent) expressions can be used in conjunction with the | F syntax. For exam-
ple, "3 GT 2 (Isthree greater than 2?) evaluatesto “1" (TRUE) and ‘3LT 2" (Isthreelessthan
2?) evaluatesto “0” (FALSE). If theresult of agrave accent expressionisinvalid, for example
division by zeroasin "1/0, the string “bad” is, by default, generated. Thusinvalid expressions
areregarded as FAL SE.

Symbol substitution permits IF decisions to be based on text-based conditions. Suppose, for
example, the symbol ($DATASET) containseither coadsor levitus. Thenan IF condition could
test for coads using ($DATA SET%|coads>TRUE|%).

Thesingleline style allows IF-THEN-EL SE logic to be applied on asingle line. For example,
to make a plot only when the surface (Z=0) temperature exceeds 22 degrees we might use

IF "TEMP[X=160W,Y=2N,Z=0] GT 22° THEN PLOT TEMP[X=160W, Y=2N]

The single line syntax may be any of the following:

224 COMMANDS REFERENCE

15

IF condition THEN clause 1

IF condition THEN clause 1 ENDIF

IF condition THEN clause 1 EL SE clause 2

IF condition THEN clause 1 ELSE clause 2 ENDIF

Note that both ELSE and ENDIF are optional in the single line syntax. Groups of commands
enclosed in parentheses and separated by semicolons can be used as clause 1 or as clause 2.
Thereisno ELIF (pronounced “elseif”) statement in the single line syntax. However, | F condi-
tions can be nested asin

IF il GT 5 THEN (IF "jl LT 4° THEN go option 1 ELSE go option_ 2)

The multi-line style expands the IF capabilities by adding the ELIF statement. Multi-line IF
statement follows the pattern

IF condition 1 THEN
clause 1 line 1
clause 1 line 2

ELIF condition 2 THEN
clause 2 line 1

ELIF condition 3 THEN
ELSE

ENDIF

Notethat THEN isoptional at theend of IF and EL I F statements but the ENDIF statement isre-
quired to close the entire IF block. Single line IF statements may be included inside of
multi-line IF blocks.

LABEL
INOUSER

Places alabel on the current plot; aliasfor PPL %L ABEL. %L ABEL isone of PPLUS sprimi-
tive plot commands. It placesalabel onthe plot immediately after being issued (rather than de-
ferring placement). PPLUS does not assign numbers to labels created with LABEL, so they
cannot be manipulated as movable labels. The label can also be placed on the plot using the
mouse to point and click (see Chapter 6, section “Positioning labels using the mouse pointer,”
p. 112).

yes? LABEL xpos, ypos, center, angle, size text

COMMANDS REFERENCE 225

XpOS, Ypos position in user units (world coordinates)

center -1 left justification

0 centered

1 right justification
angle angle in degrees, 0 degrees at 3 0’ clock
Size size of text ininches

See Chapter 6, section “Labels’ (p. 108) for examples.
Command qualifiersfor LABEL:
LABEL/NOUSER

Locateslabelsininchesinstead of user units (xpos and ypos are specified in inchesrather than
in world coordinates).

16 LET

The LET command is an alias for DEFINE VARIABLE. All qualifiers and restrictions are
identical to DEFINE VARIABLE.

Example:
yes? LET A = B

isequivalent to
yes? DEFINE VARIABLE A =B

17 LIST
MHIKIL ILIMITS JILIMITS/KLIMITS/LLIMITS/XLIMITS/YLIMITS
[ZLIMITS/TLIMITS/X/Y/ZIT /D /APPEND /FILE /FORMAT /HEADING /NOHEAD
/ORDER /RIGID /SINGLE/QUIET

Produces alisting of the indicated data.

LIST[/qualifiers] [expression 1 , expression 2 , ...]

Example:

yes? LIST/Z=10 u , v , u™2 + v*2

Lists the 3 quantities specified using the current default data set and region (at depth 10).

226 COMMANDS REFERENCE

Parameters

Expressions may be any valid expression. See Chapter 3, section “Expressions’ (p. 49) for a
definition of valid expressions. If multiple variables or expressions are specified they may be
listed together in columns or in sequence depending on the /SINGLY qualifier. The expres-
sion(s) will be inferred from the current context if omitted from the command line.

If multiple expressions are given on the command line and /SINGLY is not specified, then the
expressions must be conformable. See Chapter 3, section “Multi-dimensional expressions’ (p.
50) for adefinition of conformable expressions. Degenerate or single point axis limitswill be
promoted up (values repeated) as needed.

Example:

yes? LIST/I=1:3/J=1:2 i+j, i
Command qualifiersfor LIST:

LIST/NI=13=/K=/L=/X=IY=/Z=T=
Specifiesvalue or range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be
used when eval uating the expression(s) being listed.

LIST/ILIMITS=ALIMITS=/KLIMITS=/LLIMITS=

Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression’s limits it is possible to
/APPEND data later. (See Chapter 10, section “Simple Conversions Using Ferret,” p. 159, ex.
4).

LIST/XLIMITS=/YLIMITS=/ZLIMITS=/TLIMITS=

Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression’s limits it is possible to
/APPEND data |ater. (See Chapter 8, section “Simple Conversions Using Ferret,” p. 159, ex.
4).

LIST/D=
Specifies the default data set to be used when evaluating the expression(s) being listed.

LIST/APPEND

Usethis qualifier together with the /FILE qualifier to indicate that the listed data should be ap-
pended to a pre-existing file. If no file exists by the name indicated a new fileis created. This
qualifier is not applicable to /FORMAT=GT. When used with /FORMAT=CDF it permits any
datainthefileto be overwritten, new variablesto be added to thefile, and appending of new in-
dices along the T axis of the variables in the file. This qualifier overrides the command
CANCEL LIST/APPEND.

COMMANDS REFERENCE 227

LIST/FILE [=file_name]
Namesafileto receivethelisted data. If /FILE is specified with no name then the default name
isused from the SET LIST/FILE command.

Example:

yes? LIST/FILE=my file.dat sst[D=coads climatology]
See command SET LIST (p. 248) for further information on automatic filename generation.

LIST/FORMAT=
Specifies an output format (=format_choice) for the data to be listed.

yes? SET LIST/FORMAT=format choice
or
ves? sET nisT/ForMAaT (useformat set by SET LIST/FORMAT)

Format choices:

FORTRAN format produces ASCII output

“UNFORMATTED” produces unformatted (binary) output using FORTRAN record
structure

“CDF” produces NetCDF format output

“GT” produces TMAP GT format

“STREAM” produces unstructured binary floating point (C-style)

“tab” produces tab-delimited output

“comma’ produces comma-delimited output

This command has the same function as SET LIST/FORMAT except that it does not affect fu-
tureL1ST commands. See command SET LIST/FORMAT (p. 249) for detailed documentation.

Notesfor LIST/FORMAT:

1) All output values, regardless of the/FORMAT designation, will be of type single precision
floating point. For FORTRAN output formats thismeansall numerical field specifiers must
be 13 F” , 113 E” , Or 13 G” .

2) For FORTRAN-formatted and UNFORMATTED (binary) output, the contents of asingle
output “record” are determined by the/ORDER qualifier. For example, eachrecord will bea
lineof Y valuesfor LIST/ORDER=Y X. If /ORDER is omitted, the records will be the first
output axis of greater than unity length taken in the order X, Y, Z, then T. FORTRAN-for-
matted output records may be further split by the usual rules of FORTRAN output format-
ting.

228 COMMANDS REFERENCE

3) FORTRAN formats must be enclosed in parentheses. If blanks areincluded in the format it
must be enclosed in quotation marks. Output strings are permitted in the format.

Example:

yes? LIST/FORMAT= (“The temperature is:”, F6.3) sst[X=180, Y=0]

4) The default listing style includes labels for the rows and columns of the output. When a
FORTRAN format is specified, these |abels are omitted.

5) On Unix systems the [FORMAT=UNFORMATTED specifier produces FORTRAN-style
variable-length records. On most implementations this means that a 4-byte field containing
the record length begins and ends each record of data.

6) The command alias SAVE is provided for the commonly used LIST/FORMAT=CDF.
NetCDF outputs are self-documenting, including grid definitions. The output files can be
used as input with the command USE—alias for SET DATA/FORMAT=CDF. See com-
mand SAVE (p. 240) for further notes about NetCDF files.

LIST/HEAD

For ASCII datalistingsthis command determines whether to precede thelisting with aheading
describing data set, variable and region. This qualifier overrides the CANCEL LIST/HEAD
command.

LIST/HEADING[=ENHANCED]

For ASCII datalistingsthis qualifier determines whether to precede the listing with a heading
that describes the data set, variable, and region. This qualifier overrides the CANCEL
LIST/HEAD command. When the argument /HEADING=ENHANCED is used a self-docu-
menting heading is provided that includes the axis coordinates.

For NetCDF output files (alias SAVE) the /[HEADING=ENHANCED option causes the
NetCDF file structure to include extra coordinate information that describes how the particular
data subset being written fits within the broader coordinate system of the grid fromwhichitis
extracted. When a NetCDF file with an enhanced heading is accessed by Ferret (using SET
DATA or USE) the index values will appear to be consistent with the parent data set.

LIST/NOHEAD
Does not precede listing with a heading describing data set, variable and region. Thisqualifier
overridesthe SET LIST/HEAD command.

LIST/ORDER=
Specifies the order (ORDER=permutation) in which axes are to be laid out in the listing.
Examples:

yes? LIST/ORDER=XY sst !X varies fastest

COMMANDS REFERENCE 229

yes? LIST/ORDER=YX sst 'Y varies fastest

The“permutation” string may be any permutation of theletters X, Y, Z, and T. /ORDER is ap-
plicable only to /[FORMAT=unf and FORTRAN formats.

Note that a 1-dimensional list will, by default, place only one value per record. The/ORDER
qualifier can cause the 1-dimensional list to occur in asingle record. For example,

LIST/I=1:51I

will list as 5 records whereas

LIST/I=1:5 /ORDER=X I
will list 5 values on asingle record.

LIST/PRECISION=#
Controls the digit precision of LIST output

Using the qualifier /PRECISION=#digits the output precision of the LIST command may be
easily controlled. This qualifier functions exactly as does the SET LIST/PRECISION= com-
mand but it applies only to the current command.

LIST?QUIET
Using the qualifier /QUIET will prevent the message “LISTing to file XXXX.XXXX” from
being displayed.

LIST/RIGID

Valid only with /FORMAT=CDF. Indicates that Ferret should not create a NetCDF “record”
axisasthetime axisfor any of the variables listed with this command. Time axes are, instead,
of fixed length and the /APPEND qualifier is not usable to extend the listing.

LIST/SINGLY

Thisqualifier isrelevant only when multiple expressions are specified in the LIST command.
When the /SINGLY qualifier is specified the entire listing of each expression including (op-
tional) heading and all datais completed before proceeding to the next expression.

By default the expressions are not listed singly—each line contains one value of each expres-
sion. Thequalifier hasno effect if only asingle expressionis specified. If the/FILE qualifieris
specified to use automatic filename generation and /APPEND is not specified, then each ex-
pression islisted to a separatefile.

LIST/TITLE="titlestring”

Valid only with/FORMAT=CDF. Causesthe global attribute “title’ to be defined inaNetCDF
file, thereby setting itstitle.

230 COMMANDS REFERENCE

18 LOAD
NMIKIL IXIYIZIT ID INAME /PERMANENT /TEMPORARY

Loads a variable or expression into memory.

yes? LOAD[/qualifiers] [expression 1 , expression 2 , ...]

Loading may speed execution of later commands that will require the loaded data. Oftenitis
helpful to LOAD alargeregion of dataencompassing several small regionsinwhich theanaly-
siswill be pursued.

Load interacts with the current context exactly as other “action” commands CONTOUR,
PLOT, SHADE, VECTOR, LIST, etc. do.

Parameters

Expressions may be any valid expression. See Chapter 3, section “Expressions’ (p. 49) for a
definition of valid expressions. If multiple variables or expressions are specified they are
treated in sequence. The expression(s) will beinferred from the current context if omitted from
the command line.

Command qualifiersfor LOAD:

LOAD/I1=3=IK=/L=/X=/Y=/Z=/T=
Specifiesvalue or range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be
used when eval uating the expression(s) being loaded.

LOAD/D=
Specifies the default data set to be used when eval uating the expression(s) being |oaded.

LOAD/NAME
Obsolete. Provided for compatibility with much older Ferret versions.

LOAD/PERMANENT

Data loaded with LOAD/PERMANENT are kept in memory until a LOAD/TEMPORARY
command is given that refers to the same data. See command LOAD/TEMPORARY (p. 231).
Notethat thiscommand may cause memory fragmentation. It should generally be givenimme-
diately following CANCEL MEMORY and preferably is used only to load file variables (as
opposed to expressions).

LOAD/TEMPORARY (default)

Data loaded with LOAD or LOAD/TEMPORARY is brought into memory but may be un-
loaded based on a priority scheme of least recent use when memory space is required.

COMMANDS REFERENCE 231

19 MESSAGE
ICONTINUE /QUIET

Displays a message at the terminal.

yes? MESSAGE text

By default a carriage return is required from the keyboard for program execution to continue
(used to halt the execution of acommand file).

Command qualifiersfor MESSAGE:

MESSAGE/CONTINUE
Continues program execution following the display of the message text without waiting for a
carriage return from the operator.

MESSAGE/QUIET
Waits for a carriage return from the operator but does not supply a prompt for it.

20 PALETTE

Aliasfor PPL SHASET SPECTRUM=. Specifies or restores the default color.

yes? PALETTE pal name

Theargument isthe name of apalettefile. Many palettes areincluded in the Ferret distribution.
Try the Unix command “ Fpalette **’” to see alist of available palette files.

Some of the palettes are designed for particular needs. “ centered.spk”, for example, empha-
sizes the contrast between positive and negative shade levels. “land_sea.spk” uses blue tones
for negative values and browns and greens for positive values, making it suitable for topogra-

phy displays.

Palettefilesend in thefile suffix .spk, but the suffix isnot necessary when specifying a pal ette.
Use co try palette pal name tO display a palette. The GO files “exact_color.jnl” and
“sgueeze _colors,jnl” can be used to modify palettes. You can also create new palettefileswith
atext editor. See Chapter 6, section “ Shade and fill colors’ (p. 116) for the format of a palette
file.

PALETTE with no argument restores the default palette. When you use the qualifier
/PALETTE= in conjunction with /SET_UPR, PPLUS makes the specified color spectrum the
new default palette, and all subsequent shaded or color-filled plots will use that palette as the
default. To restore the previous palette to the default, use PALETTE with no argument after
your customization.

232 COMMANDS REFERENCE

21 PATTERN

22

23

Aliasfor PPL PATSET PATTERN-=. Specifies or restores the default pattern.

yes? PATTERN patt name

The argument is the name of a pattern file. Many patterns are included in the Ferret distribu-
tion. Try the Unix command “Fpattern **’” to see alist of available pattern files.

Ferret hasthe capability to make color fill plotsusing solid color only, and also with colorslaid
on in patterns.

The PATTERN command sets the patterns to be used in a plot generated with the SHADE,
FILL and POLY GON commands. It is similar to the PALETTE command, which sets colors,
but the PALETTE and PATTERN commands act independently.

When Ferret is started up, only one pattern isset, SOLID. The SOLID pattern is equivalent to
not using any pattern, and SHADE, FILL and POLY GON fill their cells with solid color.

Pattern files end in the file suffix .pat, but use of the suffix is not necessary when specifying a
pattern. Use co try pattern patt name tO display the patterns specified in a pattern file. co
show all patterns drawsaplot showing al the available pattern files and their names. No-
tice that patterns can be used with a single color, or multiple colors, depending entirely on the
PALETTE specification.

A patternfile may specify one or more patterns. If there arefewer patterns specified in apattern
filethan there are levelsin a particular plot, the patterns will be repeated.

PAUSE

Aliasfor MESSAGE

PLOT
HIKIL IXIYIZIT ID IFRAME /LINE /INOLABEL /OVERLAY
/SET_UP/SYMBOL /TITLE/TRANSPOSE /VS
IXLIMITS/YLIMITS

Produces aline plot.

yes? PLOT[/qualifiers] [expression 1 , expression 2 , ...]
The indicated expression(s) must represent aline (not aplane) of data (PLOT/V Sisan excep-

tion). Unless the /VS quadlifier is used, the independent variable is the underlying coordinate
axisfor thisline of data.

COMMANDS REFERENCE 233

http://shark.pmel.noaa.gov/~kobrien/v50_ug/squares_color.gif
http://http://shark.pmel.noaa.gov/~kobrien/v50_ug/squares_patterns.gif
http://http://shark.pmel.noaa.gov/~kobrien/v50_ug/squares_patterns.gif
http://shark.pmel.noaa.gov/~kobrien/v50_ug/show_patterns.gif

Example:

yes? PLOT/1=1:100 sst
produces atime series plot of the first 100 points of sst.
Parameters
The argument(s) for PLOT specify the variable or expression to be plotted.

When the /VS qudlifier is used the indicated expressions may have any geometry in 4D space
but they must match in the total number of pointsin each expression. The pointsare associated
in the order of their underlying axes. When the /V S qualifier is not used the indicated expres-
sion(s) must describe aline (not a plane) of data.

The expression(s) are inferred from the current context if omitted from the command
line—i.e., if no expression is given then the argument most recently given is used, or the de-
fault expression may be explicitly set with SET EXPRESSION.

When Ferret plots multiple data lines ssmultaneously, PPLUS automatically cycles through
pen colors and symbols, creating up to 26 distinct line types. Try GO line_samples to see
samples of these styles.

Command qualifiersfor PLOT:

PLOT/I=/3=/K=/L=/X=/Y=/Z=/T=
Specifiesvalue or range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be
used when evaluating the expression(s) being plotted.

PLOT/D=
Specifies the default data set to be used when eval uating the expression(s) being plotted.

PLOT/FRAME

Causes the graphic image produced to be captured as an animation frame and written to the
movie file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexi-
ble and we recommend its use rather than this qualifier.

PLOT/LINE[=]
The/LINE qualifier without =n causesthe PLOT command to connect the plotted pointswith a
line regardless of the state of the /SYMBOLS qualifier.

/LINE=n specifiesthelinestyle.“n” isaninteger between1and 18. co 1ine thickness draws
samples of theavailablelinestyles. Linestyle“1” isalwaysasolid linein the foreground color
(black or white). Other line styles are device dependent (colors or dash patterns). For color de-
vices, n=1-6 draws single-thickness lines each a different color. n=7-12 draws double-thick

234 COMMANDS REFERENCE

http://shark.pmel.noaa.gov/~kobrien/v50_ug/line_samples.gif
http://shark.pmel.noaa.gov/~kobrien/v50_ug/line_thickness.gif

lines in the same color order, and n=13-18 draws triple-thick lines. See Chapter 6, section
“Text and line colors’ (p. 114) for a chart of the default colors.

PLOT/NOLABELS
Suppresses al plot labels except axis labels.

PLOT/OVERLAY

Causestheindicated field(s) to be overlaid on the existing plot. This qualifier can also be used
tooverlay linesor symbolson 2D plots (SHADE, CONTOUR, or VECTOR) provided the axis
scalings are appropriate.

PLOT/SET_UP

Performsall theinternal preparationsrequired by program Ferret for plotting but does not actu-
ally render the plot. The command PPL can then be used to make changes to the plot prior to
producing output with the PPL PLOT command. This makes possible certain customizations
that are not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

PLOT/SYMBOL[=]

The/SYMBOL qualifier causesthe PLOT command to mark each plotted point with asymbol.
If the/LINE qualifier is given too the symbols are also connected with aline; if /LINE isomit-
ted no connecting line is drawn.

Optionally, the symbol number may be explicitly specified as an integer value between 1 and
88. Theinteger refersto the PPLUS plot marker numbers(e.g., 1 for x, 3for +, etc.). Type*“ GO
show_symbols” and “GO show_88 syms’ at the Ferret prompt to see available symbols and
their reference numbers. The symbols are also documented on page 1 of the document
$FER_DIR/doc/pplus_fonts.ps.

PLOT/TITLE=

Allows user to specify aplot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@CO002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include aleading ESC (escape) character.

PLOT/TRANSPOSE

Causesthe horizontal and vertical axesto beinterchanged. By default the X axisisdrawn hori-
zontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plotsthe Z data axisis
vertical by default.

PLOT/VS

Specifies that the first expression given in the command line isto be used as the independent
axis.

Example:

yes? PLOT/Y=20S:20N/X=180/T=27740:27741/2=100/VS temp , salt

COMMANDS REFERENCE 235

http://shark.pmel.noaa.gov/~kobrien/v50_ug/show_88_syms.gif
http://shark.pmel.noaa.gov/~kobrien/v50_ug/show_88_syms.gif

24

Produces a plot of salinity (vertical axis) against temperature (horizontal axis) along the indi-
cated range of latitudes and times. The plot will belabeled “ salt” ; the vertical (dependent) vari-
ableistheonethat determinesthekey. The qualifier 'TRANSPOSE can be used in conjunction
with /VS to further manipulate the labeling and axis orientation.

PLOT/VSimplies/SYMBOL by default to produce scatter plots. Use PLOT/V S/LINE to pro-
ducealineplot.

PLOT/XLIMITS=
Specifies axisrange and tic interval for the X axis. Without this qualifier Ferret selects area-
sonable range.

yes? PLOT/XLIMITS=lo:hi:[increment] [expression(s)]

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
IS negative, the axisis reversed.

Notethat the“X” in/XLIMITS refersto the horizontal axis of the plot rather than to the X axis
of the grid. Plots may be transposed manually with the/TRANSPOSE qualifier. On transposed
plots /XLIMITS will refer to the vertical axis of the plot.

PLOT/YLIMITS=
Specifiesthe axisrange and tic interval for the Y axis. See /XLIMITS (above).

POLYGON
IIKILIXIY [ZITIOVERLAY/SET_UP/FRAME/D /TRANSPOSE /COORD_AX/
SYMBOL /NOLABELS/LEVELS/LINE /PALETTE /XLIMITS/YLIMITS/TITLE/
NOAXES/PATTERN /FILL /KEY INOKEY

Produces a color-filled or line plot of polygons. By default a color key isdrawn and lines are
not drawn.

POLYGON[/qualifiers] =x-vertices, y-vertices [, values]
Parameters

Thetwo x- and y- vertices parameters separately specify the x and y coordinates of the vertices
of the polygons to be plotted.

The values may be any valid expression. If acolor-filled plot is specified, the numerical value
of the expression associated with each polygon determines the color of that polygon, as in
SHADE and FILL plots. See Chapter 3, section “Expressions’ (p. 49) for adefinition of valid
expressions. If values are omitted the /FILL option is not valid—only /LINE plots may be
made.

236 COMMANDS REFERENCE

Example:

yes? LET XTRIANGLE = YSEQUENCE ({-1,0,1})

yes? LET YTRIANGLE = YSEQUENCE ({-1,1,-1})

yes? LET XPTS = 180+30*RANDU (I[1i=1:101])
1)

yes? LET YPTS = 30*RANDU(1+I[i=1:10
yes? POLYGON XTRIANGLE+XPTS, YTRIANGLE+YPTS, I[I=1:10]

Command qualifiersfor POLY GON:

POLY GON /I=/J=/K=/L=/X=/Y=/Z=[T=
Specifiesvalue or range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

POLY GON/D=
Specifies the default data set to be used when eval uating the expression being plotted.

POLY GON/FRAME

Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In genera the FRAME command (p. 222) is more flexible
and we recommend its use rather than this qualifier.

POLY GON/KEY
Displays acolor key for the palette used in the color-filled plot. By default akey isdrawn un-
lessthe /LINE or /INOKEY qualifier is specified.

POLYGON/LEVELS
Specifiesthe POLY GON levelsor how thelevelswill be determined. If the/LEVELSqualifier
isomitted Ferret automatically selects reasonable POLY GON levels.

See Chapter 6, section “Contouring” (p. 124) for examples and more documentation on
/LEVELS.

POLY GON/LINE
Outlines polygons specified by x and y verticeson aPOLY GON plot. When/LINE isspecified
the color key is omitted unless specifically requested via/KEY.

POLY GON/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

POLYGON/NOLABELS
Suppresses al plot labels except axis labels.

POLY GON/OVERLAY
Causes the indicated POLY GON plot to be overlaid on the existing plot.

COMMANDS REFERENCE 237

POLY GON/PALETTE=

Specifiesacolor palette (otherwise, adefault rainbow paletteis used). Try the Unix command
s Fpalette '+ toSeeavailable palettes. Thefilesuffix *.spk isnot necessary when specifying
apalette. See command PALETTE (p. 232) for more information.

The/PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE command (p. 232) for further discussion.

POLY GON/PATTERN=

Specifies a pattern file (otherwise, adefault SOLID pattern is used). Try the Unix command =
Fpattern '+ tOSeeavailable pattern files. Thefile suffix *.pat is not necessary when specify-
ing a pattern file. See command PATTERN (p. 233) for more information.

POLY GON/SET_UP

Performs all the internal preparations required by program Ferret for a POLY GON plot but
does not actually render output. The command PPL can then be used to make changes to the
plot prior to producing output with the PPL FILLPOL command. This permits plot
customizations that are not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

POLYGON/TITLE=

Allows user to specify aplot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@CO002) in the title string, it is necessary either to
CANCEL MODE ASCII ortoincludealeading ESC (escape) character. See Chapter 6, section
“Fonts’ (p. 120).

yes? POLYGON/TITLE="title string" x-vertices, y-vertices, values

POLY GON/TRANSPOSE

Causesthe horizontal and vertical axesto beinterchanged. By default the X axisisdrawn hori-
zontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plotsthe Z data axisis
vertical.

Note that plotsinthe YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /IXLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

POLYGON/XLIMITS=
Specifiesthe X axisrange and tic interval (otherwise, Ferret selects reasonable values).

yes? POLYGON/XLIMITS=lo:hi:increment

The optiona “increment” parameter determinestic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

238 COMMANDS REFERENCE

25

26

Notethat the“X” in/XLIMITSrefersto the horizontal axis of the plot rather than to the X axis
of thegrid. Thiscan lead to confusion, especially on plotsinthe YT or ZT plane. Plotsin these
planes are automatically transposed to placethe Y or Z axis, respectively, on thevertical axisof
the plot. Plots may aso be transposed manually with the /TRANSPOSE qualifier. On trans-
posed plots /XLIMITS will refer to the vertical axis of the plot.

POLYGON/YLIMITS=
Specifiesthe Y axisrange and tic interval. See /XLIMITS (above).

PPLUS
IRESET

Invokes PPLUS (“PLOT PLUS” written by Don Denbo) to execute acommand or commands.

yes? PPLUS ! (also PPL); invokes PPLUS interactively
or
yes? PPL pplus command lexecutes a single PPLUS command
or
yes? PPL/RESET !restores PPLUS to start-up defaults
Example:
yes? PPL CROSS 1 !reference line through zero

Executes the PPLUS command “CROSS’ and immediately returns control to Ferret.

When PPLUS isinvoked interactively the prompt is“PPL>" instead of the usua “yes?’. The
EXIT command given at the “PPL>" prompt returns control to Ferret.

See Chapter 6 (p. 103) for more information on Ferret/PPLUS interactions. A complete list of
PPLUS commandsisin PLOT PLUSfor Ferret User’s Guide.

Command Qualifiersfor PPLUS:

PPLUS/RESET
Restores PPLUS to start-up settings.

QUIT

Aliasfor EXIT; aso just Q.

COMMANDS REFERENCE 239

27 REPEAT
NIKIL IXIY1ZIT

Repeats a command or group of commands over a range of values along an axis.

yes? REPEAT/g=lo:hi[:increment] COMMAND

Theunitsof lo, hi, and increment arethe units of theunderlying grid axisif thequalifier is X, Y,
Z,or T. Thequadlifiersl, J, K, or L advance the repeat |0oop by incrementing the indicated index
(the default index increment is 1). Use SHOW GRID to examine the axis units (if the unitsare
not displayed try CANCEL MODE LATITUDE, LONGITUDE, or CALENDAR as appropri-
ate). To run theloop from the highest value decreasing towards the lowest value, specify incre-
ment to be less than zero. Any command or group of commands that can be specified at the
command line can also be given as an argument to REPEAT. If MODE VERIFY is SET, the
current loop index is displayed at the console as REPEAT executes.

Examples:

1) yes? REPEAT/L=1:240 CONTOUR/Y=30S:50N/X=130E:70W/LEV/FRAME sst
Produces a 240-frame movie of sea surface temperature.

2) yes? REPEAT/Z=300:0:-30 GO compz
Executes the command file compz.jnl at Z=300, Z=270, ..., Z=0.

3)yes? REPEAT/L=1:250:5 (GO set up; CONTOUR sst; FRAME)
Repeats three commands—execution of a GO script, CONTOUR, and FRAME—for each
timestep specified.

Command qualifiersfor REPEAT:

REPEAT/I=/J=/K=/L=/X=/Y=/Z=/T=

Repeats the requested command(s) for the specified range of axis subscripts (I, J, K, or L) or
axiscoordinates (X, Y, Z, or T). Notethat when T axis limits are specified as dates, the units of
increment are hours.

28 SAVE

The SAVE command is an alias for LIST/FORMAT=CDF. All qualifiers and restrictions are
identical to LIST/FORMAT=CDF.

Example:
yes? SAVE temp, salt

isidentical to
yes? LIST/FORMAT=CDF temp, salt

240 COMMANDS REFERENCE

Notes:

1) Gapsin NetCDF outputs arefilled with the missing value flag of the variable being written.
(See Chapter 3, section “Missing valueflags,” p. 47.) Inthe example below, if “temp” and
“salt” share the same time axis then the L=2:4 values of salt will be so filled.

yes? SAVE/FILE=test.cdf temp[L=1:5], salt[L=1], salt[L=5]

2) Transformations that compress an axis to a point produce results that Ferret regards as
time-independent. Thus, this 12-month average:

yes? SAVE/FILE=annual.cdf sst[L=1:120@AVE]

creates a NetCDF file with no time axis. It would not be possible to append the average of
the next 12 months as the next time step of thisfile. However, atime location can be inher-
ited from another variable. In thisexample, weinherit the time axis of “timestamp” in order
to create atime axisin the NetCDF file.

yes? DEFINE AXIS/T="1-JUL-1980":"1-JUL-1985"/UNIT=year tannual
yes? DEFINE GRID/T=tannual gannual

yes? LET timestamp = T[G=gannual] * 0 lalways O
yes? LET sst ave = sst[L=1:12@AVE] + timestamp

yes? SAVE/FILE=annual.cdf sst ave[L=1]

yes? LET sst ave = sst[L=13:24@AVE] + timestamp

yes? SAVE/FILE=annual.cdf/APPEND sst ave[L=2]

. etc.

3) Background documentation about the definition and data set of origin for a variable are
saved in the “history” attribute of avariable when it isfirst saved in the NetCDF file. If the
definition of the variable is then changed, and more values are inserted into the file using
SAVE/APPEND, the modified definition will NOT be documented in the output file. If the
new definition changesthe defining grid for the variabl e the resultswill be unpredictable.

29 SET

Sets features of the operating environment for program Ferret.
Generally, features may be toggled on and off with SET and CANCEL. Features affected by
SET may be examined with SHOW (see also CANCEL, p. 203, and SHOW, p. 268).

29.1 SET AXIS
/MODULO

Indicates that an axisisto be treated as a modulo axis (the first point “wraps’ and follows the
last point, asin alongitude axis).

COMMANDS REFERENCE 241

yes? SET AXIS/MODULO x_ ax

/DEPTH

Indicates that an axisisto be treated as a depth axis (graphics made with positive down).

yes? SET AXIS/DEPTH z ax

29.2 SET DATA_SET
/[FORMAT /RESTORE /SAVE /EZ /ORDER
SET DATA/EZ /COLUMNS/FORMAT /GRID /SKIP/TITLE /VARIABLE

Specifies ASCII, binary, NetCDF, GT, or TS-formatted data set(s) to be analyzed.
1) ASCII or binary:

yes? SET DATA/EZ[/qualifiers] data setl, data set2, ..
or equivalently, with alias FILE:

yes? FILE[/qualifiers] data_ setl, data set2, ...
2) NetCDF:

yes? SET DATA/FORMAT=cdf NetCDFifile
or equivalently, with alias USE

yes? USE NetCDF file

3) GT or TS-formatted:

yes? SET DATA data setl, data set2, ...

Inthecaseof GT or TS-formatted files, an extension of .desisassumed. A previously SET data
set can be SET by its reference number, as shown by SHOW DATA, rather than by name.

If aUnix filenameincludes a path (with slashes) then the full path plus name must be enclosed
in double quotation marks.

Note: Maximum simultaneous data sets: 60 (as of Ferret ver. 3.1). Use CANCEL DATA if the
limit is reached.

Command qualifiersfor SET DATA_SET:

SET DATA/FORMAT=
Specifiestheformat of the data set(s) being SET. Allowablevaluesfor “file_format” are® cdf”,
“free”, “unformatted”, “stream” or aFORTRAN format in quotation marks and parentheses.

yes? SET DATA/FORMAT=file format [data set name or number]

242 COMMANDS REFERENCE

Valid arguments for /[FORMAT=

1)

2)

3)

4)

free (default for SET DATA/EZ)
Tousetheformat “free” afile must consist entirely of numerical dataseparated by commas,
blanks or tabs.

cdf
If SET DATA/FORMAT=cdf (alias USE) is used, the datafile must be in CDF format. The
default filename extension is“.cdf”.

Example:

yes? SET DATA/FORMAT=CDF my netcdf
or equivalently,
yes? USE my netcdf

See Chapter 2, section “NetCDF data, p. 28.”

unformatted

To use the format “unformatted” the data must be floating point, binary, FORTRAN-style
records with all of the desired data beginning on 4-byte boundaries. This option expects 4
bytes of record length information at the beginning and again at the end of each record. The
“-” designator (/VARIABLES) can be used to skip over unwanted 4-byte quantities (vari-
ables) in each record. See Chapter 2, section “Binary data’ (p. 31).

FORTRAN format string
FORTRAN format specifications should be surrounded by parentheses and enclosed in
guotation marks.

Example:
yes? SET DATA/EZ/FORMAT=" (5X,F12.0)" my data set

or equivalently,
yes? FILE/FORMAT=" (5X,F12.0)" my data set

5) stream (Ferret version 3.1)

/FORMAT=stream is used to indicate that afile contains either unstructured binary output
(typical of C program output) or fixed-length records suitable for direct access (all records
of equal length, no record length information embedded in the file). With caution it isalso
possible to read FORTRAN variable-length record output. This sort of fileistypicaly cre-
ated by “quick and dirty” FORTRAN code which usesthe simplest FORTRAN OPEN state-
ment and outputs entire variables with asingle WRITE statement.

Thisformat specifier allows you to access any contiguous stretch of 4-byte values from the

file. The /SKIP=n qualifier specifies how many values should be skipped at the file start.
The /GRID=name qualifier specifiesthe grid onto which the data should be read and there-

COMMANDS REFERENCE 243

fore the number of values to be read from the file (the number of pointsin the grid). Note
that an attempt to read more data than the file contains, or to read record length informa-
tion, will result in a fatal FORTRAN error on UNIX systems and will crash the Ferret pro-
gram.

For multiple variables, usethe/COLUMNS=n specifier to specify how many 4-bytevalues
separate each variablein thefile. Each variableis assumed to represent a contiguous stream
of valueswithinthefileand all variables are assumed to possess the same number of points.
(A “poor man’s’” method is to create multiple Unix soft links pointing to the same file and
multiple SET DATA/EZ commands to specify one variable from each link name.)

See Chapter 2, section “Binary data’ (p. 31) for further discussion and examples of binary
types.

SET DATA/RESTORE
Restores the current default data set number that was saved with SET DATA/SAVE.

Thisisuseful in creating GO filesthat perform their function and then restore Ferret to its pre-
vious state.

SET DATA/SAVE
Saves the current default data set number so it can be restored with SET DATA/RESTORE.

Thisisuseful in creating GO filesthat perform their function and then restore Ferret to its pre-
vious state.

SET DATA/FORMAT=cdf/ORDER=<permutation>

The DATA/FORMAT=cdf/ (or its alias USE) accepts the qualifier /ORDER=<permutation>.
The permutation argument contai ns information both about the order of the axesin thefileand
the direction.

The order indicated through the/ORDER qualifier should always be exactly the reverse of the
order in which thedimensions of variablesasrevea ed by the netCDF ncdump -h command are
declared. (This ambiguity reflects the linguistic difference between “C ordering” and
“FORTRAN ordering.” The default X-Y-Z-T ordering used in the COARDS standard and in
Ferret documentation would be referred to as T-Z-Y-X ordering if we used C terminology.)

Thus, to USE afilein Ferret in which the data on disk transposesthe X and Y axes we would
specify

yes? USE/ORDER=YX my file.nc

Touseafileinwhichthedatawerelaid downin XZ “slabs,” such asmight occur in model out-
put we would specify

yes? USE/ORDER=XZYT my model.nc

244 COMMANDS REFERENCE

To indicate that the coordinates along a particular axis are reversed from the “right hand rule”
ordering, for example a'Y axis which runs north to south (not uncommon in image data), we
would precede that axis by a minus sign. For example

yes?USE/ORDER=-XY my flipped images.nc

The minus sign should be applied to the axis position after transposition. Thus if a file both
transposed the XY axis ordering and used north-to-south ordering in latitude one would access
the file with

yes?USE/ORDER=Y-X my transposed flipped images.nc

NetCDF files, while in principle self-documenting, may be contain axis ambiguities. For ex-
ample, afilewhich is supposed to contain atime series, but lacks units on the coordinate vari-
ableinthefilemay appear to bealine of dataon the X axis. The/ORDER qualifier can be used
to resolvethese ambiguities. For thisexample, onewouldinitializethefile with the command

yes?USE/ORDER=T my ambiguous time series.nc

Note that specifying USE/ORDER=XY ZT is not aways equivalent to specifying default or-
dering. For example, if a netCDF file contained variables on an XYT grid, the
/ORDER=XY ZT specification would tell Ferret to interpret it asan XY Z grid.

SET DATA/EZ
Accessesdatafrom an ASCII or unformatted filethat isnot in astandardized format (TMAP or
NetCDF). The command FILE isan aliasfor SET DATA/EZ.

yes? SET DATA/EZ[/qualifiers] ASCII or binary file
or, equivalently,
yes? FILE[/qualifiers] ASCII or binary file

Example:

yes? FILE/VARIABLE=my var my data.dat
See Chapter 2, section “ASCII data’ (p. 34) for more information and examples.
Command qualifiersfor SET DATA_SET/EZ:

SET DATA/EZ/COLUMNS=n
Specifies the number of columnsin the EZ datafile.

By default the number of columnsisassumed to be equal to the number of variables (including
“-"’s) gpecified by the VARIABLES qualifier.

COMMANDS REFERENCE 245

SET DATA/EZ/GRID=
Specifies the defining grid for the datain the EZ data set. The argument can be the name of a
grid or the name of avariable that is already defined on the desired grid.

Example:

yes? SET DATA/EZ/GRID=sst[D=coads] snoopy

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) isspecified. By default Ferret usesgrid EZ, aline of up to 20480 points oriented along the
X axis.

SET DATA/EZ/ORDER= (Ferret version 3.11)
Specifies the order (ORDER=permutation) in which axes are to be read.

Examples:
yes? FILE/ORDER=XY sst !X varies fastest
yes? LIST/ORDER=YX sst 'Y varies fastest

The “permutation” string may be any permutation of the letters X, Y, Z, and T. If the /for-
mat=stream qualifier isused, the string may also contain V (for variable). Thisalowsvariables
to be “interleaved.”

SET DATA/EZ/SKIP=n
Specifies the number of records to skip at the start of an EZ data set before beginning to read
the data. By default, no records are skipped.

For ASCII files a“record” refersto asingle line in the file (i.e., a newline character). If the
FORMAT statement contains slash characters the “data record” may be multiple lines; the
/SKIP qualifier isindependent of this fact.

For FORTRAN-structured binary files the /SKIP argument refers to the number of binary re-
cords to be skipped.

For unstructured (stream) binary files (e.g., output of a C program) the /SKIP argument refers
to the number of words (4-byte quantities) to skip before reading begins.

SET DATA/EZ/SWAP
Stream files only. Change the byte ordering of numbersread from thefile; big-endian numbers
are converted to little-endian numbers and vice versa.

SET DATA/EZ/TITLE=
Associates atitle with the data set.

yes? SET DATA/EZ/TITLE="title string" file name

246 COMMANDS REFERENCE

Thistitle appears on plotted outputs at the top of the plot.

SET DATA/EZITYPE=
Stream files only. Specify the data type of aset of variablesin a stream file. Available values
and their corresponding types are:

Value FORTRAN C sizein bytes
il INTEGER* 1 char 1
12 INTEGER*2 short 2
i4 INTEGER*4 int 4
r4 REAL*4 float 4
r8 REAL*8 double 8

yes? SET DATA/EZ/FORMAT=STREAM/TYPE=14,R4/VAR=V1,V2 foobar.dat

will read afile containing INTEGER*4 and REAL*4 numbers into the variables vl and v2.

SET DATA/EZ/VARIABLES=
Names the variables of interest in the file. Default isvi.

yes? FILE/VARIABLES="varl,var2,..." file name

Except in the case of [FORMAT=stream, Ferret assumes that successive valuesin the datafile
represent successive variables. For example, if there arethreevariablesin afile, thefirst value
representsthefirst variable, the second represents the second variable, the third the third vari-
able, and the fourth returns to representing the first variable. The maximum number of vari-
ables allowed in asingle data set is 20.

Variable namesmay be 1to 24 characters(letters, digits, $, and) beginning with aletter. Toin-
dicate a column is not of interest use “-” for its name.

Example: (thethird column of data will be ignored)

yes? SET DATA/EZ/VARIABLES="temp,salt,-,u,v" ocean file.dat

29.3 SET EXPRESSION

Specifies the default context expression. When Ferret's “action” commands (PLOT,
CONTOUR, SHADE, VECTOR, WIRE, etc.) areissued with no argument, the default context
expression is used. Thisis the expression last used as argument to an action command, or it
may be set explicitly with SET EXPRESSION. See Chapter 3, section “Expressions’ (p. 49)
for afull list of action commands.

yes? SET EXPRESSION exprl , expr2 , ...

COMMANDS REFERENCE 247

Examples:

1) yes? SET EXPRESSION temp
Sets the current expression to “temp”.

2) yes? SET EXPRESSION u , v , u”2 + v*2
Set the current expressionsto “u, v, u*2 + vA2”

29.4 SET GRID
/IRESTORE /SAVE

Specifies the default grid for abstract expressions. Type co wire frame demo a the Ferret
prompt for an example of usage.

yes? SET GRID[/qualifier] [grid or variable name]

Examples:

yes? SET GRID sst[D=coads]

yes? SET GRID ! use grid from last data accessed
See Chapter 4, “Grids and Regions” (p. 77).
Command qualifiersfor SET GRID:

SET GRID/RESTORE
Restores the current default grid last saved by SET GRID/SAVE. Useful together with SET
GRID/SAVE to create GO files that restore the state of Ferret when they conclude.

SET GRID/SAVE
Savesthe current default grid to be restored later. Useful together with SET GRID/RESTORE
to create GO files that restore the state of Ferret when they conclude.

29.5 SET LIST
/APPEND /FILE /FORMAT /HEADING /PRECISION

Uses SET LIST to specify the default characteristics of listed output.

yes? SET LIST/qualifiers

The state of the list command may be examined with SHOW LIST. See command CANCEL
LIST (p. 204) and LIST (p. 226).

248 COMMANDS REFERENCE

Command qualifiersfor SET LIST:

SET LIST/APPEND
Specifies that by default the listed output is to be appended to a pre-existing file. Cancel this
state with CANCEL LIST/APPEND.

SET LIST/FILE=
Specifies adefault file for the output of the LIST command.

yes? SET LIST/FILE=filename
The filename specified in thisway is adefault only. It will be used by the command

yes? LIST/FILE variable
but will beignored in
yes? LIST/FILE=snoopy.dat variable

Ferret generates afilename based on the data set, variable, and region if the filename specified
is “AUTQ". The resulting name is often quite long but may be shortened by following
“AUTO” with aminus sign and the name(s) of the axes to exclude from the filename.

Note: the region information is not used in automatic NetCDF output filenames.

Examples:

yes? SET LIST/FILE=AUTO
yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST. X 140W110WY 2S2NL 500.

yes? SET LIST/FILE=AUTO-XY
yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.L500.

SET LIST/FORMAT=
Specifiesan output format for the LIST command. (When aFORTRAN format is specified the
row and column headings are omitted from the output.)

yes? SET LIST/FORMAT=option

yes? SET LIST/FORMAT !reactivate previous format
Options

FORTRAN format produces ASCII output
“UNFORMATTED” produces unformatted (binary) output
“CDF” produces NetCDF output

“GT” produces TMAP GT format

COMMANDS REFERENCE 249

Examples:

1) yes? SET LIST/FORMAT=(1X,12F6.1)
Specifiesa FORTRAN format (without row or column headings).

2) yes? SET LIST/FORMAT=UNFORMATTED
Specifies binary output. (FORTRAN variable record length record structure.)

Notes:

* Whenusing GT format all variables named in asingle LIST command will be put into a
single GT-formatted timestep.

* Very limited error checking will be done on FORTRAN formats.

« FORTRAN formats are reused as necessary to output full record.

+ Latitude axes are listed south to north when /FORMAT is specified.

SET LIST/HEAD
Specifies that ASCII output is to be preceded by a heading that documents data set, variable,
and region. Cancel the heading with CANCEL LIST/HEAD.

SET LIST/PRECISION
Specifies the data precision (number of significant digits) of the output listings. This qualifier
has no effect when /FORMAT= is specified.

yes? SET LIST/PRECISION=# of digits

29.6 SET MEMORY
ISIZE

yes? SET MEMORY/SIZE=megawords

Thecommand SET MEMORY provides control over how much * physical” memory Ferret can
use. (In reality the distinction between physical and virtual memory isinvisible to Ferret. The
SET MEMORY command merely dictates how much memory Ferret can attempt to allocate
from the operating system.)

SET MEMORY controls only the size of Ferret’s cache memory—memory used to hold inter-
mediate results from computations that are in progress and used to hold the results of past file
IO and computations for re-use. The default size of the memory cache is 3.2 megawords
(equivalently, 3.2x4=12.8 megabytes). Cache memory size can be set larger or smaller than
thisfigure.

250 COMMANDS REFERENCE

Example:

yes? SET MEMORY/SIZE=4.2
Sets the size of Ferret’'s memory cache to 4.2 million (4-byte) words.
Notes:

« As apractical matter memory size should not normally be set larger than the physical
memory available on the system.

» The effect of SET MEMORY/SIZE= is identical to the “-memsize” qualifier on the
Ferret command line.

« See SET MODE DESPERATE (p. 253) and MEMORY USAGE (p. 153) in this users
guide for further instructions on setting the memory cache size appropriately.

« Using the SET MEMORY command automatically resets the value of SET MODE
DESPERATE to adefault that is consistent with the memory size.

» The effects of SET MEMORY/SIZE last only for the current Ferret session. Exiting
Ferret and restarting will reset the memory cache to its default size.

 If memory isseverely limited on asystem Ferret’ s default memory cache size may betoo
large to permit execution. In this case use the “-memsize” qualifier on the command line
to specify asmaller cache.

29.7 SET MODE
ILAST

Specifies special operating modes or states for program Ferret.

yes? SET MODE[/LAST] mode name [:argument]

Default

Mode Description State
ASCII_FONT imposes PPLUS ASCII font types on plot labels set
CALENDAR uses date strings for T axis (vs. time step values) set
DEPTH_LABEL uses “DEPTH” as Z axislabel set
DESPERATE attempts cal culations too large for memory canceled
DIAGNOSTIC turns on internal program diagnostic output canceled
GUI unsupported; used in GUI development

IGNORE_ERROR continues command file after errors canceled
INTERPOLATE automatically interpolates data between planes canceled
JOURNAL records keyboard commands in ajournal file set
LATIT _LABEL uses “N” “S’ notation for labeling latitudes Set
LONG_LABEL uses“E” “W” notation for labeling longitudes set
METAFILE captures graphics in GKS metafiles canceled

COMMANDS REFERENCE 251

Default

Mode Description State

POLISH interprets expressions in Reverse Polish order canceled
PPLLIST listed output from PPLUS isdirected to the named file canceled
REFRESH refreshes graphicson systemslacking “ backing store” canceled
SEGMENT utilizes GK'S segment storage set
STUPID controls cache hitsin memory (diagnostic) canceled
VERIFY displays each command fileline asit is executed set
WAIT walits for carriage return after each plot canceled

Command qualifiersfor SET MODE:

SET MODE/LAST
Resets mode to its last state.

yes? SET MODE/LAST mode_name
Example: (acommand filethat will not alter Ferret modes)
yes? SET MODE IGNORE ERRORS ! 1st line of command file
: ... code which may encounter errors

yes? SET MODE/LAST IGNORE ERRORS ! last line of command file

29.7.1 SET MODE ASCII_FONT
The SET MODE ASCII_FONT command causes program Ferret to precede plot labels with
the PPLUS font descriptor “ @AS’ (ASCII SIMPLEX font). This assures that special charac-
ters (e.g., underscores) are faithfully reproduced. For specia plots it may be desirable to use
other fonts (e.g., to obtain subscripts). CANCEL MODE ASCII_FONT isfor these cases.

default state: set

29.7.2 SET MODE CALENDAR

SET MODE CALENDAR causes program Ferret to output times in date/time format (instead
of time axis time step values). This affects both plotted and listed output.

Thismode accepts an optional argument specifying the degree of precision for the output date.
If the argument is omitted the precision is unchanged from itslast value.

default state: set (argument: minutes)

252 COMMANDS REFERENCE

Arguments

SET MODE CALENDAR accepts the following arguments:

Argument Equivalent precision
SECONDS -6

MINUTES -5 (default)

HOURS -4

DAY S -3

MONTHS -2

YEARS -1

The argument is uniquely identified by the first two characters.

Example:
yes? SET MODE CALENDAR:DAYS
Causes times to be displayed in the format dd-mmm-yyyy.
When CALENDAR modeis canceled the“equivalent” in the table above determinesthe preci-
sion of the time steps displayed exactly asin SET MODE LONGITUDE.
29.7.3 SET MODE DEPTH_LABEL
SET MODE DEPTH_LABEL causes Ferret to label Z coordinate information in the units of
the Z axis. Thisaffects both plotted and listed output. This mode accepts an optiona argument

specifying the degree of precision for the output. If the argument isomitted the precision isun-
changed from its last value.

yes? SET MODE DEPTH:argument
default state: set (argument: -4)
Arguments

See SET MODE LONG (p. 256) for a detailed description of precision control.

29.7.4 SET MODE DESPERATE

Ferret checks the size of the component data required for a calculation in advance of perform-
ing the calculation. If the size of the component data exceeds the value of the MODE
DESPERATE argument Ferret attempts to perform the calculation in pieces.

COMMANDS REFERENCE 253

For example, the caculation “LIST/I=1/3=1 U[K=1:100,L=1:1000@AVE]” requires
100* 1000=100,000 points of component dataathough theresult isonly aline of 100 pointson
the K axis. If 100,000 exceeds the current value of the MODE DESPERATE argument Ferret
splitsthiscalculation into smaller sized chunksalong the K axis, say, K=1:50 in thefirst chunk
and K=51:100 in the second.

Ferret isalso sensitive to the performance penalties associated with reading datafrom the disk.
Splitting the calculation along axis of the stored data records can require the data to be read
many timesin order to compl ete the calculation. Ferret attemptsto split calculations along effi-
cient axes, and will split along the axis of stored data only in desperation, if MODE
DESPERATE is SET.

Example:

yes? SET MODE DESPERATE:5000

default state: canceled (default argument: 80000)
Note: Use MODE DIAGNOSTIC to see when splitting is occurring.
Arguments

Use SHOW MEMORY/FREE to see the total memory available (as set with SET
MEMORY/SIZE).

Whenever the size of memory isset using SET MEMORY the MODE DESPERATE argument
isreset at one tenth of memory size. For most purposes thiswill be an appropriate value. The
user may at hisdiscretion raise or lower the MODE DESPERATE value based on the nature of
acalculation. A complex calculation, with many intermediate variables, may require asmaller
value of MODE DESPERATE to avoid an “insufficient memory” error. A ssmple calculation,
such asthe averaging operation described above, will typically run faster with alarger MODE
DESPERATE value. The upper bound for the argument is the size of memory. The lower
bound is“memory block size.”

29.7.5 SET MODE DIAGNOSTIC

SET MODE DIAGNOSTIC causes Ferret to display diagnostic information in real time about
its internal functioning. It is intended to help Ferret devel opers diagnose performance prob-
lems by displaying what the Ferret memory management subsystem is doing. The message
“strip gathering on xxx axis’ indicates that Ferret has broken up a calculation into smaller
pieces. Subsequent “strip” and “ gathering” messages indicate that sub-regions of the calcula-
tions are being processed and brought together.

default state: canceled

254 COMMANDS REFERENCE

29.7.6 SET MODE IGNORE_ERROR

SET MODE IGNORE_ERROR causes Ferret to continue execution of acommand file despite
errors encountered. (See command GO, p. 222.)

default state: canceled

29.7.7 SET MODE INTERPOLATE

Note: The transformation @I TP provides the same functionality as MODE INTERPOLATE
with a greater level of control.

SET MODE INTERPOLATE affects the interpretation of world coordinate specifiers (/X, /Y,
/Z, and /T) in cases where the position isnormal to the plane in which the datais being exam-
ined. When thismodeis SET and aworld coordinate is specified which does not lie exactly on
agrid point, Ferret automatically interpolates from the surrounding grid point values. When
thismodeis canceled, the sameworld coordinate specification is shifted to the grid point of the
grid box that contained it before computations were made (see examples).

default state: canceled
Example:

If the grid underlying the variable temp has points defined at Z=5 and at Z=15 (with the grid
box boundary at Z=10) and datais requested at Z=12 then

yes? SET MODE INTERPOLATE
yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists temperature data in the X-Y plane obtained by interpolating between the Z=5 and Z=15
planes. Whereas,

yes? CANCEL MODE INTERPOLATE
yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists the data at Z=15. The output documentation always reflects the true location used.

29.7.8 SET MODE JOURNAL

SET MODE JOURNAL causes Ferret to record all commandsissued in ajournal file. Output
echoed to this file may be turned on and off viamode JOURNAL at any time.

default state: set

COMMANDS REFERENCE 255

Example:

yes? SET MODE JOURNAL:my journal file.jnl
The optional argument to MODE JOURNAL specifies the name of the output journa
file—with no argument, the default name*“ferret.jnl” isused. Journal filesfor successive Ferret
sessionsare handled by version number. See Chapter 9, section “ Output file naming” (p. 157).
29.7.9 SET MODE LATIT_LABEL

SET MODE LATIT_LABEL causesFerret to output | atitude coordinate information in degrees
N/Sformat (instead of theinternal latitude coordinate). This affects both plotted and listed out-
put.

Thismode acceptsan optional argument specifying the degree of precisionfor theoutput. If the
argument is omitted the precision is unchanged from its last value.

Example:

yes? SET MODE LAT:2
default state: set (argument: 1)
Arguments

See command SET MODE LONG (p. 256) for a detailed description of precision control.

29.7.10 SET MODE LONG_LABEL
SET MODE LONG_LABEL causes Ferret to output longitude coordinate information in de-
grees E/W format (instead of the internal longitude coordinate). This will affect both plotted
and listed output.

Thismode acceptsan optional argument specifying the degree of precisionfor theoutput. If the
argument is omitted the precision will be unchanged from its last value.

Example:

yes? SET MODE LONG:2

default state: set (argument: 1)

256 COMMANDS REFERENCE

Arguments

The argument of SET MODE LONG is an integer specifying the precision. If the argument is
positive or zero it specifies the maximum number of decimal placesto display. If the argument
is negative it specifies the maximum number of significant digitsto display.

Examples:

Suppose the longitude to be displayed is 165.23W. Then

yes? SET MODE LONG:1 will produce 165.2W
yes? SET MODE LONG:-3 will produce 165W

When LONG mode is canceled the argument still determines the output precision.

29.7.11 SET MODE METAFILE

SET MODE METAFILE causesFerret to capture all graphicsin metafiles. These metafilescan
later be routed to various devices to obtain hard copy outpuit.

The optional argument to MODE METAFILE specifiesthe name of the output metafile—with
no argument, the default name “metafile.plt” is used. Multiple output files (i.e., successive
plots) are handled by version number. See Chapter 9, section “ Output file naming” (p. 157).
See Chapter 9, section “Hard copy” (p. 154) for details on generating hard copy.

Example:

yes? SET MODE METAFILE:june sst.plt

default state: canceled (default argument when set: “metafile.plt”)

29.7.12 SET MODE POLISH

The SET MODE POLISH command causes program Ferret to expect algebraic expressionsto
be entered in Reverse Polish order.

Thismode exists only to assist with compatibility with earlier versions of Ferret. It hasno effi-
ciency advantages.

default state: canceled

COMMANDS REFERENCE 257

29.7.13 SET MODE PPLLIST
Directslisted output from PPLUS commands (e.g., PPL LIST LABS) to the specified file. This
mode is useful for creating scripts that customize plots. The user can specify the name of the
output file by giving it as an argument, otherwise file name “ppllist.out” is assigned.

Example:

yes? SET MODE PPLLIST:plot symbols.txt
yes? PPL LISTSYM
yes? SPAWN grep “WIDTH” plot symbols.txt

default state: canceled

29.7.14 SET MODE REFRESH

The SET MODE REFRESH command causes Ferret to update windowsfollowing “occlusion”
events on X-servers that lack a backing store (SGI workstations have been a case in point).

default state: canceled (except on SGI systems)

29.7.15 SET MODE SEGMENTS
SET MODE SEGMENTS causesFerret to utilize GK S segments (“ GKS’ isthe Graphical Ker-
nel System—an international graphics standard). On some systems MODE SEGMENTS may
be necessary to update windows following “occlusion” events or to resize window with the
mouse.

Segments, however, make heavy demands on the system’s virtual memory. If Ferret crashes
during graphicsoutput dueto insufficient virtual memory try CANCEL MODE SEGMENTS.

default state: set

29.7.16 SET MODE STUPID
Note: MODE STUPID isincluded for diagnostic purposes only.
SET MODE STUPID controlsthe ability of Ferret to reuse results left in memory from previ-

ouscommands. It also effectsitsability to reuseintermediate variablesthat are referenced mul-
tiple times during complex calculations. Given with no argument

yes? SET MODE STUPID

258 COMMANDS REFERENCE

causes Ferret to forget data cached in memory. The result isthat all requests for variables are
read from disk and no intermediate calcul ations are reused. The program will be significantly
slower as aresult.

A lesser degree of cache limitation occurs with the command

yes? SET MODE STUPID: weak cache

which causes Ferret to revert to the cache access strategy that it used previousto Ferret version
5.0. In this mode cache hits are unreliable unless the region of interest is fully specified. (Un-
specified limits will typically default to the full range of the relevant axis.)

default state: canceled

29.7.17 SET MODE VERIFY

SET MODE VERIFY causes commands from a command file (“GO file”) to be displayed on
the screen asthey are executed. Note that if MODE VERIFY is canceled, loop counting in the
REPEAT command is turned off.

default state: SET, argument “ default”

Note: Many GO files begin with CANCEL MODE VERIFY to inhibit output and end with
SET MODE/LAST VERIFY to restore the previous state. Only if an error or interrupt occurs
during the execution of such acommand file will the state of MODE VERIFY be affected.

SET MODE VERIFY can accept arguments to further refine control over command echoing.
yes? SET MODE VERIFY: DEFAULT

» Thiswill bethe default state if no argument is given

* Ferret echos commands taken from GO scripts

» Ferret echos commands in which symbol substitutions occur or in which embedded
expressions are eval uated

yes? SET MODE VERIFY: ALL
 In addition to the cases above Ferret also displays the individual commands that are

generated by repeat |oops and semicolon-separated command groups
 Ferret displays a REPEAT loop counter (“!-> REPEAT: ...”)

yes? SET MODE VERIFY: ALWAYS
» Echoing behavior is the same as argument ALL but ALWAYS, in addition, causes
CANCEL MODE VERIFY to be ignored when it is encountered in a GO file. This

functionality isuseful when debugging GO scripts. Entering CANCEL MODE VERIFY
or SET MODE VERIFY :DEFAULT from the command line will cancel this state.

COMMANDS REFERENCE 259

29.7.18 SET MODE WAIT

SET MODE WAIT causes Ferret to wait for akeyboard keystroke from the user after each plot-
ted output iscompleted. Thisisuseful on graphicsterminalsthat do not have a separate graph-
ics plane; on these terminals SET MODE WAIT prevents the graphical output from being
wiped off the screen until the user is ready to proceed.

default state: canceled

29.8 SET MOVIE
/ICOMPRESS /FILE /LASER /START

Designates afile (specified or default) for storing graphical images as movie frames (in HDF
Raster-8 format). Note that the FRAME/FILE=filename qualifier isgenerally preferableto the
SET MOVIE command, asit issimpler and more flexible. See Chapter 5 (p. 97) for further ex-
planation.

yes? SET MOVIE[/qualifiers]

Command qualifiersfor SET MOVIE:

SET MOVIE/COMPRESS=
Turns on or off compression of HDF frames using run length compression.

yes? SET MOVIE/COMPRESS=0FF
Thealowed argumentsare®on” and “off” —CANCEL MOV I E doesnot affect thisqualifier.
default state: on

SET MOVIE/FILE
Specify an output file to receive movie frames.

yes? SET MOVIE/FILE=filename !specify a new filename
or
yes? SET MOVIE/FILE !reactivate a previously specified filename\

after CANCEL MOVIE
The default movie filename extension is “.mgm”
The default movie filename is “ferret. mgm”

SET MOVIE/LASER
Output to Panasonic OMDR. Valid only on older VAX/VMS systems.

260 COMMANDS REFERENCE

SET MOVIE/START
Only valid for use on older VAX/VMS systems with the Panasonic Optical Memory Disk Re-
corder (OMDR). Only valid with /[LASER qualifier.

29.9 SET REGION
MIKI/L IXIYIZIT IDI/DIDK/DL /DX/DY/DZ/DT

Specifies the default space-time region for the evaluation of expressions.

yes? SET REGION[/qualifiers] [reg name]
See Chapter 4, section “Regions’ (p. 90) for further information.
Examples:

1) yes? SET REGION/X=140E
Sets X axis position in the default context.

2) yes? SET REGION/@N IN specifies X and Y but not Z or T
Setsonly X and Y inthe default context (since X and Y aredefinedinregion N but Zand T
are not).

3) yes? SET REGION N
SetsALL AXESinthe default region to be exactly the same asregion N. SinceZ and T are
undefined in region N they will be set undefined in the default context.

4) yes? SET REGION/@N/Z=50:250
Sets X and Y in the default region to be exactly the same asregion N and then sets Z to the
range 50 to 250.

5) yes? SET REGION/DZ=-5
Set the region along the Z axisto be 5 unitsless than its current value.

6) yes? SET REGION/DJ=-10:10
Increases the current vertical axis range by 10 units on either end of the axis.

Command qualifiersfor SET REGION:

SET REGION/I1=/J=/K=/L=/X=/Y=/Z=/T=
Setsregion boundsfor specified axis subscript (1, J, K, or L) or axiscoordinates (X, Y, Z, or T).
See examples above.

SET REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=

Modifies current region information by the specified increment of an axis subscript (1, J, K, or
L) or axis coordinate (X, Y, Z, or T). See examples above. Syntax: /D*=val, or /D*=lo:hi.

COMMANDS REFERENCE 261

29.10 SET VARIABLE
/BAD /GRID /TITLE/UNIT

Modifies attributes of a variable defined by DEFINE VARIABLE or SET DATA/EZ. This
command permitsvariableswithin asingle EZ data set to be defined on different gridsand it al-
lowsthetitles and unitsto be superseded for the duration of asession, only, on NetCDF and GT
data sets.

yes? SET VARIABLE/qualifiers variable name
Parameters
The variable name can be a ssmple name or a name qualified by a data set.

Example:

yes? SET VAR/UNITS="CM" WIDTH[D=snoopy]

Command qualifiersfor SET VARIABLE:

SET VARIABLE/BAD=

Designates avalueto be used asthe missing dataflag. The qualifier isapplicableto EZ data set
variables and to NetCDF data sets. It appliesonly for the duration of the current Ferret session.
It does not alter the data files. It is not applicable to variables defined with DEFINE
VARIABLE.

SET VARIABLE/GRID=
Sets the defining grid for avariable in an EZ data set.

Example:

yes? SET VARIABLE/GRID=my grid width[D=snoopy]

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) isspecified. By default Ferret will use grid EZ, aline of up to 20480 points oriented along
the X axis. The qualifier is not applicable to variables defined with DEFINE VARIABLE.

SET VARIABLE/TITLE=
Associatesatitlewith thevariable. Thistitle appears on plotted outputsand listings. The quali-
fier isapplicableto all variables.

yes? SET VARIABLE/TITLE="title string" var name

SET VARIABLE/UNITS=
Associates units with the variable. The units appear on plotted outputs and listings. The quali-
fier isapplicable to al variables.

262 COMMANDS REFERENCE

yes? SET VARIABLE/UNITS="units string" var name

29.11 SET VIEWPORT

Sets the rectangular region within the output window where output will be drawn.

yes? SET VIEWPORT view name

I ssuing the command SET VIEWPORT isbest thought of as entering “viewport mode.” While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOWY/CLEAR or CANCEL VIEWPORT. If multiple plotsaredrawnina
singleviewport without the use of /OVERLAY the current plot will erase and replacethe previ-
ous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will alwayslie on top, possibly obscuring
what is underneath. By default, the state of “viewport mode” is canceled.

Pre-defined viewports exist for dividing the window into four quadrants and for dividing the

window in half horizontally and vertically. See Chapter 6, section “Pre-defined viewports’ (p.
122) for alist.

29.12 SET WINDOW
IASPECT /CLEAR /LOCATION /INEW /SIZE

Creates, resizes, reshapes or moves graphics output windows.

yes? SET WINDOW[/qualifiers] [window number]

Note: Multiple windows may be simultaneously viewable but only asingle window receives
output at any time.

See commands SHOW WINDOWS (p. 276) and CANCEL WINDOW (p. 208) for additional
information.

Examples:

1) yes? SET WINDOW/NEW
Creates a new output window and sends subsequent graphicsto it.

2) yes? SET WINDOW 3
Sends subsequent graphics to window 3.

3) yes? SET WINDOW/SIZE=.5
Resizes current window to 1/2 of full.

COMMANDS REFERENCE 263

4) yes? SET WINDOW/ASPECT=.5

Reshapes current window with Y/X equal to 1:2.

5) yes? SET WINDOW/LOCATION=0, .5
Putsthe lower |eft corner of the current window at theleft border of the display and half way
up it.

Command qualifiersfor SET WINDOW:

SET WINDOW/ASPECT
Sets the aspect ratio of the output window and hard copy.

Examples:

1) yes? SET WINDOW/ASPECT=y over x n
Sets the overall aspect ratio of window n.

2) yes? SET WINDOW/ASPECT=y over x
Sets the overall aspect ratio of the current window.

3) yes? SET WINDOW/ASPECT=y over x:AXIS
Sets the axis length aspect ratio of the current window.

Thetotal size (area) of the output window is not changed.

The default value for the overall window ratio isy/x = 8.8/10.2 ~ 0.86.

The default value for the axis length ratio is y/x = 6/8 = 0.75.

Use PPLUS/RESET or SET WINDOW/ASPECT=.75:AXIS to restore defaults.
The aspect ratio specified is adefault for future SET WINDOW commands
The origin (lower left) isrestored to its default values: 1.2, 1.4

When using “SET WINDOW n” to return to a previous window that differs from the current
window in aspect ratio, it is necessary to re-specify its aspect ratio with /ASPECT, otherwise
PPLUS will not be properly reset.

SET WINDOW/CLEAR
Clears the image(s) in the current or specified window. Useful with viewports.

SET WINDOW/LOCATION

Setsthelocation for the lower |eft corner of named (or current) window. The coordinates x and
y must be values between 0 and 1 and refer to distancesfrom thelower |eft corner of the display
screen (total length and width of which are each 1).

yes? SET WINDOW/LOCATION=x,y [window number]

264 COMMANDS REFERENCE

30

SET WINDOW/NEW
Causes future graphical output to be directed to a new window. The window will be created at
the next graphics outpui.

yes? SET WINDOW/NEW

SET WINDOW/SI ZE
Resizes awindow to r times the size of the standard window. If the window number is omitted
the command will resize the currently active window. (The default window sizeis0.7.)

yes? SET WINDOW/SIZE=r [window number]

SHADE
MIKILIXIYIZIT /D IFRAME/KEY /LEVELS/LINE/NOAXIS/NOKEY /NOLABELS
/IOVERLAY /PALETTE /PATTERN/SET_UP/TITLE /TRANSPOSE /XLIMITS
IYLIMITS

Produces a shaded (rectangular raster) plot of a2-D field. By default a color key isdrawn and
contour lines are not drawn.

SHADE [/qualifiers] expression
Parameters

The expression may be any valid expression. See Chapter 3, section “ Expressions” (p. 49) for a
definition of valid expressions. The expression will be inferred from the current context if
omitted from the command line. Multiple expressions are not permitted in a single SHADE
command.

Command qualifiersfor SHADE:

SHADE/I=/13=/K=/L=/X=/Y=/Z=IT=
Specifiesvalue or range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z,or T) to be
used when eval uating the expression being plotted.

SHADE/D=
Specifies the default data set to be used when eval uating the expression being plotted.

SHADE/FRAME

Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 222) is more flexible
and we recommend its use rather than this qualifier.

COMMANDS REFERENCE 265

SHADE/KEY
Displaysacolor key for the pal ette used in the shaded plot. By default akey isdrawn unlessthe
/LINE or INOKEY qualifier is specified.

SHADE/LEVELS
Specifiesthe SHADE levels or how the levelswill be determined. If the/LEVELS qualifier is
omitted Ferret automatically selects reasonable SHADE levels.

See Chapter 6, section “Contouring” (p. 124) for examples and more documentation on
/LEVELS and color_thickness indices, and also the demonstration “custom con-
tour_demo.jnl”.

SHADE/LINE
Overlays contour lines on a shaded plot. When /LINE is specified the color key is omitted un-
less specifically requested via/KEY.

SHADE/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

SHADE/NOAXIS
Suppresses all axislines, ticsand labeling so that no box appears surrounding the contour plot.
Thisisespecially useful for map projection plots.

SHADE/NOLABELS
Suppresses al plot labels except axis labels.

SHADE/OVERLAY
Causes the indicated shaded plot to be overlaid on the existing plot.

Note (SHADE/OVERLAY with time axes):

A restriction in PPLUS requiresthat if timeisan axis of the shaded plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid shaded plot fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis.

SHADE/PALLETTE=

Specifiesacolor palette (otherwise, adefault rainbow paletteis used). Try the Unix command
s Fpalette ‘*/ toSeeavailable palettes. Thefilesuffix *.spk isnot necessary when specifying
apalette. See command PALETTE (p. 232) for more information.

Yes? SHADE/PALETTE=land sea rose
The/PALETTE quadlifier changes the current palette for the duration of the plotting command

and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. Seethe PALETTE (p. 232) command for further discussion.

266 COMMANDS REFERENCE

SHADE/PATTERN=

Specifies a pattern file (otherwise, the current default pattern specification is used). The file
suffix *.pat isnot necessary when specifying apattern. Try theUnix command ¢ rpattern ‘*/
to see available patterns. See command PATTERN (p. 233) for more information.

SHADE/SET_UP

Performsall theinternal preparationsrequired by program Ferret for ashaded plot but does not
actually render output. The command PPL can then be used to make changesto the plot prior to
producing output with the PPL SHADE command. This permits plot customizations that are
not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

SHADE/TITLE=

Allows user to specify aplot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@CO002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include aleading ESC (escape) character. See Chapter 6, sec-
tion “Fonts” (p. 120).

yes? SHADE/TITLE="title string" expression

SHADE/TRANSPOSE

Causesthe horizontal and vertical axesto beinterchanged. By default the X axisisdrawn hori-
zontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plotsthe Z dataaxisis
vertical.

Note that plotsin the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /XLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

SHADE/XLIMITS=
Specifiesthe X axis range and tic interval (otherwise, Ferret selects reasonable values).

yes? SHADE/XLIMITS=lo:hi:increment

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
IS negative, the axis will be reversed.

Notethat the“X” in/XLIMITS refersto the horizontal axis of the plot rather than to the X axis
of thegrid. Thiscanlead to confusion, especially on plotsinthe YT or ZT plane. Plotsinthese
planes are automatically transposed to placethe Y or Z axis, respectively, onthevertical axisof
the plot. Plots may also be transposed manually with the /TRANSPOSE qualifier. On trans-
posed plots /XLIMITS will refer to the vertical axis of the plot.

SHADE/YLIMITS=
Specifiesthe Y axisrange and tic interval. See /XLIMITS (above).

COMMANDS REFERENCE 267

31 SHOW
IALL

Displays program states and stored values.
Command qualifiersfor SHOW:

SHOW/ALL

Executes all SHOW options. This command gives a complete description of the current state,
including information about region, grids, axes, variables, and the state of various modes (de-
fault or set with SET MODE).

yes? SHOW/ALL
Arguments:
The names of variables, data sets, or other definitions can be specified using wildcards. The *

wildcard matches any number of charactersin the name; the question wildcard matches exactly
one character.

31.1 SHOW ALIAS

Listsall command aliases and the full command names for which they stand, or, with an argu-
ment, shows a specified command alias.

yes? SHOW ALIAS [alias name]

31.2 SHOW AXIS

Shows a basic description of the named axis.

SHOW AXIS[/qualifiers] axis name
A typical output appears below. The columns are:

name name of axis (used also in DEFINE AXIS and DEFINE GRID)

axis the orientation of theaxis; “(-)” on adepth axisindicatesincreasing downward

pts number of pointson axis; “r” or “i” for regular or irregular spacing, “m” if the
axisis“modulo” (repeating)

start position of first point on the axis

end position of last point on the axis

yes? SHOW AXIS PSXT

name axis # pts start end

PSXT LONGITUDE 160 r 130.5E 70.5W

268 COMMANDS REFERENCE

Command qualifiersfor SHOW AXIS:

SHOW AXISN=/J=IK=/L=/X=/Y=/Z=IT=
Displaysthe coordinatesand grid box sizesfor the specified axis. Optionally, low and high lim-
its and a delta value may be specified to restrict the range of values displayed.

yes? SHOW AXIS/X[=lo:hi:delta] axis-name

Example:

yes? SHOW AXIS/L=1:12:3 my custom time axis

SHOWI/ALL
Show abrief summary of all axes defined.

yes? SHOW AXIS/ALL

31.3 SHOW COMMANDS

Displays commands, subcommands, and qualifiers recognized by program Ferret. This com-
mand does not display aliases; use SHOW ALIAS.

SHOW COMMAND [command name or partial command]

Note: Thisisthe most reliable way to view command qualifiers. The output of this command
will be current even when this manual is out of date.

Examples:
yes? SHOW COMMAND S ! show all commands beginning with “S”
yes? SHOW COMMAND ! show all commands
yes? SHOW COMMAND PLOT ! shows command PLOT and all its qualifiers

31.4 SHOW DATA_SET
/ALL /BRIEF /FILES/FULL /VARIABLE

Shows information about the data sets which have been SET and indicates the current default
data set. By default the variables and their subscript ranges are also listed.

yes? SHOW DATA[/qualifiers] [set _name or numberl,set2,...]

If no data set name or number is specified then all SET data sets are shown.

COMMANDS REFERENCE 269

Command qualifiersfor SHOW DATA_SET:

SHOW DATA/ALL
This qualifier has no effect on this command; it exists for compatibility reasons.

SHOW DATA/BRIEF
Shows only the names of the data sets; does not describe the data contained in them.

SHOW DATA/FILES

Displays the names of the data files for this data set and the ranges of time steps contained in
each. Output isformatted as date strings or astime step val ues depending on the state of MODE
CALENDAR.

SHOW DATA/FULL
Equivalent to /VARIABLES and /FILES used together.

SHOW DATA/VARIABLES
In addition to the information given by the SHOW DATA command with no qualifiers, this
guery also providesthe grid name and world coordinate limitsfor each variablein the data set.

Example: SHOW DATA

SHOW DATA produces a listing similar to the one below. The output begins with the
descriptor file name (for TMAP-formatted data) and data set title. The columns|, J, K, and L
give the subscript limits for each variable with respect to its defining grid (use SHOW
DATA/FULL and SHOW GRID variable_name for more information).

yes? SET DATA levitus climatology
yes? SHOW DATA n
currently SET data sets:
1> /home/el/tmap/fer dsets/descr/levitus climatology.des (default)

name title I J K L
TEMP TEMPERATURE 1:360 1:180 1:20 1:1
SALT SALINITY 1:360 1:180 1:20 1:1

31.5 SHOW EXPRESSION

Shows the current expression(s) implied or set with SET EXPRESSION. If not explicitly set
with this command, the default current context expression is the argument of the most recent
“action” command (PLOT, SHADE, CONTOUR, VECTOR, WIRE, etc.) See Chapter 3, sec-
tion “Expressions’ (p. 49) for an explanation and list of action commands.

yes? SHOW EXPRESSION

270 COMMANDS REFERENCE

31.6 SHOW FUNCTION
/IEXTERNAL /INTERNAL

Shows a complete list of the functions defined in Ferret including descriptions of the function
arguments.

yes? SHOW FUNCTION[/qualifiers] [function name]

If no qualifier or function nameis given then all functions are listed. SHOW FUNCTION will
accept name templates such as

yes? SHOW FUNCTION *day*
DAYS1900 (day, month, year)
days elapsed since Jan. 1, 1900

Parameters
The parameter(s) may be the name of afunction, with * replacing part of the string as above.
Command qualifiersfor SHOW FUNCTION:

SHOW FUNCTION/EXTERNAL
List only the available Ferret external functions (p. 159).

SHOW FUNCTION/INTERNAL
List only theinternally defined Ferret functions.

31.7 SHOW GRID
MIKIL IXIYIZIT IALL

Shows the name and axis limits of agrid.
yes? SHOW GRID[/qualifiers] [var or gridl var or grid2 ...]
Example:

(See command SHOW AXIS, p. 268, for an explanation of the columns.)

yes? SET DATA levitus climatology
yes? SHOW GRID salt
GRID GLEVITR1

name axis # pts start end
XAXLEVITR LONGITUDE 360mr 20.5E 19.5E(379.5)
YAXLEVITR LATITUDE 180 r 89.5S 89.5N
ZAXLEVITR DEPTH (-) 20 1 Om 5000m

COMMANDS REFERENCE 271

Parameters

The parameter(s) may be the name of one or more grid(s) or variable(s). If no parameter is
given SHOW GRID displaysthegrid of thelast variable accessed. Thisisthe only mechanism
to display the grid of an algebraic expression.

Note: To apply SHOW GRID to an algebraic expression it isnecessary for Ferret to have eval -
uated the expression in aprevious command. The command LOAD isuseful for thispurposein
some circumstances.

Command qualifiersfor SHOW GRID:

SHOW GRID/I1=/3=IK=/L=/X=/Y=/Z=[T=
Displaysthe coordinatesand grid box sizesfor the specified axis. Optionally, low and high lim-
its and a delta value may be specified to restrict the range of values displayed.

yes? SHOW GRID/X[=lo:hi:delta] [variable or grid]

Example:

yes? SHOW GRID/L=1:12:3 sst[coads climatology]

SHOW GRID/ALL
Shows the names only of all grids defined.

yes? SHOW GRID/ALL

31.8 SHOW LIST

Shows the current states of the LIST command.

yes? SHOW LIST

Thequalifier /ALL may be used with thiscommand but exists merely for compatibility reasons
and has no effect.
31.9 SHOW MEMORY
/ALL/FREE/PERMANENT/TEMPORARY

Shows the state of the memory cache.

yes? SHOW MEMORY

Shows the current size of the cache.

272 COMMANDS REFERENCE

yes? SHOW MEMORY [/qualifiers]

Command qualifiersfor SHOW MEMORY:

SHOW MEMORY/ALL
Shows al variables currently cached in memory—permanent and temporary.

SHOW MEMORY/FREE
Shows cache memory and memory table space that remains unused.

Cache memory is organized into “blocks.” One block is the smallest unit that any variable
stored in memory may allocate. The total number of variables that may be stored in memory
cannot exceed the size of the memory table. The “largest free region” gives an indication of
memory fragmentation. A typical SHOW MEMORY /FREE output |ooks as below:

total memory table slots: 150
total memory blocks: 500
memory block size:1600

number of free memory blocks: 439
largest free region: 439

number of free regions: 1

free memory table slots: 149

SHOW MEMORY/PERMANENT

Liststhe variables cached in memory and catal oged as permanent. These variables will not be
deleted even when memory space is heeded. They become cataloged in memory as permanent
when the LOAD/PERMANENT command is used.

SHOW MEMORY/TEMPORARY
Lists the variables cached in memory and cataloged as temporary (they may be deleted when
memory capacity is needed).

31.10 SHOW MODE
Shows the names, states and arguments of the Ferret SET MODE command.
SHOW MODE [partial mode namel,name2, ...]

Example:

yes? SHOW MODE VERIFY,META

Thequalifier /ALL may be used with thiscommand but exists merely for compatibility reasons
and has no effect.

COMMANDS REFERENCE 273

31.11 SHOW MOVIE

Shows the current state of SET MOVIE. This state affects FRAME and graphics commands
specified with the /[FRAME qualifier.

yes? SHOW MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

31.12 SHOW QUERIES

Queries are avehicle for communication between Ferret and a stand-al one interface program.
They are not supported for general use.

31.13 SHOW REGION

Shows the current default region or the named region.

yes? SHOW REGION[/ALL] [region name]

The region displayed is formatted appropriately for the axes of the last data accessed. For ex-
ample, supposetheregionalongtheY axiswasspecified asY=5S:5N. Thenif theY axisof the
last dataaccessed isin unitsof degrees-latitudethe Y locationisshownasY=5S:5N but if the Y
axis of the last data accessed is“ABSTRACT” thenthe Y location is shown as Y =-5:5.

31.14 SHOW SYMBOL
IALL

Shows the value of one or more symbols (string variables).

yes? SHOW SYMBOL[/qualifier] [symbol name]

If no qualifier or symbol nameis given then all defined symbolsarelisted. SHOW SYMBOL
will accept partial names such as

yes? SHOW SYMBOL *lab*

MY X LABEL = "Sample Number"
LABEL 2 = "Station at 23N"
Parameters

The parameter may be the name of a symbol, with * replacing part of the string as above.

274 COMMANDS REFERENCE

Command qualifiersfor SHOW SYMBOL:
SHOW SYMBOL/ALL
Listsall symbolsthat are defined.

31.15 SHOW TRANSFORM

Shows the available transformations, including regridding transformations.

yes? SHOW TRANSFORM

Note: Thisisthe most reliable way to view transformations. The output of this command will
be current even when this manual is out of date.

Thequalifier /ALL may be used with thiscommand but exists merely for compatibility reasons

and has no effect.

31.16 SHOW VARIABLES
/ALL /DIAGNOSTIC /USER

Lists diagnostic or user-defined variables.

SHOW VARIABLES[/qualifier] [partial name]
Examples:
yes? SHOW VARIABLES 'all user-defined variables
yes? SHOW VAR/DIAG Q 'all diagnostic vars beginning with QO

Command qualifiersfor SHOW VARIABLES:

SHOW VARIABLES/ALL
Lists both diagnostic variables (available for the COX/PHILANDER model) and user-defined
variables.

SHOW VARIABLES/DIAGNOSTIC
This is an unsupported (obsolete) qualifier. It lists “diagnostic” variables available for the
COX/PHILANDER mode.

SHOW VARIABLES/USER

Listsexpressionsthat have been defined by the user asnew variables. Thisisthe default behav-
ior of SHOW VARIABLES with no qualifier.

COMMANDS REFERENCE 275

31.17 SHOW VIEWPORT

Shows one or more of the currently defined viewports. Omitting an argument gives informa-
tion on al viewports.

yes? SHOW VIEWPORT [view namel,view nameZ, ...]

Thequalifier /ALL may be used with thiscommand but exists merely for compatibility reasons
and has no effect.

31.18 SHOW WINDOWS

Lists open window numbers and indicates which is the active one.

yes? SHOW WINDOWS

Thequalifier /ALL may be used with thiscommand but exists merely for compatibility reasons
and has no effect.

32 SPAWN

Executes acommand line (Unix shell) command from within Ferret.

yes? SPAWN unix shell command

Example:

yes? SPAWN rm -f file.dat

Also, “SPAWN shell_name” alows the user to fork into an interactive shell. For example:

yes? SPAWN csh

entersthe user into ac-shell. Use EXIT to return to Ferret.

33 STATISTICS
NMIKIL X/YIZIT ID /BRIEF

Computes summary statistics about the data specified.

yes? STATISTICS[/qualifiers] expression 1 , expression 2 , ...

The statistics include:

276 COMMANDS REFERENCE

34

35

» the size and shape of the region

« total number of data valuesin the region specified

» number of data values flagged as bad data

* minimum value

* maximum value

» mean value (arithmetic mean—not weighted by grid spacing)
» standard deviation (also not weighted by grid spacing)

All values are reported to 5 significant digits.

STATISTICS interacts with the current context exactly as the commands CONTOUR, PLOT
and LIST do.

Parameters

Expressions may be anything described under Expressions. If multiple variables or expres-
sionsare specified they are treated in sequence. The expression(s) areinferred from the current
context if omitted from the command line.

Command qualifiersfor STATISTICS:

STATISTICY/I=/3=/IK=/L=/X=/Y=/Z=[T=

Specifiesvalue or range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be

used when computing statistics about the expression(s).

STATISTICS/D=
Specifies the default data set to be used when computing statistics about the expression(s).

STATISTICS/BRIEF
Produces a shorter listing involving less computation.

UNALIAS

Aliasfor CANCEL ALIAS.

USE
The USE command isan aliasfor SET DATA/FORM AT =cdf.

All qualifiersand restrictions areidentical to SET DATA/FORMAT=cdf. If no filename exten-
sionisgiven, “.cdf” isassumed.

COMMANDS REFERENCE 277

36

Example:

yes? USE test
isequivalent to
yes? SET DATA/FORMAT=cdf test

USER

Executes a user-written extension to the Ferret program.

yes? USER[/COMMAND=] expression 1 , expression 2,

The USER command isameans of incorporating custom changesin Ferret. It is currently sup-
ported only by specia request to the Ferret developers (ferret@pmel.noaa.gov). Two special
features are currently accessible through the USER command—objective analysis and scat-
tered sampling of grids. These commandswill eventually be replaced by morethoroughly inte-
grated features with the same functionality.

We recommend the user access objective analysis via the script objective.jnl. The scattered
sampling feature is used in the polar plotting GO tools (try “GO polar_demo” at the Ferret
prompt).

36.1 Objective analysis

(Note: seetheversion 4.4 documentation for an older way of gridding (X,Y, value) triplesonto
agrid)

Togridsaset of (X, Y, value) triplesonto agrid of specified resolution, use one of thefamily of
“scatter2grid” external functions.

yes? SHOW FUNCTION/EXTERNAL scatter*
SCATTER2GRIDGAUSS XY (X,Y, Z,XAX,YAX,CUTOFF)

Use Gaussian weighting to grid scattered data to an XY grid.

X: X coordinates of scattered input triples

Y: Y coordinates of scattered input triples

Z: Z = F(X,Y) Z component of scattered input triples

XAX: X axis of output grid

YAX: Y axis of output grid

CUTOFF: Interpolation parameter: cutoff limit
SCATTERZGRIDGAUSS X7 (X, 7Z,F,XAX,ZAX,CUTOFF)

The X, Y, and F(X,Y) arelists of locations and a val ue associated with each location. Define X
and Y axes of the desired the grid and call the function to interpolate these points to the grid.
Say you have a set of latitudes, longitudes, and samples of a quantity NO3 at those points, and
that these arein the variablesmy_lat, my lon, and n03.

278 COMMANDS REFERENCE

yes? DEFINE AXIS/X=170W:120W:5 xax5

yes? DEFINE AXIS/Y=0:40N:5 yax5

yes? LET nO3 reg = scatter2gridgauss xy(my lat, my lon, n03, xaxb5, yax5,
2.)

yes? SHADE n03 reg

See the example in the demo script GO objective analysis_demo.

36.2 Scattered sampling

Note: again, therewasan older way of doing scattered sampling; seesection 33.2intheversion
4.4 documentation)

Ferret external functions are available for sampling a gridded datafield. See

yes? SHOW FUNCTION/EXTERNAL sample*

Ferret external functions are available for sampling a gridded data field. See

yes? SHOW FUNCTION/EXTERNAL sample*

SAMPLEI(DAT_TO_SAMPLE,I_INDICES)
SAMPLEJ (DAT TO_ SAMPLE,J INDICES) ! These sample a gridded field, returning
SAMPLEK (DAT_TO_ SAMPLE, K INDICES) ! data at a set of grid points along an
SAMPLEL (DAT TO SAMPLE,L INDICES) ! axis
SAMPLEIJ (DAT TO SAMPLE,XPTS,YPTS) ! Returns data sampled at a 2-dimensional
! subset of its grid points
SAMPLET DATE (DAT TO SAMPLE, YR, MO, DAY, HR,MIN, SEC) ! Returns data sampled by
! interpolating to one or more times
SAMPLEXY (DAT TO SAMPLE,XPTS,YPTS) ! Returns data sampled at a set of (X,Y)
! points, i.e., a ship track or some

! other path, using linear interpolation

37 VECTOR
MJIKI/L IXIYIZIT ID IASPECT /FRAME /LENGTH /NOAXIS/NOLABELS
/OVERLAY /PEN /SET_UP/TITLE /TRANSPOSE /XLIMITS /XSKIP
IYLIMITS/Y SKIP

Produces a vector arrow plot.

VECTOR[/qualifiers] x expr,y expr
Parameters
X_Eexpr, y_expr
Algebraic expressions (or simple variables) specifying the x components and y components of

the vector arrows. The expression pair will beinferred from the current context if omitted from
the command line.

COMMANDS REFERENCE 279

http://shark.pmel.noaa.gov/Demos/objective_analysis_demo/objective_analysis_demo.html

Command qualifiersfor VECTOR:

VECTOR/I=J=/K=/L=/X=/Y=/Z=/T=
Specifiesvalueor range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

VECTOR/D=
Specifies the default data set to be used when evaluating the expression pair being plotted.

VECTOR/ASPECT
Adjusts the direction of the vectors to compensate for differing axis scaling.

yes? VECTOR/ASPECT [=aspect ratio] x expr, y expr...

The size of vectors is unchanged—only the direction is modified. Under most circumstances
/ASPECT should be specified. The aspect ratio is (Y-scale/X-scale). Under normal circum-
stances no aspect ratio is specified by the user—Ferret will computethe correct ratio. If the plot
liesin the latitude/longitude plane the aspect ratio correction will be adjusted as a function of
COS(LATITUDE) on the plot.

For example, in atypical oceanographic XZ plane plot the vertical (Z) axisisin tensof meters
while the horizontal (X) axisis in hundreds of kilometers. This means the vertical scale is
greatly magnified in comparison to the horizontal. The /ASPECT qualifier correspondingly
magnifies the vertical component of the vector relative to the horizontal while preserving the
length of the vector. The magnification factor is documented on the plot.

VECTOR/FRAME

Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE. In general the FRAME command (p. 222) is more flexible and we recom-
mend its use rather than this qualifier.

VECTOR/LENGTH=
Controls the size of vectors.

yes? VECTOR/LENGTH[=value of standard]

If the/LENGTH qualifier isomitted Ferret automatically selects reasonable vector lengths. To
reuse the vector length from the last VECTOR plot use VECTOR/LENGTH.

To specify the vector lengths manually use the value of standard argument. This associates
the value “val” with the standard vector length, normally 1/2 inch. Note that the PPLUS com-
mand VECSET can be used to modify the length of the standard vector. Thisisaso the length
that is displayed in the vector key.

280 COMMANDS REFERENCE

Example:

yes? VECTOR/LENGTH=100 U,V
Creates a vector arrow plot of velocities with 1/2 inch vectors for speeds of 100.

VECTOR/NOAXIS
Suppressesall axislines, tics, and labeling so that no box appears surrounding the contour plot.
Thisis especialy useful for map projection plots.

VECTOR/NOLABELS
Suppresses al plot labels except axis labels.

VECTOR/OVERLAY
Causes the indicated vector field to be overlaid on the existing plot.

VECTOR/PEN=
Specifiesthelinestylefor thevectors. /PEN=takesthe sameargumentsasthe/LINE= qualifier
for command PLOT. See command PLOT/LINE= (p. 234). “n” ranges from 1 to 18.

yes? VECTOR/PEN=n X _expr, y_ expr

VECTOR/SET_UP

Performs all the internal preparations required by program Ferret for vector plots but does not
actually render output. The command PPL can then be used to make changesto the plot prior to
producing output with the PPL VECTOR command. This permits plot customizationsthat are
not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

VECTOR/TITLE=

Allows user to specify aplot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about x_expr and y_expr. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include aleading ESC (escape) character. See Chapter 6, sec-
tion “Fonts” (p. 120).

yes? VECTOR/TITLE="title string" x expr, y expr

VECTOR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is aways

drawn horizontal and the Y and Z axesaredrawn vertical. For Y-Z plotsthe Z dataaxisisverti-
cal.

VECTOR/XLIMITS=
Specifies X axislimitsandticinterval. Without thisqualifier, Ferret selectsreasonablevalues.

yes? VECTOR/XLIMITS=lo:hi:increment X _expr, y expr

COMMANDS REFERENCE 281

38

39

The optiona “increment” parameter determinestic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

VECTOR/XSKIP=/YSKIP=
Draws every nth vector along the requested axis beginning with the first vector requested.

yes? VECTOR/XSKIP=nx/YSKIP=ny u,vVv

By default, Ferret “thins’ vectors to achieve a clear plot. These qualifiers allow control over
thinning.

Note that when the/SETUP qualifier isused the/XSKIPand /Y SKIP qualifiersareignored. In
this case, use arguments to the PPL VECTOR command to achieve the thinning.

PPL VECTOR xskip yskip

VECTOR/YLIMITS=
Specifies Y axislimitsand tic interval. See /XLIMITS= (above).

WHERE

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Com-
ments that include the digitized position are also written to the current journal file (if open).
The WHERE command can be embedded into scriptsto allow interactive positioning of color
keys, boxes, lines, and other annotations.

WIRE
IMIKIL IXIYIZIT ID IFRAME INOLABEL /OVERLAY
ISET_UP/TITLE /TRANSPOSE /VIEWPOINT /ZLIMITS/ZSCALE

Produces a wire frame representation of atwo-dimensional field.

yes? WIRE[/qualifiers] expression
Parameters

The expression may be anything described in Chapter 3, section “ Expressions’ (p. 49). Theex-
pression will be inferred from the current context if omitted from the command line. Multiple
expressions are not permitted in asingle WIRE command. The indicated region should denote
aplane (2D) of data.

282 COMMANDS REFERENCE

Command qualifiersfor WIRE:

WIRE/N=/3=/K=/L=/X=/Y=/Z=/T=
Specifiesvalueor range of axissubscripts(l, J, K, or L), or axiscoordinates (X, Y, Z, or T) to be
used when evaluating the expression being plotted.

Example:

The following commands will create a wire frame representation of a simple mathematical
function in two dimensions.

yes? SET REGION/I=1:80/J=1:80
yes? WIRE/VIEWPOINT=-4,-10,2 exp(-1*(((I-40)/20)"2 + ((J-40)/20)"2))

WIRE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

WIRE/FRAME

Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE. In general the FRAME command (p. 222) is more flexible and we recom-
mend its use rather than this qualifier.

WIRE/NOLABEL
Suppresses al plot labels except axis labels.

WIRE/OVERLAY
Causes the indicated wire frame plot to be overlaid on the existing plot.

WIRE/SET_UP

Performs all the internal preparations required by program Ferret for wire frame graphics but
does not actually render output. The command PPL can then be used to make changes to the
plot prior to producing output with the PPL WIRE command. This permits plot customizations
that are not possible with Ferret command qualifiers. See Chapter 6 (p. 103).

WIRE/TITLE=
Allows user to specify aplot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression. To include font change and
color_thickness specifications (e.g., @TI@CO002) in the title string, it is necessary either to
CANCEL MODE ASCII or toinclude aleading ESC (escape) character. See Chapter 6, section
“Fonts’ (p. 120).

WIRE/TRANSPOSE
Causesthe X and Y axesto be interchanged.

WIRE/VIEWPOINT=
Specifies aviewpoint for viewing the wire frame.

COMMANDS REFERENCE 283

yes? WIRE/VIEWPOINT=x,YV,z expression

The x,y values are specified as coordinates on the X and Y axes (though they may exceed the
axislimits). The z value isin units of the requested variable.

WIRE/ZLIMITS=
Specifies limits of Z axisfor wire frame.

yes? WIRE/ZLIMITS=zmin, zmax,delta expression

The values given are in units of the requested variable. (The string given as an argument to
[ZLIMITS=ispassed unmodified to the PPLUS command WIRE asthe zmin and zmax param-
eters.)

WIRE/ZSCALE=
Controls Z axis scaling of the 3-D plot.

yes? WIRE/ZSCALE=s expression
Thedefault valueisequivalent to (ymax-ymin)/(zmax-zmin) (i.e., theaspect ratio of theZ axis

totheY axis). Thisqualifier isidentical to the PPLUS VIEW command parameter of the same
name.

284 COMMANDS REFERENCE

GLOSSARY

ABSTRACT EXPRESSION (or VARIABLE)
An expression which contains no dependencies on any disk-resident data is referred to as
“abstract”. For example, SIN(x), where x is a pseudo-variable.

AXIS
A line along one of the dimensions of agrid. Thelineisdivided into n points, or more pre-
cisaly, ngrid boxeswhere each grid box isalength along the axis. Adjacent grid boxes must
touch (no gaps along the axis) but need not be uniform in size (points may be unequally
spaced). Axes may be oriented (e.g. latitude, depth, ...) or simply abstract values.

COARDS
A profile for the standardization of NetCDF files.

CONTEXT
The information needed to obtain values for a variable: the location in space and time
(points or ranges), the name of the data set (if afile variable) and an optional grid.

DATA SET
A collection of variablesin one or more disk files that may be specified with asingle SET
DATA command.

DESCRIPTOR
A file containing background data about a GT or TS-formatted data set: variable names, co-
ordinates, units and pointers to the data files. Descriptor file names normally end with
“DES".

DYNAMIC AXIS
Anaxisthat isinferred through the use of |o:hi:deltanotation. It iscreated and destroyed dy-
namically by Ferret.

DYNAMIC GRID
A grid whose axes are inferred from a regridding operation that does not explicitly specify
all of the destination axes or specifies a destination grid that can be rendered conformable
with the originating grid only if some axes are removed or substituted.

EXPRESSION
Any valid combination of operators, functions, transformations, variables and pseudo-vari-
ables is an expresson. For example, “ABSU)”, “TEMP/(-0.03*Z)" or
“COS(TEMP[Y=0:40N@LOC:19])".

EZ DATA SET
Any disk datafile that is readable by Ferret but isnot in GT, TS, or NetCDF format.

GLOSSARY 285

FILE VARIABLE
A variablemade availablewith the SET DATA command. Filevariablesaredatain disk files
suitable for plotting, listing, using in user-variable definitions, etc.

GKS
The* Graphical Kernel System” — agraphics programming interface that facilitatesthe de-
velopment of device-independent graphics code.

GO FILE or GO SCRIPT
A file of Ferret commands intended to be executed as a single command with the GO com-
mand.

GRID
A group of 1 to 4 axes defining a coordinate space. A grid can associate the axes as “outer
products’ creating a rectangular array of points. Grids may be defined with the DEFINE
GRID command or from inside data sets.

GRID BOX
A length along an axis assumed to belong to asingle grid point. It is represented by a box
“middle”, abox upper and abox lower [imit. The*“middle” need not actually be at the center
of the box but the upper limit of box m must always be the lower limit of box m+1. (This
concept is needed for integration of variables along an axis.)

GRID FILE
A file containing the definition of grids and axes — part of the GT and TS formats.

GT FORMAT
“grids at time steps” format. A direct access format using a separate descriptor file for de-
scriptive metadata.

METAFILE
A representation of graphics stored in acomputer file. Such afile can be processed by anin-
terpreter program (such as Fprint) and sent to a graphics output device.

MODULO AXIS
An axiswhere the first point of the axislogically follows the last. Examples of this are de-
grees of longitude or datesin a climatological year.

MODULO REGRIDDING
A regridding operation where the destination axisis modul o and theregridding transformis
a modulo operation. Typical usage would be to create a 12-month climatology from a
multi-year time series.

286 GLOSSARY

NETCDF
Network Common Data Format isan interfaceto alibrary of dataaccessroutinesfor storing
and retrieving scientific data. NetCDF allows the creation of data sets which are self-de-
scribing and network transparent. As of Ferret version 2.30, NetCDF is the suggested
method of data storage.

OPERATOR
A function that is syntactically expressed in-line instead of as a name followed by argu-
ments. The Ferret operatorsare +, -, *, /,», AND, OR, EQ, NE, LT, LE, GT and GE.

PSEUDO-VARIABLE
A special variablewhose valuesare coordinates or coordinate information about agrid. X, I,
and XBOX are the pseudo-variables for the X axis— similarly for the other axes.

QUALIFIER
Commands and variable names may require auxiliary information supplied by qualifiers. In
the command “SHOW DATA/FULL," “/FULL” is a qudlifier. In the variable
“SST[Y=20N],” “Y=20N" isaqudlifier.

REGION
The location in space and time (or other axis units) at which avariable isto be evaluated.
The locations may be points or ranges. For example, T="1-JAN-1982",Y=12S:12N de-
scribes aregion in latitude and time.

REGRID
The processof converting the values of avariablefrom onegridto another. By default thisis
done through multi-linear interpolation aong all axes from the old grid to the new. Other
methods are a so supported.

SUBSCRIPT
A coordinate system for referring to grid locationsin which the points along an axis are re-
garded asintegersfrom 1 to the number of pointsontheaxis. Thequalifiersl, J, K, and L are
provided to specify locations by subscript.

TRANSFORMATION
An operation performed on a variable along a particular axis and specified via the syntax
“@trn”. Some transformations, such as averaging (e.g. U[Z=@AVE]), reduce the range of
the variable along the axis to a single point. Others, such as taking a derivative (e.g.,
V[T=@DDC]) do not.

TMAP-FORMAT
Special formats created by the Thermal Modeling and Analysis Project (TMAP). Thesefor-
mats use descriptor filesto store information about the variables, units, titles, and grids for
the data. Separate formatsallow optimized access astime series (T Sformat) or as geograph-

GLOSSARY 287

ical regions(GT format). Asof Ferret version 2.30, NetCDF isthe suggested method of data
storage.

TSFORMAT
“time step” format. A direct access format using a separate descriptor file for descriptive
metadata.

USER-DEFINED VARIABLE
A variable created with DEFINE VARIABLE (aliasLET).

VARIABLE
Value defined on agrid.

VARIABLE NAME
The name by which avariablewill beindicated in commands and expressions. Names begin
with letters and may include letters, digits, dollar signs, and underscores.

VARIABLE TITLE
A title string used to label plots and listed outputs of avariable.

VIEWPORT
A graphical display region which may be any subrectangle of a window. Graphical com-
mands (PLOT, CONTOUR, etc.) take complete control of aviewport, clearing it as needed.
A window may contain several viewports — possibly overlapping. Viewports are defined
with DEFINE VIEWPORT and controlled with SET and CANCEL VIEWPORT.

WINDOW
A rectangular graphical display region. On agraphicsterminal theterminal screenistheone
and only window available. On agraphicsworkstation there may be many output windows.

WORLD COORDINATE
A coordinate system for referring to grid locations in which the points along an axis are re-
garded as continuous values in some particular units (e.g., meters of depth, degrees of lati-
tude). The qualifiers X, Y, Z, and T are provided to specify locations by world coordinate.

288 GLOSSARY

Index
|
2 138
@ ... e 55,82,93
regionspecifier.o L. 93
transformations. 55
@AVE
regridding @AVE 84
transformation @AVE 60
@CDA transformation
nearest neighbor above. 68

@CDB transformation
nearest neighbor below. 68

@CIA transformation

nearestindexbelow 69
@CIB transformation

nearestindexbelow 69
@DDB transformation

backward derivative 63
@DDC transformation

centered. 63
@DDF transformation

forward derivative 63
@DIN transformation

definiteintegral. 58
@FAYV transformation

averagingfiller. 64
@FLN transformation

linear integration. 65
@FNR transformation

nearest neighbor 65
@IIN transformation

indefinite. 59
@LOC transformation

locationof 65
@MAX transformation

maximumvalue 61
@MIN transformation

minimumvalue. 61

@NBD transformation

number of bad points. 64

@NGD transformation

number of good points. 63
@RSUM transformation

running unweightedsum. 64
@SBN transformation

binomial smoother 62
@SBX transformation

boxcar smoother 61
@SHF transformation

shiftdata 61
@SHN transformation

Hanning smoother 62
@SPZ transformation

Parzen 62
@SUM transformation

unweighted 64
@SWL transformation

Welch. 63
@VAR transformation

weightedvariance 60
@WEQ transformation

weightedequal 66
3-D

WIRE. 282
A
abstractexpression 285
abstractvariable, 46
account

settingupanaccount 151
actioncommand L. 49
agebraicexpression. 49
ALIAS 203,211,221 - 222,240,268,277 - 278
analyzing curvilinear coordinatedata 150
analyzing polygonal coordinates. 150
analyzing sigmacoordinatedata 149
animations 97

FRAME. 222

SETMOVIE 260

INDEX 289

VIEWING. . . o oo e 98

arguments (script) 18
arrow

textlabels., 113
ASCII data

accessiNg 34

output 228

reading 35

ready 34

SETDATAIEZ 245
association e e e 84
attributes

NetCDF attributes. 162

NetCDF global attributes. 164
autocorrelation. 15
average

transformation @AVE. 60
averaging filler

@FAV transformation. 64
axiS. . .. 105,285

IDEFINE. 77

INOAXIS. 106

CANCEL 203

DEFINE. 212

dynamic 81,285

Ferretcontrols. 105

label 111

limits 105

modulo. 94

NetCDF axis definitions 163

PPLUScommands 106

reversed. 171

transformation 55
AXIS

SETmodulo 241
B
backward derivative

@DDB transformation. 63
barcharts. 15
batch 100
big-endian. 246
binary

record structure. 31
binary data

output 228
290 INDEX

reading 35
recordstructure 243
SETDATAIEZ 245
binomia smoother
@SBN transformation 62
bold. 16
boxcar smoother
@SBX transformation 61
C
cdendar 92,171,214,252
CANCEL 203
IALL 204
CANCEL ALIAS. 203
CANCEL AXIS 203
CANCEL DATA
JIALL 204
CANCEL DATA_SET. 204
CANCEL EXPRESSION 204
CANCEL LIST. 204
IALL 204
IAPPEND. 205
IFILE 205
[FORMAT 205
HEAD 205
/IPRECISION 205
CANCEL MEMORY. 205
JIALL 205
/PERMANENT 205
ITEMPORARY 206
CANCELMODE. 206
CANCEL MOVIE 206
IALL 206
CANCELREGION. 207
JIALL 207
MIKIL ... 207
IXIYIZIT .o 207
CANCELSYBMOL 206
CANCEL VARIABLE. 207
IALL 207
CANCEL WINDOW. 208
JIALL 208

CDA transformation

nearest neighbor above. 68

CDB transformation

nearest neighbor below. 68
CDLfile 161 - 162
advancedusage 168
sample. 172
USING © o o o e e e e e e 165
child_axis
NetCDF. 169
CIA transformation
nearestindexbelow 69
climatological axes
defining. 213
climaology 87,171
COARDS 159,285
COARDSNeCDF. 29
collections
timeseries. 148
vertical profiles. 144
color 114
contouring. . . . v v v vt 124
customcontrol 114,119
Ferretcontrols 114,118
GOtools 16
hardcopy 156
inHDFmovie 99
lines 114,234
palette 16,24,116,210,232,266
palletted. 238
pattern2 L 233
PPLUScommands. 115,119
text ... 114
color_thicknessindex 115,126,210
command
abbreviatedsyntax 13
CommandsReference. 203
executing aUnix command. 276
SHOW 269
syntax. 12
command line
Unix 6
commandline(Unix). 276
conformability 50,74
context 285
contour
extrema. 16

CONTOUR. oo 208
ID. . 208
[FILL ... oo 208
[FRAME 209
MNIIKIL . 208
IKEY 209
ILEVELS 209
ILINE. 209
INOAXIS 209
INOKEY 209
INOLABELS 209
/OVERLAY., 209
/PALETTE 210
/PATTERN= 210
/PEN 210
[SET_ UP 210
ITITLE o .. 210
ITRANSPOSE 210
IXIVIZIT oo 208
IXLIMITS. o .. 211
IYLIMITS.o o 211
NOAXIS o 209

contouring 124,126
CONTOUR. o . 208

convertingunits. 215

coordinates
curvilinear, 132,149
interpolation. 255
SHOW GRID /W/Y/ZIT 272
spacing, NetCDF 170
underlyinggrid. 77

correlation
autocorrelation. 14
invariancescript. oL 14

COSINE (latitude) 56

curl . . .o 63

curvilinear coordinates. 128,149
scriptsfor 132

D

data
ASCIl . . .o 8
CANCEL DATA SET 204
dataset. 27
NetCDF 28
SETDATA SET. 242
SHOWSET. 269
STATISTICS. 276
TMAP-formatted. 30

dataset. 27,285
examples.o 22
EZ. 285
locating. 23

INDEX 291

NetCDF. 159
saveandrestore 18
dates
inASCIl files. 143
DDB transformation
backward derivative 63
DDC transformation
centered. 63
DDF transformation
forwardderiva 63
debugging 21,76,254 - 255
DEFINE, 211
DEFINEALIAS 211
DEFINEAXIS 211
IDEPTH. 212
JEDGES. 212
IFILE 213
/[FROM _DATA 213
/IMODULO 214
INAME 214
INPOINTS 214
ITO . . 214
JUNITS 214
IXIYIZIT ... 212
DEFINEGRID. 215
IFILE 216
ILIKE. 216
IXIYIZIT oo 215
DEFINEREGION 217
IDEFAULT 217
/DI/DJDK/DL 217
/DX/DY/DZ/DT 217
MIKIL ..o 217
IXIYIZIT ... 217
DEFINESYMBOL. 218
DEFINEVARIABLE 218
ID . 219
IQUIET o oo 219
ITITLE 219
JUNITS 219
DEFINEVIEWPORT 219
ICLIP 220
IORIGIN 220
ISIZE 220
ITEXT. . . o o 220
IXLIMITS. 220
IYLIMITS. 220
definite integral
@DIN transformation 58
292 INDEX

depth. 16,92,212,253

DEFINEAXIS/DEPTH 212
derivative. 63

transformations. L. 55
descriptor 285

locating 152

TMAPdataset. 31
digits. 72
dimensions

multi-dimensional expression 50

NetCDF. 162
DIN transformation

definiteintegral. 58
divergence L. 63
DODS 39

accessingremotedata 40

sharingdata. 41
drifterdata 148
dynamicaxis 285
dynamicgrid o 285
dynamicheight. 15
E
ECHO. 103
ELIF 220
ELSE

conditional execution. 221

masking 70
embedded expression 71,136
ENDIF 221
environment

computing environment 135,151

environment variables. 23,152

settingupanaccount 151
environment variable. 152
error

insufficient memory 253
errors

generatingmessages. 19,138

Errors
MODE IGNORE_ERROR 255
EXIT ..o 221
/COMMAND FILE 221
QUIT 221
EXPression. . . .o ov o 49,285
algebraic 10
CANCEL 204
embedded. 71
MODEPOLISH 257
SET defaultcontext. 247
SHOW 270
external
anatomy of an External Function. 182
compute. 183
ef utility functions 191
ef bail out 202
ef get arg_info. 196
ef get arg ssextremes 199
ef get arg_string. 197
ef get arg subscripts. 198
ef get axisdates. 198
ef get axisinfo 197
ef get bad flags 199
ef get box limits. 201
ef get box size. 200
ef get coordinates 199
ef getdesc. 192
ef getoneva 201
ef get res subscripts. 196
ef setagdesc. 193
ef sstaagname 193
ef set argtype. 194
ef setagunit. 193
ef set axisextend 194
ef set axis influence. 194
ef set axis inheritance. 192
ef set axis limits. 195
ef set axis reduction. 195
ef set custom axis. 195
ef set num_args 192
ef set num_work arrays. 195
ef set piecemeal ok 193
ef set work array dims. 196
EF Utilemn 190
ef versontest 201
example: times2bad20 180
External Functions Notes and Suggestions. . 186
getting ef examplecode. 180
getting started with External Functions. . . . 179
inheritingaxes 186
initsubroutine. L 182
Loopindices 187
Quick Startexample 180
reducedaxes 188
result_limits. 185
sringarguments L 189
utility functions. 190
work_size. o 184
External Functions 179

extremum 16,61,85

F
Faddpath 22
Fapropos. 22
FAV transformation
averagingfille 64
Fdata. 23
Fdescr 23
Fenv 23
FER DATA 152
FER DESCR. 152
FERDIR., 152
FERDSETS. 152
FER GO 152
FERGRIDS 152
FER PALETTE 152
Ferree HomePage. 2
ferret paths. 152
Fgo. 23
Fgrids 23
Fhelp. 23
FILE 221
diasfor SETDATA/EZ 245
files
byteswapped. 34
DODS 39
mixedtypes. L 34
real*8. 33
stream 33
supported streamtypes. 33
FILL ... 222
CONTOUR/FILL. 208
filler (missingvalue) 64 - 65
filtering
transformations. L. L. 55
flag (missingvalue) 47

INDEX 293

FLN transformation
linearinterpol 65
flow control (scripts) 20 - 21,220,223,255
Fman. 24
FNR transformation
nearest neighbo. 65
font 120
Ferretcontrols. 120
PPLUScommands 120
format
/[FORMAT quadlifier 242,249
datasets. 242
Ferret. 31
FORMAT qualifier 228
HDF 97
MODEASCII_ FONT 252
MODE LATIT LABEL 256
MODELONG LABEL 256
NetCDF 28
numericaxislabels 106
standardizeddata. 27
TMAP 30
TMAPformat. 287
formatting
numerical output 72,229,249
plots. 105
FORTRAN-formatted files 31
forward derivative
@DDF transformation 63
Fpalette. 24
Fprint 154
Fpurge 24
Unix filenaming 157
FRAME. 222
/FILE=filename. 222
/[FORMAT=format 222
/[FORMAT=GIF. 222
/IFORMAT=HDF 222
Fsort 24
Unix. o o 157
Unix filenaming 157
Ftoc. 24
functinos
SIN. ... 52
function 51
RANDN, 53
RHO UN. 54

294 INDEX

functions
ABS 52
ACOS 53
ASIN. . .. 52
ATAN o 53
ATAN2. 53
COS 52
DAYS1900. 53
EXP .. 52
IGNOREO 53
INT. . . 52
LN .o 52
LOG 52
MAX . . 52
MIN .. 52
MISSING. 53
MOD...................... 53
RANDU 53
RESHAPE 54
TAN . . . 52
THETA_FO 54
TSEQUENCE 54
XSEQUENCE 54
YSEQUENCE 54
ZAXREPLACE 54
ZSEQUENCE 54
G
getting point dataintoFerret 142
GIFimage 100
GKS. . . 286
colormap. 114
graphic metefile. 154
MODE METAFILE 257
MODE SEGMENTS 258
gKSM2pS 156
GLOSSARY 285
GO . . 222
HELP. 223
files. 13
Unix filenaming 158
writingtools 17
GOFile. 286
graphics
I[SET_UP o 104
hardcopy 154
MEMOrY o v it e e 153
MODE METAFILE 257
outputcontrols, 104
viewport. 121
gregorianyear 214
grid 77,286

IDEFINE. 77
conformable, 50
default. 246
DEFINE. 215
DEFINEAXIS 211
dynamic 78,285
gidbox 286
gridfile L o 286
regridding, 82
SET 248
staggered 169
gridded datafrompointdata 143
gridding (pointdata). 17,278
gridfile
searching 152
UDandDU 212
grids
pseudo-variables 45
GT
locatingfiles 152
H
Hanning smoother
@SHN transformatio. 62
hardcopy 154
Fprint 154
OKSM2PS. « o v v e 156
MODE 257
monochromedevices. 154
HDF 97
help
HELP 223
Unixon-line 24
withinFerret 25
histograms L 15
homepage. 2
hyperslabs
NetCDF. 169
I
IF
conditional execution. 223
masking 70

[N transformation
indefinite integr

image 97,100
immediatemode. 71,136
indefinite integral
@IIN transformation. 59
inheritance
ofaxes 45
initializationfile 152
insufficientmemory 153
integral oo 58 -59
transformations. L. L. 55
integration
irregular limits 57
interpolation 68
isosurface 11,65 - 66
@LOC 65
@WEQ. 66
L
label
XIS . . e 111
contourline. 126
Ferretcontrols. 111
LABEL 225
MODE 252
MODEASCII_FONT 252
MODEDEPTH_LABEL 253
MODE LATIT LABEL 256
MODELONG LABEL 256
movablelabels 108
plot 108
positioningwithmouse. 112
PPLUScommands. 108,112
with pointingarrow 113
L abel
MODE CALENDAR. 252
LABEL/NOUSER. 226
land mass
graphical L 15
latitude. 91
layout. 16,105,121,124,137,156
leastsquares 15
LET. . . . 226
levels(contour) 125

INDEX 295

line
/LINE qudlifier. 114,124,209,234,266
/LINE qudifier3 237
hardcopy 156
linestyles. 15,114,234

linear interpolation filler

@FLN transformation 65
LIST 226
IAPPEND. 227
ID . 227
IFILE 228
IFORMAT 228
HEAD, 229
NIJIKIL .o 227
INOHEAD 229
/JORDER 229
/PRECISION=#. 230
IQUIET 230
IRIGID 230
/ISINGLY 230
[TITLE="titlestring" 230
IXIYIZIT oo 227
HEADING. 229
listsofconstants 70
littleeendian. 246
LOAD. e 231
ID . 231
MIKIL ..o 231
INAME 231
/PERMANENT 231
ITEMPORARY 231
IXIYIZIT oo 231
LOC transformation
locationof 65
location transformation
@LOC e 65
logo. 16
long_name
NetCDF variable attributes 162
longitude. 91
loop. 98
M
maps
ETOPOdatasets. 22
map projections L. 14,128
overlaysusingGOtools 14
masking 70
296 INDEX

matrix notation. 35
MAX transformation

maximumvalue 61
Maximum.o e e e e e e 61,85
maximum value

@MAX transformation 61
MCdatasets. 29,178
memory

CANCEL 205

insufficientmemory 153

largecaculations. 253

loading expressionsinto 231

management. 153,250,253

MODESEGMENTS 258

NetCDF. 171
MESSAGE 232

ICONTINUE 232

IQUIET 232

diasPAUSE 233
metafile. 286

hardcopy 154

MODE METAFILE 257

naming 157,257

trandation. 154
MIN transformation

minimumvalue. 61
MINIMUM. e e e e e e 85
minimum value

@MIN transformation 61
missingvalueflag 47,73,262
mode

SHOWMODE 273
MODE

SETMODE. 251
MODEASCII_FONT 252
MODE CALENDAR. 252
MODEDEPTH _LABEL. 253
MODEDESPERATE 253
MODEDIAGNOSTIC. 254
MODE IGNORE_ERROR. 255
MODE INTERPOLATE 255
MODEJOURNAL 255

MODE LATIT_LABEL

MODE LONG_LABEL

MODE METAFILE

MODEPOLISH
MODEPPLLIST
MODEREFRESH

MODE SEGMENTS.
MODE STUPID

modulo_

NetCDF.
regridding

moduloaxis.

modulo regridding

monthly averages.

mouse
click to position labels
WHERE command to define position

movies

N

naming
Unix file naming
variables. o L

NBD transformation
number of bad point

nearest neighbor filler
@FNR transformation

netCDF
disordered coordinates.

94

illegal variablenames 30
permuted axisordering. 30
reverse-ordered coordinates 30
NetCDF. 28,48,159,228,240,277,285,287
accessingdatawithUSE 277
axisattributes. L. 162
axisdefinition. L. 163
CDL datainitialization 164
CDLfiles. 162
child axis. 169
convertingto 159
dimensions 162
global attributes. L. 164
grid_definition 169
hyperslabs. 169
locating 152
longname 162
moduloaxes. 171
multi-filedatasets. 29,178
parentgrid. 169
slab max_index. 170
dab minindex. 170
special axisinterpretations 163
staggeredgrids 169
utilities 161
variableattributes. L. 162
variables. L 162
NGD transformation
number of goodpoin. 63
non-griddeddata 141
collections. 148
curvilinear. 149
pointdata 141
polygonal 150
sigmacoordinate 149
timeseries. 148
vertical profiles. 144
notation
@notation 93
number of bad points
@NBD transformation. 64
number of good points
@NGD transformation. 63
O
objectiveanalysis., 278
onlinehelp 22-24
operator 50,287
overlay
/OVERLAY qualifier . . . 209,235,266,281,283
/OVERLAY qudifier3 237

INDEX 297

P
palette
creation 116
locatingfiles. 24,152
PALETTEcommand 232
restoring default. 119
testing 16
parent grid
NetCDF. 169
Parzen smoother
@SPZ transformation 62
attern. 210
PATTERN command. 233
PATTERN 233
pattern3. 267
pause
MESSAGE 232
PAUSE 233
PEN
PPLUScommands 115
PLOT 233
ID. 234
[FRAME 234
MMIKIL .o 234
ILINE., 234
/INOLABELS 235
/OVERLAY. 235
/SET_ UP 235
/ISYMBOL 235
ITITLE o 235
/TRANSPOSE 235
INS 235
IXIYIZIT oo 234
IXLIMITS.o o 236
IYLIMITS. 236
point data-- how itisstructured 142
polygon. 236
POLYGON. 236
ID . 237
[FRAME 237
IKEY 237
ILEVELS 237
INOKEY 237
/INOLABELS 237
/OVERLAY. 237
/PALETTE 238
/IPATTERN 238
/SET UP 238
ITITLEo o 238
JTRANSPOSE 238
298 INDEX

IYLIMITS.o o 239

XLIMITS.o .. 238
PPLUS. 103,239
IRESET 239
MODEASCII_FONT 252
Precision 72
print. 154
printing
hardcopy 154
profile collection structure 145
profiledataintoFerret 146
projection. 128
curvilinear coordinates 129
map projections. 130
MP MasK . . v v v e e e 130
overlays. oL 131
polar stereographic. 16
SCripts. 16
sigmacoordinates. 129
standard parallel. 130
usingscripts.o 130
ypage 130
pseudo-variable 44,287
qualifier. 287
QUIET 230
QUIT
diasforEXIT. 239
R
RANDU function 53
reading datafiles
NetCDF 28
reading scattereddata 36
record structure
file. 31
region 90,287
CANCEL 207
DEFINE. 217
named 93
predefined. 94
saveandrestore 18

SET 261

SHOW 274
region(irregular). 57
FEegressSioNS. v v v i e 15
regrid 287
regridding 3,82,287

transformations. 84
relative version

GO 222

numbers. 158

Unix filenaming 158
REPEAT 240

MMIKIL .o 240

IXIYIZIT oo 240
reservednames. 218
RGB mapping

bylevel 118

byvalue. o 117

percent 117
RSUM transformation

running unweighteds 64
running unweighted sum

@RSUM transformation. 64
S
sampling. 17,279

scatteredsampling 279
SAVE

aliasfor LIST/FORM=CDF 240
SBN transformation

binomia 62
SBX transformation

boxcar 61
scatterplots. 236
scatteredsampling 279
SCHiptS. 13,17
seasonal averages. 213
segments

MODE SEGMENTS 258
SET 241
SETAXIS 241

SET DATA
IEZ . . . 245
/[EZICOLUMNS 245
[EZIGRID., 246
/[EZIORDER 246
EZISKIPo o 246
IEZISWAP 246
[EZITITLE o .. 246
[EZITYPE. 247
[EZNARIABLES 247
[FORMAT 242
IRESTORE 244
ISAVE 244
SETDATA_SET. oo 242
SETEXPRESSION 247
SETGRID 248
IRESTORE 248
ISAVE 248
SETLIST. 248
IAPPEND. 249
IFILE o 249
[FORMAT 249
HEAD 250
/PRECISION 250
SETMEMORY. 250
SETMODE. 251
ILAST. . . . 252
ASCII_FONT. 251
CALENDAR 251
DEPTH_LABEL 251
DESPERATE. 251
DIAGNOSTIC 251
GUI . .. 251
IGNORE_ ERROR 251
INTERPOLATE 251
JOURNAL 251
LATIT_LABEL. 251
LONG_LABEL. 251
METAFILE. 251
POLISH. 252
PPLLIST 252
REFRESH 252
SEGMENT 252
STUPID., 252
VERIFY., 252
WAIT oo o 252
SETMOVIE 260
ICOMPRESS 260
[FILEo 260
ILASER. 260
ISTART 261
SETREGION 261
/DIIDIJDK/DLo 261
/IDX/DY/DZIDY 261

INDEX 299

IXIYIZIT oo 261
SETVARIABLE. 262
IBAD 262
/IGRID. 262
ITITLE o 262
JUNITS o 262
SETVIEWPORT. 263
SETWINDOW. 263
JASPECT 264
/ICLEAR. 264
/LOCATION 264
INEW 265
/ISIZE 265
setup
ISET UP i 103
settingupanaccount L. 151
SHADE. 265
ID . 265
[FRAME 265
MMIKIL .o 265
IKEY 266
IJLEVELS 266
INOAXIS 266
INOKEY 266
/INOLABELS 266
IOVERLAY. 266
/PALETTE 266
ITITLE o 267
ITRANSPOSE 267
IXIVIZIT oo 265
IXLIMITS.o o 267
IYLIMITS. o o 267
shape(of variable) 74
SHF transformation
shiftdata 61
shift transformation
@SHF 61
SHN transformation
Hanning smoother 62
SHOW 268
N 268
SHOWALIAS 268
SHOWAXIS. 268
JALL . ..o 269
MIKILIXINIZIT oo oo 269
SHOW COMMANDS 269
SHOW DATA
BRIEF 270
/FILES 270
300 INDEX

/FULL. 270
IVARIABLES 270
SHOW DATA SET 269
SHOWEXPRESSION 270
SHOW FUNCTION 271
SHOWGRID. 271
IALL 272
MIKIL ... 272
IXIYIZIT .o 272
SHOWLIST 272
IALL 272
SHOW MEMORY 272
IALL 273
IFREE. 273
/PERMANENT 273
ITEMPORARY 273
SHOWMODE 273
IALL 273
SHOWMOVIE. 274
IALL 274
SHOWQUERIES 274
SHOWREGION 274
SHOWSYMBOL 274
SHOW TRANSFORM 275
IALL 275
SHOW VARIABLES 275
IALL 275
IDIAGNOSTIC. 275
JUSER. 275
SHOWVIEWPORT 276
JALL 276
SHOW WINDOWS 276
JIALL 276
slab_max_index
NetCDF. 170
slab_min_index
NetCDF. 170
smoothing
contourlines 126
transformations 55,57
SPAWN. 276

special axis interpretations
NetCDF. 163

SPZ transformation
Parzen 62
staggered grids
NetCDF. 169
standard deviation 60
state (Ferret state). 18,248,251
STATISTICS. 276
ID .. 277
MIKIL .o 277
IXIYIZIT o oo 277
BRIEF. 277
string. 135,137
strings
functionarguments. 51
subroutines (scripts) 20
subsamplingtopoints. 143
subsamplingto profiles. 147
subscript 287
SUM transformation
unweightedsum, 64
SWL transformation
Welch. 63
symbol. 206,218,274
plot pointsymbols. 15,235
text 135
textstringas. L 137
syntax ..o 12
command 287
filenames L 158
Fegion. 90
regridding 82
transformation 55
variable 43,55
T
Tektronix
MODEWAIT. 260
text. 135,137
color. 114
font. 120,252
THETA_FOfunctions. 54

three-dimensional plot

WIRE. 282
time 92,171
time axis

MODE CALENDAR. 252
title

[TITLE qudifier 235,267,281,283

dataset 246

defining variabletitle. 219

plot 108

TITLE qualifier. 210
TMAP-formattedfile 30,287
tools

Unixtools 22
transformation. 55,287

@AVEaverage.o 60

@CDA closest distanceabove. 68

@CDB closest distancebelow 68

@CIA closestindex above. 69

@CIB closestindex below. 69

@DDB backward derivative. 63

@DDC centered derivative 63

@DDF forward derivative. 63

@DIN definiteintegral. 58

@FAV averagingfiller. 64

@FLN linear interpolationfiller. 65

@FNR nearest neighbor filler 65

@IIN indefiniteintegral 59

@LOC locationof 65

@MAX maximumvalue. 61

@MIN minimumvaue 61

@NBD number of bad points 64

@NGD number of good points 63

@RSUM running unweighted sum 64

@SBN binomia smoother. 62

@SBX boxcar smoother 61

@SHF shiftdata 61

@SHN Hanning smoother 62

@SPZ Parzensmoother 62

@SUM unweightedsum. 64

@SWL Welchsmoother 63

@VARweighted variance 60

@WEQweightedequal 66

AXIS. . e 55

examples. o 56

general information 56

regridding, 84

SHOW 56
TS

locatingfiles 152
U
unformattedfiles. 31
units 214,262

INDEX 301

AXIS . . e 214

intransformations 56
Unix
commandline 6
environmentvariables 23
settingupanaccount 151
Unixtools 22
unmappedwindows. 6
unweighted sum
@SUM transformation. 64
transformation @RSUM 64
transformation @SUM 64
USE. 277
SET DATA/FORMAT=CDF. 243
USER. 278
utilities
NetCDF utilities 161
Unixtools 22
V
VAR transformation
weightedvariance 60
vaiable. 285
abstract. 9,46,285
conformable 50
default 75
DEFINE. 218
file. 44,286
global. 75
local 75
NetCDF. 162
pseudo., 44,287
reservednames 218
SET . . . 262
SETDATA SET. 242
SHOW, 275
syntax. 43
USEN . o o e e e e e e e 46
user-defined 48,75,207,218
variable names
infiles 44
variance
GOtool. 14
regriddingtransform 84
transformation @QVAR. 60
VECTOR. o . 279
IASPECTS 280
ID . 280
IFRAME 280
MIKIL ..o 280
IJLENGTH. 280
302 INDEX

INOAXIS. o 281

INOLABELS 281

IOVERLAY. 281

/PEN 281

ISET UP i 281

ITITLEo oo 281

ITRANSPOSE 281

IXIYIZIT © oo 280

IXLIMITS. . .. oo 281

IXSKIP . oo 282

IYLIMITS.o oo oL 282

IYSKIP .o 282
vectors

special 15
versions

GO . . 222

puUrgiNg 24

relativeversionnumbers L. 158

Unix filenaming 157
vertical profile

exampleof reading file. 38
vertical sections, defining from profiles 147
viewport 121,219

advancedusagel 123

CANCEL, 207

predefined 122

SET 263

SHOW 276
visualizing curvilinear coordinate data. 149
visudizing Lagrangiandata 148
visudlizingpointdata. 144
visualizing polygonal coordinatedata 150
visudizing profiledata. 147
visualizing sigmacoordinatedata 149
W
wait

MESSAGE 232
weighted equal

@WEQ transformation. 66
weighted variance

@VAR 60
Welch smoother

@SWL transformation. 63
WEQ transformation

weightedequal 66

command 282
window 288
CANCEL 208
SET . . . e 263
SHOW, 276
windowing
transformations. 55
windows
sizeandshape. 263
WIRE. 282
ID . 283
IFRAME 283
MIKIL ..o 283
INOLABEL 283
IOVERLAY., 283
ISET UP 283
ITITLE 283
ITRANSPOSE 283
IVIEWPOINT. 283
IXIYIZIT oo 283
IZLIMITS. 284
/ZSCALE, 284
example. 283
wireframe 282
worldcoordinate 288
WorldWideWeb. 100
X
X windows
sizeandshape. 263
XDaaSlice..................... 98
X windows
backingstore 258
settingupanaccount 151
unmapped 6
X-Y plot
PLOT 233

INDEX 303

	Con tents
	Chapter 1: INTRODUCTION
	1 OVERVIEW 1
	 1.1 Fer ret User™s Group 2
	 1.2 Fer ret Home Page 2

	2 GETTING STARTED 2
	 2.1 Con cepts 2
	 2.1.1 Thinking like a Fer ret: 4

	 2.2 Unix com mand line switches 6
	 2.3 Sam ple ses sions 7
	 2.3.1 Ac cessing a NetCDF data set 7
	 2.3.2 Read ing an ASCII data file 8
	 2.3.3 Using viewports 8
	 2.3.4 Using ab stract vari ables 9
	 2.3.5 Using trans for ma tions 9
	 2.3.6 Using al ge braic ex pres sions 10
	 2.3.7 Find ing the 20-de gree iso therm 11

	3 COMMON COMMANDS 12
	4 COMMAND SYNTAX 12
	5 GO FILES 13
	 5.1 Dem on stra tion files 13
	 5.2 GO tools 14
	 5.3 Writ ing GO tools 17
	 5.3.1 Doc u menting GO tools 18
	 5.3.2 Pre serving the Fer ret state in GO tools 18
	 5.3.3 Si lent GO tools 18
	 5.3.4 Ar gu ments to GO tools 18
	 5.3.5 Flow Con trol in GO tools 20
	 5.3.6 De bugging GO tools 21

	6 SAMPLE DATA SETS 22
	7 UNIX TOOLS 22
	8 HELP 24
	 8.1 Unix on-line help 24
	 8.2 Ex am ples and dem on stra tions 25
	 8.3 Help from within Fer ret 25

	Chapter 2: DATA SET BASICS
	1 OVERVIEW 27
	2 NETCDF DATA 28
	 2.1 Multi-file NetCDF data sets 29
	 2.2 Non-stan dard NetCDF data sets 29

	3 TMAP-FORMATTED DATA 30
	4 BINARY DATA 31
	 4.1 FOR TRAN-struc tured bi nary files 31
	 4.1.1 Re cords of uni form length 31
	 4.1.2 Re cords of non-uni form length 32

	 4.2 Stream bi nary files 33
	 4.2.1 Sim ple stream files 33
	 4.2.2 Mixed stream files 34

	5 ASCII DATA 34
	 5.1 Read ing ASCII files 35

	6 TRICKS TO READING BINARY AND ASCII FILES 38
	7 ACCESS TO REMOTE DATA SETS WITH DODS 39

	Chapter 3: VARIABLES AND EXPRESSIONS
	1 Vari ables 43
	 1.1 Vari able syn tax 43
	 1.2 File vari ables 44
	 1.3 Pseudo-vari ables 44
	 1.3.1 Grids and axes of pseudo-vari ables 45

	 1.4 User-de fined vari ables 46
	 1.5 Ab stract vari ables 46
	 1.6 Missing value flags 47
	 1.6.1 Missing val ues in in put files 47
	 1.6.2 Missing val ues in user-de fined vari ables 48
	 1.6.3 Missing val ues in out put NetCDF files 48
	 1.6.4 Dis playing the miss ing value flag 49

	2 EXPRESSIONS 49
	 2.1 Op er a tors 50
	 2.2 Multi-di men sional ex pres sions 50
	 2.3 Func tions 51
	 2.4 Trans for ma tions 55
	 2.4.1 Gen eral in for ma tion about trans for ma tions 56
	 2.4.2 Trans for ma tions ap plied to ir reg u lar re gions 57
	 2.4.3 Gen eral in for ma tion about smooth ing trans for ma tions 57
	 2.4.4 @DINŠdef i nite in te gral 58
	 2.4.5 @ IIN Šin def i nite in te gral 59
	 2.4.6 @AVEŠav er age 60
	 2.4.7 VARŠweighted vari ance 60
	 2.4.8 MINŠmin i mum 61
	 2.4.9 @MAXŠmax i mum 61
	 2.4.10 @SHF:nŠshift 61
	 2.4.11 @ SBX :nŠbox car smoother 61
	 2.4.12 @SBN:nŠbi no mial smoother 62
	 2.4.13 @ SHN :nŠ Hanning smoother 62
	 2.4.14 @ SPZ :nŠ Parzen smoother 62
	 2.4.15 @ SWL :nŠWelch smoother 63
	 2.4.16 @ DDC Šcen tered de riv a tive 63
	 2.4.17 @ DDF Šfor ward de riv a tive 63
	 2.4.18 @ DDB Šback ward de riv a tive 63
	 2.4.19 @ NGD Šnum ber of good points 63
	 2.4.20 @ NBD Šnum ber of bad points 64
	 2.4.21 @SUMŠun weight ed sum 64
	 2.4.22 @ RSUM Šrun ning un weight ed sum 64
	 2.4.23 @ FAV :nŠav er ag ing filler 64
	 2.4.24 @ FLN :nŠlin ear in ter po la tion filler 65
	 2.4.25 @ FNR :nŠnear est neigh bor filler 65
	 2.4.26 @ LOC Šlo ca tion of 65
	 2.4.27 @ WEQ Šweighted equal; in te gra tion ker nel 66
	 2.4.28 @ ITP Šin ter po late 68
	 2.4.29 @ CDA Šclos est dis tance above 68
	 2.4.30 @ CDB Šclos est dis tance be low 68
	 2.4.31 @CIAŠclos est in dex above 69
	 2.4.32 @ CIB Šclos est in dex be low 69

	 2.5 IF-THEN logic (ﬁmask ingﬂ) 70
	 2.6 Lists of con stants (ﬂcon stant ar raysﬂ) 70

	3 EMBEDDED EXPRESSIONS 71
	 3.1 Spe cial cal cu la tions us ing em bed ded ex pres sions 72

	4 DEFINING NEW VARIABLES 75
	 4.1 Global, lo cal, and de fault vari able def i ni tions 75

	5 DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS 76

	Chapter 4: GRIDS AND REGIONS
	1 OVERVIEW 77
	2 GRIDS 77
	 2.1 De fining grids 78
	 2.2 Dy namic grids and axes 78
	 2.2.1 Dy namic grids 79
	 2.2.2 Dy namic axes 81
	 2.2.3 Dy namic pseudo-vari ables 81

	 2.3 Regridding 82
	 2.3.1 Regridding trans for ma tions 84

	 2.4 Modulo regridding 87
	 2.4.1 Modulo regridding sta tis tics 89

	3 REGIONS 90
	 3.1 Lat i tude 91
	 3.2 Lon gi tude 91
	 3.3 Depth 92
	 3.4 Time 92
	 3.5 Delta 93
	 3.6 Modulo axes 94
	 3.7 Re gion Con flicts 95

	Chapter 5: ANIMATIONS AND GIF IMAGES
	1 OVERVIEW 97
	2 CREATING AN HDF MOVIE 97
	3 DISPLAYING AN HDF MOVIE 98
	4 ADVANCED MOVIE-MAKING 98
	 4.1 REPEAT com mand 98
	 4.1.1 Ini tial izing the color ta ble 99
	 4.1.2 Making mov ies in batch mode 100

	5 CREATING GIF IMAGES 100
	6 CREATING MPEG ANIMATIONS 101

	Chapter 6: CUSTOMIZING PLOTS
	1 OVERVIEW 103
	2 GRAPHICAL OUTPUT 104
	 2.1 Fer ret graph i cal out put con trols 104
	 2.2 PPLUS graph i cal out put com mands 105

	3 AXES 105
	 3.1 Fer ret axis con trols 105
	 3.2 PPLUS axis com mands 106

	4 LABELS 108
	 4.1 List ing la bels 108
	 4.2 Adding la bels 109
	 4.3 Re moving mov able la bels 110
	 4.4 Axis la bels and ti tle 111
	 4.5 Fer ret la bel con trols 111
	 4.6 PPLUS la bel com mands 112
	 4.7 Po si tioning la bels us ing the mouse pointer 112
	 4.8 La beling de tails with ar rows and text 113

	5 COLOR 114
	 5.1 Text and line col ors 114
	 5.1.1 Fer ret color con trols for lines 114
	 5.1.2 PPLUS text and line color com mands 115

	 5.2 Shade and fill col ors 116
	 5.2.1 Fer ret shade and fill color con trols 118
	 5.2.2 PPLUS shade color com mands 119

	6 FONTS 120
	 6.1 Fer ret font con trols 120
	 6.2 PPLUS font com mands 120

	7 PLOT LAYOUT 121
	 7.1 Fer ret lay out con trols 121
	 7.1.1 Viewports 121
	 7.1.2 Pre-de fined viewports 122
	 7.1.3 Ad vanced us age of viewports 123

	 7.2 PPLUS lay out com mands 123
	 7.3 Con trolling the white space around plots 124

	8 CONTOURING 124
	 8.1 Fer ret con tour con trols 124
	 8.1.1 /LEVELS qual i fier 125

	 8.2 PPLUS con tour com mands 126

	9 Map Pro jec tions and Curvilinear Co or di nates 128
	 9.1 Three-ar gu ment (curvilinear) ver sion of SHADE, FILL, CONTOUR, and VECTOR 128
	 9.2 Gridded data sets on curvilinear co or di nates 129
	 9.3 Layered (sigma) co or di nates 129
	 9.4 Map Pro jec tions 130
	 9.4.1 Using Map Pro jec tion scripts 130
	 9.4.2 Over lays with Map Pro jec tions 131
	 9.4.3 Map Pro jec tion scripts 132

	Chapter 7: HANDLING STRING DATA: ﬁSYMBOLSﬂ
	1 AUTOMATICALLY GENERATED SYMBOLS 135
	2 USE WITH EMBEDDED EXPRESSIONS 136
	3 ORDER OF STRING SUBSTITUTIONS 136
	4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS 137
	5 USING SYMBOLS IN COMMAND FILES 137
	6 PLOT+ STRING EDITING TOOLS 137
	7 SYMBOL EDITING 137
	8 SPECIAL SYMBOLS 139

	Chapter 8: WORKING WITH SPECIAL DATA SETS
	1 WHAT IS NON-GRIDDED DATA? 141
	2 POINT DATA 141
	 2.1 Getting point data into Fer ret 142
	 2.2 How point data is struc tured in Fer ret 142
	 2.2.1 Working with dates 143

	 2.3 Subsampling gridded fields onto point data lo ca tions and times 143
	 2.4 De fining gridded vari ables from point data 143
	 2.5 Vi su al iza tion tech niques for point data 144

	3 VERTICAL PROFILES 144
	 3.1 How col lec tions of pro files are struc tured in Fer ret 145
	 3.2 Getting pro file data into Fer ret 146
	 3.3 De fining ver ti cal sec tions from pro files 147
	 3.4 Vi su al iza tion and anal y sis tech niques for pro file sec tions 147
	 3.5 Subsampling gridded fields onto pro file co or di nates and times 147

	4 COLLECTIONS OF TIME SERIES 148
	5 COLLECTIONS OF 2-DIMENSIONAL GRIDS 148
	6 LAGRANGIAN DATA 148
	 6.1 Vi su al iza tion tech niques for Lagrangian data 148

	7 SIGMA COORDINATE DATA 149
	 7.1 Vi su al iza tion tech niques for sigma co or di nate data 149
	 7.2 Anal y sis tech niques for sigma co or di nate data 149

	8 CURVILINEAR COORDINATE DATA 149
	 8.1 Vi su al iza tion tech niques for curvilinear co or di nate data 149
	 8.2 Anal y sis tech niques for curvilinear co or di nate data 150

	9 POLYGONAL DATA 150
	 9.1 Vi su al iza tion tech niques for po lyg o nal data 150
	 9.2 Anal y sis tech niques for po lyg o nal data 150

	Chapter 9: COMPUTING ENVIRONMENT
	1 SETTING UP AN ACCOUNT 151
	2 FILES AND ENVIRONMENT VARIABLES USED BY FERRET 152
	3 MEMORY USE 153
	4 HARD COPY AND METAFILE TRANSLATION 154
	 4.1 Hard copy 154
	 4.2 Metafile trans la tion 156

	5 OUTPUT FILE NAMING 157
	6 INPUT FILE NAMING 158
	 6.1 Rel a tive ver sion num bers 158

	Chapter 10: CONVERTING TO NetCDF
	1 OVERVIEW 159
	2 SIMPLE CONVERSIONS USING FERRET 159
	3 WRITING A CONVERSION PROGRAM 161
	 3.1 Cre ating a CDL file with Fer ret 161
	 3.2 The CDL file 162
	 3.2.1 Di men sions 162
	 3.2.2 Vari ables 162
	 3.2.3 Data 164

	 3.3 Stan dard ized NetCDF at trib utes 165
	 3.4 Di recting data to a CDF file 166
	 3.5 Ad vanced NetCDF pro ce dures 168
	 3.5.1 Stag gered grid 169
	 3.5.2 Hyperslabs 169
	 3.5.3 Un evenly spaced co or di nates 170
	 3.5.4 Evenly spaced co or di nates (long axes) 170
	 3.5.5 ﬁModuloﬂ axes 171
	 3.5.6 Re versed-co or di nate axes 171
	 3.5.7 Con verting time word data to nu mer i cal data 171

	 3.6 Ex am ple CDL file 172

	4 CREATING A MULTI-FILE NETCDF DATA SET 178

	Chapter 11: EXTERNAL FUNCTIONS
	1 OVERVIEW 179
	2 GETTING STARTED 179
	 2.1 Getting ex am ple/de vel op ment code 180

	3 QUICK START EXAMPLE 180
	 3.1 The times2bad20 func tion 180

	4 ANATOMY OF AN EXTERNAL FUNCTION 182
	 4.1 The ~_ init sub rou tine (re quired) 182
	 4.2 The ~_com pute sub rou tine (re quired) 183
	 4.3 The ~_work_size sub rou tine (op tional) 184
	 4.4 The ~_re sult_lim its sub rou tine (op tional) 185
	 4.5 The ~_cus tom_axes sub rou tine (op tional) 185

	5 NOTES AND SUGGESTIONS 186
	 5.1 In heriting axes 186
	 5.2 Loop in di ces 187
	 5.3 Re duced axes 188
	 5.4 String Ar gu ments 189

	6 UTILITY FUNCTIONS 190
	 6.1 EF _ Util . cmn 190
	 6.2 Avail able util ity func tions 191

	Part II: COMMANDS REFERENCE
	1 ALIAS 203
	2 CANCEL 203
	 2.1 CANCEL ALIAS 203
	 2.2 CANCEL AXIS 203
	 2.3 CANCEL DATA_SET 204
	 2.4 CANCEL EXPRESSION 204
	 2.5 CANCEL LIST 204
	 2.6 CANCEL MEMORY 205
	 2.7 CANCEL MODE 206
	 2.8 CANCEL MOVIE 206
	 2.9 CANCEL SYMBOL 206
	 2.10 CANCEL REGION 207
	 2.11 CANCEL VARIABLE 207
	 2.12 CANCEL VIEWPORT 207
	 2.13 CANCEL WINDOW 208

	3 CONTOUR 208
	4 DEFINE 211
	 4.1 DEFINE ALIAS 211
	 4.2 DEFINE AXIS 211
	 4.3 DEFINE GRID 215
	 4.4 DEFINE REGION 217
	 4.5 DEFINE SYMBOL 218
	 4.6 DEFINE VARIABLE 218
	 4.7 DEFINE VIEWPORT 219

	5 ELIF 220
	6 ELSE 221
	7 ENDIF 221
	8 EXIT 221
	9 FILE 221
	10 FILL 222
	11 FRAME 222
	12 GO 222
	13 HELP 223
	14 IF 223
	15 LABEL 225
	16 LET 226
	17 LIST 226
	18 LOAD 231
	19 MESSAGE 232
	20 PALETTE 232
	21 PATTERN 233
	22 PAUSE 233
	23 PLOT 233
	24 POLYGON 236
	25 PPLUS 239
	26 QUIT 239
	27 REPEAT 240
	28 SAVE 240
	29 SET 241
	 29.1 SET AXIS 241
	 29.2 SET DATA_SET 242
	 29.3 SET EXPRESSION 247
	 29.4 SET GRID 248
	 29.5 SET LIST 248
	 29.6 SET MEMORY 250
	 29.7 SET MODE 251
	 29.7.1 SET MODE ASCII_FONT 252
	 29.7.2 SET MODE CALENDAR 252
	 29.7.3 SET MODE DEPTH_LABEL 253
	 29.7.4 SET MODE DESPERATE 253
	 29.7.5 SET MODE DIAGNOSTIC 254
	 29.7.6 SET MODE IGNORE_ERROR 255
	 29.7.7 SET MODE INTERPOLATE 255
	 29.7.8 SET MODE JOURNAL 255
	 29.7.9 SET MODE LATIT _LABEL 256
	 29.7.10 SET MODE LONG_LABEL 256
	 29.7.11 SET MODE METAFILE 257
	 29.7.12 SET MODE POLISH 257
	 29.7.13 SET MODE PPLLIST 258
	 29.7.14 SET MODE REFRESH 258
	 29.7.15 SET MODE SEGMENTS 258
	 29.7.16 SET MODE STUPID 258
	 29.7.17 SET MODE VERIFY 259
	 29.7.18 SET MODE WAIT 260

	 29.8 SET MOVIE 260
	 29.9 SET REGION 261
	 29.10 SET VARIABLE 262
	 29.11 SET VIEWPORT 263
	 29.12 SET WINDOW 263

	30 SHADE 265
	31 SHOW 268
	 31.1 SHOW ALIAS 268
	 31.2 SHOW AXIS 268
	 31.3 SHOW COMMANDS 269
	 31.4 SHOW DATA_SET 269
	 31.5 SHOW EXPRESSION 270
	 31.6 SHOW FUNCTION 271
	 31.7 SHOW GRID 271
	 31.8 SHOW LIST 272
	 31.9 SHOW MEMORY 272
	 31.10 SHOW MODE 273
	 31.11 SHOW MOVIE 274
	 31.12 SHOW QUERIES 274
	 31.13 SHOW REGION 274
	 31.14 SHOW SYMBOL 274
	 31.15 SHOW TRANSFORM 275
	 31.16 SHOW VARIABLES 275
	 31.17 SHOW VIEWPORT 276
	 31.18 SHOW WINDOWS 276

	32 SPAWN 276
	33 STATISTICS 276
	34 UNALIAS 277
	35 USE 277
	36 USER 278
	 36.1 Ob jec tive anal y sis 278
	 36.2 Scat tered sam pling 279

	37 VECTOR 279
	38 WHERE 282
	39 WIRE 282
	 GLOSSARY 285
	 In dex 289

	Index
	!
	* 138
	@ 55,82,93
	region specifier 93
	transformations 55

	@AVE
	regridding @AVE 84
	transformation @AVE 60

	@CDA transformation
	nearest neighbor above 68

	@CDB transformation
	nearest neighbor below 68

	@CIA transformation
	nearest index below 69

	@CIB transformation
	nearest index below 69

	@DDB transformation
	backward derivative 63

	@DDC transformation
	centered 63

	@DDF transformation
	forward derivative 63

	@DIN transformation
	definite integral 58

	@FAV transformation
	averaging filler 64

	@FLN transformation
	linear integration 65

	@FNR transformation
	nearest neighbor 65

	@IIN transformation
	indefinite 59

	@LOC transformation
	location of 65

	@MAX transformation
	maximum value 61

	@MIN transformation
	minimum value 61

	@NBD transformation
	number of bad points 64

	@NGD transformation
	number of good points 63

	@RSUM transformation
	running unweighted sum 64

	@SBN transformation
	binomial smoother 62

	@SBX transformation
	boxcar smoother 61

	@SHF transformation
	shift data 61

	@SHN transformation
	Hanning smoother 62

	@SPZ transformation
	Parzen 62

	@SUM transformation
	unweighted 64

	@SWL transformation
	Welch 63

	@VAR transformation
	weighted variance 60

	@WEQ transformation
	weighted equal 66

	3-D
	WIRE 282

	A
	abstract expression 285
	abstract variable 46
	account
	setting up an account 151

	action command 49
	algebraic expression 49
	ALIAS 203,211,221 - 222,240,268,277 - 278
	analyzing curvilinear coordinate data 150
	analyzing polygonal coordinates 150
	analyzing sigma coordinate data 149
	animations 97
	FRAME 222
	SET MOVIE 260
	viewing 98

	arguments (script) 18
	arrow
	text labels 113

	ASCII data
	accessing 34
	output 228
	reading 35
	ready 34
	SET DATA/EZ 245

	association 84
	attributes
	NetCDF attributes 162
	NetCDF global attributes 164

	autocorrelation 15
	average
	transformation @AVE 60

	averaging filler
	@FAV transformation 64

	axis 105,285
	/DEFINE 77
	/NOAXIS 106
	CANCEL 203
	DEFINE 212
	dynamic 81,285
	Ferret controls 105
	label 111
	limits 105
	modulo 94
	NetCDF axis definitions 163
	PPLUS commands 106
	reversed 171
	transformation 55

	AXIS
	SET modulo 241

	B
	backward derivative
	@DDB transformation 63

	bar charts 15
	batch 100
	big-endian 246
	binary
	record structure 31

	binary data
	output 228
	reading 35
	record structure 243
	SET DATA/EZ 245

	binomial smoother
	@SBN transformation 62

	bold 16
	boxcar smoother
	@SBX transformation 61

	C
	calendar 92,171,214,252
	CANCEL 203
	/ALL 204

	CANCEL ALIAS 203
	CANCEL AXIS 203
	CANCEL DATA
	/ALL 204

	CANCEL DATA_SET 204
	CANCEL EXPRESSION 204
	CANCEL LIST 204
	/ALL 204
	/APPEND 205
	/FILE 205
	/FORMAT 205
	/HEAD 205
	/PRECISION 205

	CANCEL MEMORY 205
	/ALL 205
	/PERMANENT 205
	/TEMPORARY 206

	CANCEL MODE 206
	CANCEL MOVIE 206
	/ALL 206

	CANCEL REGION 207
	/ALL 207
	/I/J/K/L 207
	/X/Y/Z/T 207

	CANCEL SYBMOL 206
	CANCEL VARIABLE 207
	/ALL 207

	CANCEL WINDOW 208
	/ALL 208

	CDA transformation
	nearest neighbor above 68

	CDB transformation
	nearest neighbor below 68

	CDL file 161 - 162
	advanced usage 168
	sample 172
	using 165

	child_axis
	NetCDF 169

	CIA transformation
	nearest index below 69

	climatological axes
	defining 213

	climatology 87,171
	COARDS 159,285
	COARDS NetCDF 29
	collections
	time series 148
	vertical profiles 144

	color 114
	contouring 124
	custom control 114,119
	Ferret controls 114,118
	GO tools 16
	hard copy 156
	in HDF movie 99
	lines 114,234
	palette 16,24,116,210,232,266
	pallette3 238
	pattern2 233
	PPLUS commands 115,119
	text 114

	color_thickness index 115,126,210
	command
	abbreviated syntax 13
	Commands Reference 203
	executing a Unix command 276
	SHOW 269
	syntax 12

	command line
	Unix 6

	command line (Unix) 276
	conformability 50,74
	context 285
	contour
	extrema 16

	CONTOUR 208
	/D 208
	/FILL 208
	/FRAME 209
	/I /J /K /L 208
	/KEY 209
	/LEVELS 209
	/LINE 209
	/NOAXIS 209
	/NOKEY 209
	/NOLABELS 209
	/OVERLAY 209
	/PALETTE 210
	/PATTERN= 210
	/PEN 210
	/SET_UP 210
	/TITLE 210
	/TRANSPOSE 210
	/X/Y/Z/T 208
	/XLIMITS 211
	/YLIMITS 211
	NOAXIS 209

	contouring 124,126
	CONTOUR 208

	converting units 215
	coordinates
	curvilinear 132,149
	interpolation 255
	SHOW GRID /W/Y/Z/T 272
	spacing, NetCDF 170
	underlying grid 77

	correlation
	autocorrelation 14
	in variance script 14

	COSINE (latitude) 56
	curl 63
	curvilinear coordinates 128,149
	scripts for 132

	D
	data
	ASCII 8
	CANCEL DATA_SET 204
	data set 27
	NetCDF 28
	SET DATA_SET 242
	SHOW SET 269
	STATISTICS 276
	TMAP-formatted 30

	data set 27,285
	examples 22
	EZ 285
	locating 23
	NetCDF 159
	save and restore 18

	dates
	in ASCII files 143

	DDB transformation
	backward derivative 63

	DDC transformation
	centered 63

	DDF transformation
	forward deriva 63

	debugging 21,76,254 - 255
	DEFINE 211
	DEFINE ALIAS 211
	DEFINE AXIS 211
	/DEPTH 212
	/EDGES 212
	/FILE 213
	/FROM_DATA 213
	/MODULO 214
	/NAME 214
	/NPOINTS 214
	/T0 214
	/UNITS 214
	/X/Y/Z/T 212

	DEFINE GRID 215
	/FILE 216
	/LIKE 216
	/X/Y/Z/T 215

	DEFINE REGION 217
	/DEFAULT 217
	/DI/DJ/DK/DL 217
	/DX/DY/DZ/DT 217
	/I/J/K/L 217
	/X/Y/Z/T 217

	DEFINE SYMBOL 218
	DEFINE VARIABLE 218
	/D 219
	/QUIET 219
	/TITLE 219
	/UNITS 219

	DEFINE VIEWPORT 219
	/CLIP 220
	/ORIGIN 220
	/SIZE 220
	/TEXT 220
	/XLIMITS 220
	/YLIMITS 220

	definite integral
	@DIN transformation 58

	delta 93
	depth 16,92,212,253
	DEFINE AXIS/DEPTH 212

	derivative 63
	transformations 55

	descriptor 285
	locating 152
	TMAP data set 31

	digits 72
	dimensions
	multi-dimensional expression 50
	NetCDF 162

	DIN transformation
	definite integral 58

	divergence 63
	DODS 39
	accessing remote data 40
	sharing data 41

	drifter data 148
	dynamic axis 285
	dynamic grid 285
	dynamic height 15

	E
	ECHO 103
	ELIF 220
	ELSE
	conditional execution 221
	masking 70

	embedded expression 71,136
	ENDIF 221
	environment
	computing environment 135,151
	environment variables 23,152
	setting up an account 151

	environment variable 152
	error
	insufficient memory 253

	errors
	generating messages 19,138

	Errors
	MODE IGNORE_ERROR 255

	EXIT 221
	/COMMAND_FILE 221
	QUIT 221

	expression 49,285
	algebraic 10
	CANCEL 204
	embedded 71
	MODE POLISH 257
	SET default context 247
	SHOW 270

	external
	anatomy of an External Function 182
	compute 183
	ef utility functions 191
	ef_bail_out 202
	ef_get_arg_info 196
	ef_get_arg_ss_extremes 199
	ef_get_arg_string 197
	ef_get_arg_subscripts 198
	ef_get_axis_dates 198
	ef_get_axis_info 197
	ef_get_bad_flags 199
	ef_get_box_limits 201
	ef_get_box_size 200
	ef_get_coordinates 199
	ef_get_desc 192
	ef_get_one_val 201
	ef_get_res_subscripts 196
	ef_set_arg_desc 193
	ef_set_arg_name 193
	ef_set_arg_type 194
	ef_set_arg_unit 193
	ef_set_axis_extend 194
	ef_set_axis_influence 194
	ef_set_axis_inheritance 192
	ef_set_axis_limits 195
	ef_set_axis_reduction 195
	ef_set_custom_axis 195
	ef_set_num_args 192
	ef_set_num_work_arrays 195
	ef_set_piecemeal_ok 193
	ef_set_work_array_dims 196
	EF_Util.cmn 190
	ef_version_test 201
	example: times2bad20 180
	External Functions Notes and Suggestions 186
	getting ef example code 180
	getting started with External Functions 179
	inheriting axes 186
	init subroutine 182
	Loop indices 187
	Quick Start example 180
	reduced axes 188
	result_limits 185
	string arguments 189
	utility functions 190
	work_size 184

	External Functions 179
	extremum 16,61,85

	F
	Faddpath 22
	Fapropos 22
	FAV transformation
	averaging fille 64

	Fdata 23
	Fdescr 23
	Fenv 23
	FER_DATA 152
	FER_DESCR 152
	FER_DIR 152
	FER_DSETS 152
	FER_GO 152
	FER_GRIDS 152
	FER_PALETTE 152
	Ferret Home Page 2
	ferret_paths 152
	Fgo 23
	Fgrids 23
	Fhelp 23
	FILE 221
	alias for SET DATA/EZ 245

	files
	byte-swapped 34
	DODS 39
	mixed types 34
	real*8 33
	stream 33
	supported stream types 33

	FILL 222
	CONTOUR/FILL 208

	filler (missing value) 64 - 65
	filtering
	transformations 55

	flag (missing value) 47
	FLN transformation
	linear interpol 65

	flow control (scripts) 20 - 21,220,223,255
	Fman 24
	FNR transformation
	nearest neighbo 65

	font 120
	Ferret controls 120
	PPLUS commands 120

	format
	/FORMAT qualifier 242,249
	data sets 242
	Ferret 31
	FORMAT qualifier 228
	HDF 97
	MODE ASCII_FONT 252
	MODE LATIT_LABEL 256
	MODE LONG_LABEL 256
	NetCDF 28
	numeric axis labels 106
	standardized data 27
	TMAP 30
	TMAP format 287

	formatting
	numerical output 72,229,249
	plots 105

	FORTRAN-formatted files 31
	forward derivative
	@DDF transformation 63

	Fpalette 24
	Fprint 154
	Fpurge 24
	Unix file naming 157

	FRAME 222
	/FILE=filename 222
	/FORMAT=format 222
	/FORMAT=GIF 222
	/FORMAT=HDF 222

	Fsort 24
	Unix 157
	Unix file naming 157

	Ftoc 24
	functinos
	SIN 52

	function 51
	RANDN 53
	RHO_UN 54

	functions
	ABS 52
	ACOS 53
	ASIN 52
	ATAN 53
	ATAN2 53
	COS 52
	DAYS1900 53
	EXP 52
	IGNORE0 53
	INT 52
	LN 52
	LOG 52
	MAX 52
	MIN 52
	MISSING 53
	MOD 53
	RANDU 53
	RESHAPE 54
	TAN 52
	THETA_FO 54
	TSEQUENCE 54
	XSEQUENCE 54
	YSEQUENCE 54
	ZAXREPLACE 54
	ZSEQUENCE 54

	G
	getting point data into Ferret 142
	GIF image 100
	GKS 286
	color map 114
	graphic metafile 154
	MODE METAFILE 257
	MODE SEGMENTS 258

	gksm2ps 156
	GLOSSARY 285
	GO 222
	/HELP 223
	files 13
	Unix file naming 158
	writing tools 17

	GO File 286
	graphics
	/SET_UP 104
	hard copy 154
	memory 153
	MODE METAFILE 257
	output controls 104
	viewport 121

	gregorian year 214
	grid 77,286
	/DEFINE 77
	conformable 50
	default 246
	DEFINE 215
	DEFINE AXIS 211
	dynamic 78,285
	grid box 286
	grid file 286
	regridding 82
	SET 248
	staggered 169

	gridded data from point data 143
	gridding (point data) 17,278
	gridfile
	searching 152
	UD and DU 212

	grids
	pseudo-variables 45

	GT
	locating files 152

	H
	Hanning smoother
	@SHN transformatio 62

	hard copy 154
	Fprint 154
	gksm2ps 156
	MODE 257
	monochrome devices 154

	HDF 97
	help
	HELP 223
	Unix on-line 24
	within Ferret 25

	histograms 15
	home page 2
	hyperslabs
	NetCDF 169

	I
	IF
	conditional execution 223
	masking 70

	IIN transformation
	indefinite integr 59

	image 97,100
	immediate mode 71,136
	indefinite integral
	@IIN transformation 59

	inheritance
	of axes 45

	initialization file 152
	insufficient memory 153
	integral 58 - 59
	transformations 55

	integration
	irregular limits 57

	interpolation 68
	isosurface 11,65 - 66
	@LOC 65
	@WEQ 66

	L
	label
	axis 111
	contour line 126
	Ferret controls 111
	LABEL 225
	MODE 252
	MODE ASCII_FONT 252
	MODE DEPTH_LABEL 253
	MODE LATIT_LABEL 256
	MODE LONG_LABEL 256
	movable labels 108
	plot 108
	positioning with mouse 112
	PPLUS commands 108,112
	with pointing arrow 113

	Label
	MODE CALENDAR 252

	LABEL /NOUSER 226
	land mass
	graphical 15

	latitude 91
	layout 16,105,121,124,137,156
	least squares 15
	LET 226
	levels (contour) 125
	line
	/LINE qualifier 114,124,209,234,266
	/LINE qualifier3 237
	hard copy 156
	line styles 15,114,234

	linear interpolation filler
	@FLN transformation 65

	LIST 226
	/APPEND 227
	/D 227
	/FILE 228
	/FORMAT 228
	/HEAD 229
	/I /J /K /L 227
	/NOHEAD 229
	/ORDER 229
	/PRECISION=# 230
	/QUIET 230
	/RIGID 230
	/SINGLY 230
	/TITLE="title string" 230
	/X /Y /Z /T 227
	/HEADING 229

	lists of constants 70
	little-endian 246
	LOAD 231
	/D 231
	/I/J/K/L 231
	/NAME 231
	/PERMANENT 231
	/TEMPORARY 231
	/X/Y/Z/T 231

	LOC transformation
	location of 65

	location transformation
	@LOC 65

	logo 16
	long_name
	NetCDF variable attributes 162

	longitude 91
	loop 98

	M
	maps
	ETOPO data sets 22
	map projections 14,128
	overlays using GO tools 14

	masking 70
	matrix notation 35
	MAX transformation
	maximum value 61

	maximum 61,85
	maximum value
	@MAX transformation 61

	MC data sets 29,178
	memory
	CANCEL 205
	insufficient memory 153
	large calculations 253
	loading expressions into 231
	management 153,250,253
	MODE SEGMENTS 258
	NetCDF 171

	MESSAGE 232
	/CONTINUE 232
	/QUIET 232
	alias PAUSE 233

	metafile 286
	hard copy 154
	MODE METAFILE 257
	naming 157,257
	translation 154

	MIN transformation
	minimum value 61

	minimum 85
	minimum value
	@MIN transformation 61

	missing value flag 47,73,262
	mode
	SHOW MODE 273

	MODE
	SET MODE 251

	MODE ASCII_FONT 252
	MODE CALENDAR 252
	MODE DEPTH_LABEL 253
	MODE DESPERATE 253
	MODE DIAGNOSTIC 254
	MODE IGNORE_ERROR 255
	MODE INTERPOLATE 255
	MODE JOURNAL 255
	MODE LATIT_LABEL 256
	MODE LONG_LABEL 256
	MODE METAFILE 257
	MODE POLISH 257
	MODE PPLLIST 258
	MODE REFRESH 258
	MODE SEGMENTS 258
	MODE STUPID 258
	MODE VERIFY 259
	MODE WAIT 260
	modes 18
	modulo 94
	axis 94,171,214,286
	NetCDF 171
	regridding 87,286

	modulo axis 286
	modulo regridding 286
	monthly averages 213
	mouse
	click to position labels 112
	WHERE command to define position 282

	movies 97
	animations 97

	MPEG 101
	multiple axis plots 16

	N
	naming
	Unix file naming 157
	variables 218

	NBD transformation
	number of bad point 64

	ncdump 161
	ncgen 161,165
	nearest neighbor filler
	@FNR transformation 65

	netCDF
	disordered coordinates 29
	illegal variable names 30
	permuted axis ordering 30
	reverse-ordered coordinates 30

	NetCDF 28,48,159,228,240,277,285,287
	accessing data with USE 277
	axis attributes 162
	axis definition 163
	CDL data initialization 164
	CDL files 162
	child_axis 169
	converting to 159
	dimensions 162
	global attributes 164
	grid_definition 169
	hyperslabs 169
	locating 152
	long_name 162
	modulo axes 171
	multi-file data sets 29,178
	parent grid 169
	slab_max_index 170
	slab_min_index 170
	special axis interpretations 163
	staggered grids 169
	utilities 161
	variable attributes 162
	variables 162

	NGD transformation
	number of good poin 63

	non-gridded data 141
	collections 148
	curvilinear 149
	point data 141
	polygonal 150
	sigma coordinate 149
	time series 148
	vertical profiles 144

	notation
	@ notation 93

	number of bad points
	@NBD transformation 64

	number of good points
	@NGD transformation 63

	O
	objective analysis 278
	on-line help 22 - 24
	operator 50,287
	overlay
	/OVERLAY qualifier 209,235,266,281,283
	/OVERLAY qualifier3 237

	P
	palette
	creation 116
	locating files 24,152
	PALETTE command 232
	restoring default 119
	testing 16

	parent grid
	NetCDF 169

	Parzen smoother
	@SPZ transformation 62

	pattern 210
	PATTERN command 233

	PATTERN 233
	pattern3 267
	pause
	MESSAGE 232

	PAUSE 233
	PEN
	PPLUS commands 115

	PLOT 233
	/D 234
	/FRAME 234
	/I/J/K/L 234
	/LINE 234
	/NOLABELS 235
	/OVERLAY 235
	/SET_UP 235
	/SYMBOL 235
	/TITLE 235
	/TRANSPOSE 235
	/VS 235
	/X/Y/Z/T 234
	/XLIMITS 236
	/YLIMITS 236

	point data -- how it is structured 142
	polygon 236
	POLYGON 236
	/D 237
	/FRAME 237
	/KEY 237
	/LEVELS 237
	/NOKEY 237
	/NOLABELS 237
	/OVERLAY 237
	/PALETTE 238
	/PATTERN 238
	/SET_UP 238
	/TITLE 238
	/TRANSPOSE 238
	/YLIMITS 239
	XLIMITS 238

	PPLUS 103,239
	/RESET 239
	MODE ASCII_FONT 252

	precision 72
	print 154
	printing
	hard copy 154

	profile collection structure 145
	profile data into Ferret 146
	projection 128
	curvilinear coordinates 129
	map projections 130
	mp_mask 130
	overlays 131
	polar stereographic 16
	scripts 16
	sigma coordinates 129
	standard parallel 130
	using scripts 130
	y_page 130

	pseudo-variable 44,287

	Q
	qualifier 287
	QUIET 230
	QUIT
	alias for EXIT 239

	R
	RANDU function 53
	reading data files
	NetCDF 28

	reading scattered data 36
	record structure
	file 31

	region 90,287
	CANCEL 207
	DEFINE 217
	named 93
	pre-defined 94
	save and restore 18
	SET 261
	SHOW 274

	region (irregular) 57
	regressions 15
	regrid 287
	regridding 3,82,287
	transformations 84

	relative version
	GO 222
	numbers 158
	Unix file naming 158

	REPEAT 240
	/I/J/K/L 240
	/X/Y/Z/T 240

	reserved names 218
	RGB mapping
	by level 118
	by value 117
	percent 117

	RSUM transformation
	running unweighted s 64

	running unweighted sum
	@RSUM transformation 64

	S
	sampling 17,279
	scattered sampling 279

	SAVE
	alias for LIST/FORM=CDF 240

	SBN transformation
	binomial 62

	SBX transformation
	boxcar 61

	scatter plots 236
	scattered sampling 279
	scripts 13,17
	seasonal averages 213
	segments
	MODE SEGMENTS 258

	SET 241
	SET AXIS 241
	/DEPTH 242

	SET DATA
	/EZ 245
	/EZ/COLUMNS 245
	/EZ/GRID 246
	/EZ/ORDER 246
	/EZ/SKIP 246
	/EZ/SWAP 246
	/EZ/TITLE 246
	/EZ/TYPE 247
	/EZ/VARIABLES 247
	/FORMAT 242
	/RESTORE 244
	/SAVE 244

	SET DATA_SET 242
	SET EXPRESSION 247
	SET GRID 248
	/RESTORE 248
	/SAVE 248

	SET LIST 248
	/APPEND 249
	/FILE 249
	/FORMAT 249
	/HEAD 250
	/PRECISION 250

	SET MEMORY 250
	SET MODE 251
	/LAST 252
	ASCII_FONT 251
	CALENDAR 251
	DEPTH_LABEL 251
	DESPERATE 251
	DIAGNOSTIC 251
	GUI 251
	IGNORE_ERROR 251
	INTERPOLATE 251
	JOURNAL 251
	LATIT_LABEL 251
	LONG_LABEL 251
	METAFILE 251
	POLISH 252
	PPLLIST 252
	REFRESH 252
	SEGMENT 252
	STUPID 252
	VERIFY 252
	WAIT 252

	SET MOVIE 260
	/COMPRESS 260
	/FILE 260
	/LASER 260
	/START 261

	SET REGION 261
	/DI/DJ/DK/DL 261
	/DX/DY/DZ/DY 261
	/I/J/K/L 261
	/X/Y/Z/T 261

	SET VARIABLE 262
	/BAD 262
	/GRID 262
	/TITLE 262
	/UNITS 262

	SET VIEWPORT 263
	SET WINDOW 263
	/ASPECT 264
	/CLEAR 264
	/LOCATION 264
	/NEW 265
	/SIZE 265

	setup
	/SET_UP 103
	setting up an account 151

	SHADE 265
	/D 265
	/FRAME 265
	/I/J/K/L 265
	/KEY 266
	/LEVELS 266
	/NOAXIS 266
	/NOKEY 266
	/NOLABELS 266
	/OVERLAY 266
	/PALETTE 266
	/TITLE 267
	/TRANSPOSE 267
	/X/Y/Z/T 265
	/XLIMITS 267
	/YLIMITS 267

	shape (of variable) 74
	SHF transformation
	shift data 61

	shift transformation
	@SHF 61

	SHN transformation
	Hanning smoother 62

	SHOW 268
	/ALL 268

	SHOW ALIAS 268
	SHOW AXIS 268
	/ALL 269
	/I/J/K/L/X/Y/Z/T 269

	SHOW COMMANDS 269
	SHOW DATA
	/BRIEF 270
	/FILES 270
	/FULL 270
	/VARIABLES 270

	SHOW DATA_SET 269
	SHOW EXPRESSION 270
	SHOW FUNCTION 271
	SHOW GRID 271
	/ALL 272
	/I/J/K/L 272
	/X/Y/Z/T 272

	SHOW LIST 272
	/ALL 272

	SHOW MEMORY 272
	/ALL 273
	/FREE 273
	/PERMANENT 273
	/TEMPORARY 273

	SHOW MODE 273
	/ALL 273

	SHOW MOVIE 274
	/ALL 274

	SHOW QUERIES 274
	SHOW REGION 274
	SHOW SYMBOL 274
	SHOW TRANSFORM 275
	/ALL 275

	SHOW VARIABLES 275
	/ALL 275
	/DIAGNOSTIC 275
	/USER 275

	SHOW VIEWPORT 276
	/ALL 276

	SHOW WINDOWS 276
	/ALL 276

	slab_max_index
	NetCDF 170

	slab_min_index
	NetCDF 170

	smoothing
	contour lines 126
	transformations 55,57

	SPAWN 276
	special axis interpretations
	NetCDF 163

	special data 141
	SPZ transformation
	Parzen 62

	staggered grids
	NetCDF 169

	standard deviation 60
	state (Ferret state) 18,248,251
	STATISTICS 276
	/D 277
	/I/J/K/L 277
	/X/Y/Z/T 277
	BRIEF 277

	string 135,137
	strings
	function arguments 51

	subroutines (scripts) 20
	subsampling to points 143
	subsampling to profiles 147
	subscript 287
	SUM transformation
	unweighted sum 64

	SWL transformation
	Welch 63

	symbol 206,218,274
	plot point symbols 15,235
	text 135
	text string as 137

	syntax 12
	command 287
	filenames 158
	region 90
	regridding 82
	transformation 55
	variable 43,55

	T
	Tektronix
	MODE WAIT 260

	text 135,137
	color 114
	font 120,252

	THETA_FO functions 54
	three-dimensional plot
	WIRE 282

	time 92,171
	time axis
	MODE CALENDAR 252

	title
	/TITLE qualifier 235,267,281,283
	data set 246
	defining variable title 219
	plot 108
	TITLE qualifier 210

	TMAP-formatted file 30,287
	tools
	Unix tools 22

	transformation 55,287
	@AVE average 60
	@CDA closest distance above 68
	@CDB closest distance below 68
	@CIA closest index above 69
	@CIB closest index below 69
	@DDB backward derivative 63
	@DDC centered derivative 63
	@DDF forward derivative 63
	@DIN definite integral 58
	@FAV averaging filler 64
	@FLN linear interpolation filler 65
	@FNR nearest neighbor filler 65
	@IIN indefinite integral 59
	@LOC location of 65
	@MAX maximum value 61
	@MIN minimum value 61
	@NBD number of bad points 64
	@NGD number of good points 63
	@RSUM running unweighted sum 64
	@SBN binomial smoother 62
	@SBX boxcar smoother 61
	@SHF shift data 61
	@SHN Hanning smoother 62
	@SPZ Parzen smoother 62
	@SUM unweighted sum 64
	@SWL Welch smoother 63
	@VAR weighted variance 60
	@WEQ weighted equal 66
	axis 55
	examples 56
	general information 56
	regridding 84
	SHOW 56

	TS
	locating files 152

	U
	unformatted files 31
	units 214,262
	axis 214
	in transformations 56

	Unix
	command line 6
	environment variables 23
	setting up an account 151
	Unix tools 22

	unmapped windows 6
	unweighted sum
	@SUM transformation 64
	transformation @RSUM 64
	transformation @SUM 64

	USE 277
	SET DATA/FORMAT=CDF 243

	USER 278
	utilities
	NetCDF utilities 161
	Unix tools 22

	V
	VAR transformation
	weighted variance 60

	variable 285
	abstract 9,46,285
	conformable 50
	default 75
	DEFINE 218
	file 44,286
	global 75
	local 75
	NetCDF 162
	pseudo 44,287
	reserved names 218
	SET 262
	SET DATA_SET 242
	SHOW 275
	syntax 43
	user 46
	user-defined 48,75,207,218

	variable names
	in files 44

	variance
	GO tool 14
	regridding transform 84
	transformation @VAR 60

	VECTOR 279
	/ASPECTS 280
	/D 280
	/FRAME 280
	/I/J/K/L 280
	/LENGTH 280
	/NOAXIS 281
	/NOLABELS 281
	/OVERLAY 281
	/PEN 281
	/SET_UP 281
	/TITLE 281
	/TRANSPOSE 281
	/X/Y/Z/T 280
	/XLIMITS 281
	/XSKIP 282
	/YLIMITS 282
	/YSKIP 282

	vectors
	special 15

	versions
	GO 222
	purging 24
	relative version numbers 158
	Unix file naming 157

	vertical profile
	example of reading file 38

	vertical sections, defining from profiles 147
	viewport 121,219
	advanced usage 123
	CANCEL 207
	pre-defined 122
	SET 263
	SHOW 276

	visualizing curvilinear coordinate data 149
	visualizing Lagrangian data 148
	visualizing point data 144
	visualizing polygonal coordinate data 150
	visualizing profile data 147
	visualizing sigma coordinate data 149

	W
	wait
	MESSAGE 232

	weighted equal
	@WEQ transformation 66

	weighted variance
	@VAR 60

	Welch smoother
	@SWL transformation 63

	WEQ transformation
	weighted equal 66

	WHERE 282
	command 282

	window 288
	CANCEL 208
	SET 263
	SHOW 276

	windowing
	transformations 55

	windows
	size and shape 263

	WIRE 282
	/D 283
	/FRAME 283
	/I/J/K/L 283
	/NOLABEL 283
	/OVERLAY 283
	/SET_UP 283
	/TITLE 283
	/TRANSPOSE 283
	/VIEWPOINT 283
	/X/Y/Z/T 283
	/ZLIMITS 284
	/ZSCALE 284
	example 283

	wire frame 282
	world coordinate 288
	World Wide Web 100

	X
	X windows
	size and shape 263

	X Data Slice 98
	X windows
	backing store 258
	setting up an account 151
	unmapped 6

	X-Y plot
	PLOT 233

